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Abstract. We investigate anonymous broadcast encryptions (ANOBE) in which a ciphertext hides
not only the message but also the target recipients associated with it. Following Libert et al.’s
generic construction [PKC, 2012], we propose two concrete ANOBE schemes with tight reduction
and better space efficiency.

– The IND-CCA security and anonymity of our two ANOBE schemes can be tightly reduced to
standard k-Linear assumption (and the existence of other primitives). For a broadcast system
with n users, Libert et al.’s security analysis suffers from O(n3) loss while our security loss is
constant.

– Our first ANOBE supports fast decryption and has a shorter ciphertext than the fast-decryption
version of Libert et al.’s concrete ANOBE. Our second ANOBE is adapted from the first one.
We sacrifice the fast decryption feature and achieve shorter ciphertexts than Libert et al.’s
concrete ANOBE with the help of bilinear groups.

Technically, we start from an instantiation of Libert et al.’s generic ANOBE [PKC, 2012], but we
work out all our proofs from scratch instead of relying on their generic security result. This intu-
itively allows our optimizations in the concrete setting.
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1 Introduction

Broadcast Encryption. Broadcast encryption [Ber91,FN94] (BE) is a public-key cryptosystem
designed for securely sending information to multiple users via a public channel. In a BE
system, we may index each user by integers 1, . . . ,n and name setU := {1, . . . ,n} the universe.
It would be convenient to describe BE in the framework of Functional Encryption [BSW11]. An
authority publishes a set of public parameters generated by the Setup algorithm. Each user’s
secret key is then created by the KeyGen algorithm from the master secret key which is the
output of Setup. By invoking the encryption algorithm Enc, a sender can create a ciphertext
for users specified by a target set S ⊆ U. Any user with an index i ∈ S is able to decrypt the
ciphertext using the Dec algorithm.

The basic security requirement is collusion-resistance which ensures that a ciphertext leaks
no information about the message even when multiple users outside the target set S decide
to cooperate. More formally, it is required that

{ct←R Enc(mpk,S,m0)} ≈c {ct←R Enc(mpk,S,m1)}

where mpk is the public parameters, (S ⊆ U,m0,m1) are chosen by the adversary; and we
allow the adversary to adaptively learn secret keys for all i /∈ S.

With more powerful functional encryptions such as attribute-based encryptions [SW05],
[GPSW06,OT10,LOS+10,CGW15], we can securely broadcast information in a structural way
which is more efficient and much easier to manage. However the classical BE still serves as
the most general tool for broadcasting information in the systems where users are not well-
organized, e.g., a country-wide pay-TV system.

Anonymity. Since been introduced, a series of BE schemes have been published [FN94],
[NNL01,YFDL04,BGW05,DPP07,GW09,Wee16], but they only ensure the confidentiality of
the message while the target set S is entirely exposed to the public. In fact, the description of
Swill be directly transmitted through the insecure channel for decryption. However in many
applications, the confidentiality of the target set is also crucial. For instance, in the pay-TV
setting, everyone has access to the full list of subscribers, which is not acceptable. Therefore,
it is desirable and non-trivial to build a BE system taking both the message and the target
set into account in terms of confidentiality. In this paper, we call the latter feature anonymity
and name such a BE as anonymous broadcast encryption [LPQ12] (ANOBE). More formally, it
is required that

{ct←R Enc(mpk,S0,m0)} ≈c {ct←R Enc(mpk,S1,m1)}

where (m0,m1,S0,S1) are chosen by the adversary and secret keys for all i /∈ (S0 \ S1)∪ (S1 \

S0) can be revealed. The subtlety is that any secret key for i ∈ S0 ∩ S1 will give an adversary
the power to correctly decrypt both ciphertexts above. In this case,m0 6= m1 is disallowed in
order to avoid the trivial attack.

State of the Art. Although anonymity is crucial for BE, it has not received much attentions
to construct ANOBE with the proper security guarantee.

In 2006, Barth et al. [BBW06] first identified the anonymity (i.e., recipient privacy in their
work) in the context of encrypted file system. They introduced the notion of ANOBE in
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the name of private broadcast encryption. In their work, two constructions were described.
The first one is a generic construction from an IND-CCA secure PKE with key-privacy and a
strongly unforgeable signature scheme. They claimed that it achieves IND-CCA security and
anonymity but in the selective (or static) model which means that the adversary must commit
the challenge target sets (S0,S1) in advance. Basically, a BE ciphertext there is a set of PKE
ciphertexts intended for every recipient in S bound together via a signature. One drawback
of this construction is that the decryption time is proportional to |S| since each receiver has to
try to decrypt each PKE ciphertext one by one. In their second construction, they introduced
a method helping a receiver to find the right PKE ciphertext and reduced the decryption cost
to constant. However, it unfortunately relies on the random oracle model.

At PKC 2012, Libert el al. [LPQ12] formally revisited Barth et al.’s results. They described
the adaptive security for ANOBE where the adversary can choose the challenge target sets
(S0,S1) at any time (i.e., the security notation we have reviewed), and showed that it can
be achieved from IND-CCA secure PKE (plus strongly secure signatures). Note that this re-
sult is quite strong in that the underlying PKE is not necessarily key-private. Moreover, the
receiver can decrypt in a constant time. However, the size of ciphertext depends on n, the
size of universe. They then demonstrated that Barth et al.’s first BE is actually IND-CCA
secure and anonymous in an adaptive sense and provided an alternative construction from
IBE [Sha84,CHK04]. This ANOBE has shorter ciphertext (of size O(|S|)) but requires the un-
derlying PKE to be weakly robust [ABN10,Moh10] and key-private, and the decryption cost
increases to O(|S|). They also formalized the method helping to reduce the decryption cost
in Barth et al.’s second construction [BBW06] as anonymous hint system, which can be viewed
as a variant of extractable hash proof systems [Wee10]. The classical randomness-reuse tech-
nique [Kur02,BBS03] was then formally studied to reduce the ciphertext size. Finally, a con-
crete ANOBE based on the Kurosawa-Desmedt PKE [KD04] was proposed. Having their
generic ANOBE, they showed that the Kurosawa-Desmedt PKE can be adapted to be key-
private and robust, and also support randomness-reuse technique.

Also at PKC 2012, Fazio and Perera [FP12] proposed an ANOBE scheme with sublinear-
size ciphertexts but with a much weaker outsider-anonymity where users identified by S0 ∩ S1

are not considered to be malicious. More formally, the adversary is forbidden to get any
secret key for i ∈ S0 ∩ S1. However Barth et al.’s early work [BBW06] has actually recognized
such an inside attacker as a hazard and illustrated how serious the issue is under a chosen-
ciphertext attack. In the end, we want to note that Libert et al.’s results [LPQ12] are still the
best in the sense that they achieve (1) IND-CCA security, (2) fully anonymity and (3) random-
oracle-freeness. To our best knowledge, there is no follow-up result with all these features
simultaneously even when taking the identity-based variant into account (see recent work
[HWL+16] for more details).

1.1 Contributions

In this paper, we propose two concrete ANOBE schemes. Both of them are obtained by
optimizing an instantiation of Libert et al.’s generic construction [LPQ12] with Cramer-Shoup
PKE [CS98,CS02]. We prove, from scratch, that they are secure in the sense of [LPQ12] from
the standard k-Linear (k-Lin) assumption and the existence of several other cryptographic
primitives (such as strongly unforgeable signature and collision-resistant hash function) .
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Although our proposals do not deviate from Libert et al.’s generic framework [LPQ12],
our new start point and customized security proof allow us to gain shorter ciphertexts
and tighter reduction than the concrete instantiation in [LPQ12]. (Recall that it is based on
Kurosawa-Desmedt PKE [KD04] and the security result follows the generic construction di-
rectly.) A comparison between them is shown in Table 1 where we consider instantiations of
our two ANOBE under DDH=1-Lin (or SXDH=1-Lin) assumption3. We note that these two
instantiations are the most efficient ones.

Table 1. Comparison of our two proposals and the concrete ANOBE from [LPQ12] in terms of ciphertext size and
reduction tightness. Table (a) is for the schemes supporting fast decryption while we tolerate linear decryption
cost in Table (b). In our comparison, the system has n users and ` is the size of target set S. We let G be a finite
group where DDH holds while G1 denotes the first source group of a bilinear group where SXDH holds. The
column “Reduction” shows the security loss.

(a) Comparing our first ANOBE with
[LPQ12] plus anonymous hint system.

Scheme |ct| Reduction

[LPQ12] (4`+ 5)|G|+ 2|Zp| O(n3)

Sec. 3 (2`+ 5)|G|+ 2|Zp| O(1)

(b) Comparing our second ANOBE with
[LPQ12] without anonymous hint system.

Scheme |ct| Reduction

[LPQ12] (2`+ 5)|G|+ 2|Zp| O(n3)

Sec. 4 (`+ 6)|G1| O(1)

Shorter Ciphertext. Our first ANOBE scheme supports fast decryption. Compared with
the concrete ANOBE in [LPQ12] equipped with their DDH-based anonymous hint system4,
our ANOBE can save rougly 50% bandwidth. Our second ANOBE is derived from the first
one. We sacrifice fast decryption and peruse shorter ciphertext. Compared with concrete
ANOBE in [LPQ12], our second ANOBE works with bilinear groups and roughly saves 50%
bandwidth5. We highlight that this construction almost touches the lower bound of cipher-
text size in an anonymous broadcast encryption [KS12]. It is quite surprising that we start
from a less efficient basic PKE scheme but finally achieves better space efficiency. We note
that the Cramer-Shoup PKE [CS98,CS02] is indeed less efficient than Kurosawa-Desmedt
PKE [KD04], but it permits us to use some customized method to optimize the system.

Tighter Reduction. In [LPQ12], their security reduction suffers from O(n3) loss where n
is the size of the universe. This makes it infeasible for large-scale systems such as afore-
mentioned pay-TV application. In particular, we need to use a larger group to compensate
the loss, which of course increases the bandwidth and computation costs. In our work, we
prove the security of two ANOBE from basic assumption and only suffer constant security

3 We assume that (1) the verification key and signature for strongly unforgeable one-time signatures consist of 3
group elements and 2 integers, respectively [Gro06] (see Section 4, [CCS09]); (2) the authenticated encryption
with key-binding property has a ciphertext of roughly 2 group elements (see Section 6, [LPQ12]).

4 The resulting ANOBE will also support fast decryption, here we share the randomness between ANOBE and
anonymous hint system.

5 Here we implement the concrete ANOBE from [LPQ12] using elliptic curve.
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loss, which is of both theoretical and practical interest. We argue that the result is non-trivial:
A potential solution is to employ an IND-CCA secure PKE with tight reduction for multiple
users (like [GHKW16,Hof17]) in Libert et al.’s generic construction [LPQ12]. However, the
simulator still needs to guess which public keys will be associated with target set which is
chosen adversarially and causes significant security loss.

1.2 Technical Overview

Our starting point is an instantiation of Libert et al.’s generic construction with Cramer-
Shoup PKE [CS98,CS02]. In this overview, we first give this instantiation and describe how
to derive our two ANOBE schemes from it.

Starting point. Assume a prime-order group (p, G,g). We let [a] := ga ∈ G for all a ∈ Zp

and extend it to matrix over Zp. Assume S := {i1, . . . , i`}. We can instantiate Libert et al.’s
construction using Cramer-Shoup PKE under k-Lin assumption as below:

mpk : { [A] , [A>ki], [A>xi], [A>yi] }i∈[n], (Genots,Sig,Ver), h

ski : ki, xi, yi

ctS : { [r>A>] , [r>A>kij ] ·m, [r>A>(xij +α · yij)] }j∈[`], pkots,σ

where A ←R Z
(k+1)×k
p , ki, xi, yi ←R Zk+1

p for i ∈ [n] and r ←R Zkp. The public parameter
mpk is basically n public keys of Cramer-Shoup PKE6 sharing [A] which is a common tech-
nique in the multi-user setting. The ciphertext for S contains ` ciphertexts of Cramer-Shoup
PKE with randomness [r>A>] reused as [LPQ12]. Following Libert et al.’s suggestion, they
are then bound together via a strongly unforgeable signature σ under fresh verification key
pkots instead of encryptingm||pkots.

The above BE is IND-CCA secure and anonymous according to Libert et al.’s generic
result. However, we can do better by showing a tighter reduction for this concrete ANOBE.
The security loss of Libert et al.’s reduction (which is O(n3)) is mainly caused by black-
box-reduction to the underlying PKE where the simulation need to guess some information
about challenge target set. We prove our security result from scratch. In particular, we employ
the proof technique for IND-CCA PKE in the multi-user setting [GHKW16,Hof17] but adapt
it to our broadcast encryption case. We found that we can now avoid guessing adversary’s
behavior and also corresponding reduction loss.

Our first ANOBE: Shorter Ciphertext for Fast Decryption. The above instantiation has not
been equipped with anonymous hint system [LPQ12], so the decryption cost should beO(`).
(Recall that, intuitively, an anonymous hint system can help the decryptor to find the right
ciphertext component intended for him and avoid O(`) factor.) However we observe that
{[r>A>(xij + α · yij)]}j∈[`] can serve as the hints for fast decryption. This benefits from the
fact that tag α is shared by all users in S. In the decryption procedure, a user with secret

6 Here we use a direct generalization of Cramer-Shoup PKE under the k-Lin assumption. The original Cramer-
Shoup PKE corresponds to the case k = 1.
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key ki, xi, yi can recover v = [r>A>(xi + α · yi)] and try to find the index j∗ such that v =

[r>A>(xij∗ +α · yij∗ )], which indicates the right ciphertext.
This already saves the bandwidth since we need the DDH-based anonymous hint sys-

tem in [LPQ12] to upgrade Libert et al.’s concrete ANOBE in order to achieve fast decryption.
Even with randomness reuse technique, this will introduce 2 · |S| additional group elements
to the ciphertext. The perspective here is that {[r>A>(xij +α · yij)] }j∈[`] act as crucial compo-
nents for achieving IND-CCA security and hints for fast decryption at the same time while
they are realized separately in Libert et al.’s concrete ANOBE.

Our Second ANOBE: Compressing Ciphertext Again. We now ask:

Can we reduce the ciphertext size if we can tolerate slower decryption?

Observe that we have ` group elements (i.e., {[r>A>(xij +α · yij)]}j∈[`]) for consistency check
(which is necessary for IND-CCA security) in our first ANOBE. If we assume that each re-
cipient can correctly guess which part is intended for him/her, we can see that only one of
these ` elements will be used in the decryption procedure. Therefore a promising idea is to
ask all recipients to share the consistency check process. A direct way to do so is to

replace {[r>A>(xij +α · yij)]}j∈[`] with [r>A>(x +α · y)]

and publish [A>x] and [A>y] in mpk. Unfortunately, there is a fatal issue. To do the con-
sistency check, we should give each user x and y directly and they will be leaked to an
adversary through any corrupted user. This totally breaks the IND-CCA security. We cir-
cumvent the difficulty by making the consistency check public using the technique by K-
iltz and Wee [KW15]. In particular, we adapt our first ANOBE to G1 of a pairing group
(p, G1, G2, GT , e) and

replace [r>A>(x +α · y)]1 with [r>A>(X +α ·Y)]1

where X, Y←R Z
(k+1)×(k+1)
p . In the public parameter mpk, we publish

([A>X]1, [A>Y]1) and ([B]2, [XB]2, [YB]2)

where B←R Z
(k+1)×k
p and the right-hand side part allow anyone to publicly check the cipher-

text consistency.
We have successfully compressed the ciphertext but lose the correctness of decryption

since we do not have hint system now. It is easy to fix using key-binding symmetric encryption
scheme (E,D). That is we pick session key K from the key space of (E,D) and

replace [r>A>kij ]1 ·m with [r>A>kij ]1 ·K,EK(m).

We note that we are not pursuing fast decryption now. We can further get rid of σ by defining
α as in Cramer-Shoup PKE [CS98,CS02]. We sketch our second ANOBE as follows:

mpk : (E,D), h; { [A>]1 , [A>ki]1, [A>X]1, [A>Y]1 }i∈[n]; [B]2, [XB]2, [YB]2

ski : ki

ctS : { [r>A>]1 , [r>A>kij ]1 ·K, EK(m) , [r>A>(X +α ·Y)]1 }j∈[`]
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where all terms in gray box are shared by all users/receivers. As our first ANOBE, the re-
duction loss is constant.

Compared with Libert et al.’s concrete ANOBE [LPQ12], our second ANOBE is based on
weaker assumptions — we don’t require the existence of strongly one-time signature and
(E,D) is not necessarily authenticated encryption. Furthermore, in the ciphertext, we share
as many components as possible among receivers in the target set, the remaining ` group
elements seem to be inevitable by the lower bound [KS12].

Organization. Our paper is organized as follows. We review some basic notions in Section 2.
Our two ANOBE constructions along with security analysis will be presented in Section 3
and Section 4, respectively. We finally conclude the paper in Section 5.

2 Preliminaries

Notations. For n ∈N, we define [n] := {1, 2, . . . ,n}. We use a←R A to denote the process of
uniformly sampling an element from set A and assigning it to variable a. For two sets S0,S1,
define S04S1 := (S0 \ S1)∪ (S1 \ S0). “p.p.t.” stands for probabilistic polynomial time.

2.1 Anonymous Broadcast Encryption

Algorithms. LetU := [n] be the universe. A broadcast encryption (BE) scheme consists of four
algorithms (Setup,KeyGen,Enc,Dec):

– Setup(1λ,n)→ (mpk,msk): on input 1λ and n, the setup algorithm outputs a master public
key mpk and a master secret key msk.

– KeyGen(mpk,msk, i) → ski: on input mpk, msk and an index i ∈ U, the key generation
algorithm outputs a secret key ski.

– Enc(mpk,m,S) → ctS: on input mpk, a message m and a subset S ⊆ U, the encryption
algorithm outputs a ciphertext ctS.

– Dec(mpk, ctS, ski) → m/⊥: on input mpk, ctS and ski, the decryption algorithm outputs m
or a failure symbol ⊥.

Correctness. For all λ, all (mpk,msk) ←R Setup(1λ,n), all m, all S ⊆ U, and all i ∈ S, it is
required that Dec(mpk,Enc(mpk,m,S),KeyGen(mpk,msk, i)) = m.

Chosen-ciphertext security and anonymity. For any adversary A , define

AdvBEA (1λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b ′

∣∣∣∣∣∣∣∣∣∣∣∣∣

(mpk,msk)←R Setup(1λ,n), b←R {0, 1}

(m0,m1,S0,S1)←R AKeyO(·),DecO(·,·)(1λ,mpk)

ct∗ ←R Enc(mpk,mb,Sb)

b ′ ←R AKeyO(·),DecO(·,·)(1λ,mpk, ct∗)


−

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
where oracles work as follows:
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– KeyO: on input i, key extraction oracle KeyO outputs ski ←R KeyGen(msk,mpk, i) and set-
s Qsk := Qsk ∪ {i} which is initialized to be ∅ at the beginning.

– DecO: on input (ct, i), decryption oracle DecO outputs Dec(mpk, ct, ski) when ct∗ (a.k.a.
challenge ciphertext) has not been defined or ct 6= ct∗.

A broadcast encryption scheme achieves chosen-ciphertext security and anonymity (ANO-
IND-CCA) if, for all p.p.t. adversary A, AdvBEA (λ) is negligible in λ under the restrictions that
(1) |m0| = |m1| and |S0| = |S1|; (2) Qsk ∩ (S04S1) = ∅; (3) if Qsk ∩ (S0 ∩ S1) 6= ∅, thenm0 = m1.

2.2 Prime-Order (Bilinear) Groups

Prime-order group. A group generator GGen is a p.p.t. algorithm which takes 1λ as input
and outputs a description G := (p, G,g). Here G is a finite cyclic group of prime order p
and g is a random generator of G. Throughout the paper, we will use implicit representa-
tion [EHK+13]. We let [a] := ga ∈ G for all a ∈ Zp. For a matrix A = (aij) ∈ Zm×np , we let
[A] = (gaij) ∈ Gm×n.

Prime-order bilinear group. A group generator PGGen is a p.p.t. algorithm which takes 1λ

as input and outputs a description PG := (p, G1, G2, GT , e,g1,g2) of (asymmetric) bilinear
group. Here G1, G2, GT are finite cyclic groups of prime order p and e is an admissible bilin-
ear map. g1 ∈ G1 and g2 ∈ G2 are random generators of G1 and G2, and gT := e(g1,g2) will
be a generator of group GT . The implicit representation is also be applied to prime-order
bilinear groups: We let [a]s := gas ∈ Gs for all a ∈ Zp and s ∈ {1, 2, T }. The notation can be
easily extended to matrices analogously and we let e([A]1, [B]2) := [AB]T for matrices A and
B when the multiplication is well-defined.

Cryptographic assumption. For any k ∈ N, we call Dk a matrix distribution if it outputs
full-rank matrices in Z

(k+1)×k
p in polynomial time. We may assume that for all A ←R Dk,

the first k rows of A form an invertible matrix.
We will use the Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption in G described as

follows. The Dk-MDDH assumption in G1 and G2 are analogous.

Assumption 1 (Dk-MDDH) We say that the Dk-Matrix Diffie-Hellman assumption holds relative
to GGen, if for any p.p.t. adversary A, the following advantage function is negligible in λ.

Advmddh
A,G (λ) := |Pr[A(G, [A], [As]) = 1] − Pr[A(G, [A], [u]) = 1]|

where G←R GGen(1λ), A←R Dk, s←R Zkp, and u←R Zk+1
p .

The famous k-Linear (k-Lin) assumption is an instantiation of the Dk-MDDH assumption.
The classical decisional Diffie-Hellman (DDH) assumption (a.k.a symmetric external Diffie-Hellman
(SXDH) assumption in asymmetric bilinear groups) is just the k-Lin assumption with k = 1.
See [EHK+13] for more details.

For bilinear groups, we also use the Dk-Matrix Kernel Diffie-Hellman (Dk-KerMDH) As-
sumption [MRV16], which is implied by the Dk-MDDH assumption.
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Assumption 2 (Dk-KerMDH) Let s ∈ {1, 2}. We say that the Dk-Kernel Matrix Diffie-Hellman
Assumption holds relative to PGGen, if for any p.p.t. adversary A, the following advantage function
is negligible in λ.

Advkmdh
A,Gs(λ) := Pr[A>a⊥ = 0 ∧ a⊥ 6= 0 | [a⊥]3−s ←R A(PG, [A]s)]

where PG←R PGGen(1λ), A←R Dk.

2.3 Cryptographic Primitives

Our constructions will use the following cryptographic primitives:

Key-binding secure symmetric encryption. A symmetric encryption scheme with a key
space K consists of two algorithms (E,D):

– EK(m) → c : the encryption algorithm generates a encryption c of the message m under
the secret key K.

– DK(c)→ m/⊥ : the decryption algorithm decrypts the ciphertext c using K, and returns m
or a failure symbol ⊥.

The correctness can be stated as follows: for all K ←R K and all message m, we have
DK(EK(m)) = m with overwhelming probability. We then review the semantic security of
symmetric encryptions. For any adversary A, define

AdvseA(λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

b = b ′

∣∣∣∣∣∣∣∣∣∣
(m0,m1)←R A(1λ,K)

K←R K, b←R {0, 1}, c∗ ←R EK(mb)

b ′ ←R A(1λ,K, c∗)

−
1
2

∣∣∣∣∣∣∣∣∣∣
.

A symmetric encryption is semantically secure, if for all p.p.t. adversary A, the advantage
function AdvseA(λ) is negligible in λ.

Furthermore, we require the symmetric encryption to be key-binding [Fis99]. Namely, for
any message m and any secret key K ∈ K, there exists no key K ′ ∈ K such that K 6= K ′ and
DK ′(EK(m)) 6=⊥. See [Fis99] for more details.

Collision-resilient hash function. A family of hash functions H is said to be collision-
resistant if, for all p.p.t. algorithm A, the following advantage function is negligible in λ.

AdvhashA (λ) := Pr[h(x) = h(y)∧ x 6= y | h←R H, (x,y)←R A(1λ, h)].

Strongly secure one-time signature. A signature scheme consists of the following three al-
gorithms.

– Genots(1λ)→ (skots, pkots) : on input the security parameter λ, the key generation algorithm
outputs a signing key skots and the verification key pkots.

– Sign(skots,m) → σ : on input skots and a message m, the signing algorithm outputs a
signature σ.
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– Ver(pkots,m,σ) → 0/1 : on input pkots,m, and σ, the verification algorithm outputs 0 (re-
ject) or 1 (accept).

We require the signature scheme strongly unforgeable against all adversaries with at most one
message-signature pair. Formally, for any adversary A, we define

AdvotsA (λ) :=

∣∣∣∣∣∣Pr

Ver(pkots,m∗,σ∗) = 1

∧ (m,σ) 6= (m∗,σ∗)

∣∣∣∣∣∣ (skots, pkots)←R Genots(1λ)

(m∗,σ∗)←R ASigO(·)(1λ, pkots)

−
1
2

∣∣∣∣∣∣ ,
where the oracle SigO takes m as input and returns σ ←R Sign(skots,m), and can only be
called once. We say that a signature scheme is strongly unforgeable under one-time chosen mes-
sage attack if the advantage function AdvotsA (λ) is negligible in λ for all p.p.t. adversary A.

2.4 Core Lemma

We review the core lemma in [KW15].

Lemma 1 (Core lemma, [KW15]). Let k ∈ N. For any A, B ∈ Z
(k+1)×k
p and any (possibly

unbounded) adversary A, we have

Pr

u /∈ span(A)∧α 6= α∗ X, Y←R Z
(k+1)×(k+1)
p

∧ π> = u>(X +α ·Y) (u,α,π)←R AO(·)(A>X, A>Y, XB, YB)

 6
1
p

where O(α∗)→ X +α∗ ·Y may only be called one time.

3 Tightly Secure ANOBE with Fast Decryption

3.1 Construction

Our first broadcast encryption scheme is described as follows.

– Setup(1λ,n): Run G := (p, G,g)←R GGen(1λ). Sample

A←R Dk and ki, xi, yi ←R Zk+1
p for i ∈ [n].

Select a strongly unforgeable one-time signature scheme (Genots, Sig,Ver) and a hash
function h : {0, 1}∗ → Zp from H. The master public key is

mpk := (G, h, (Genots,Sig,Ver), [A], {[A>ki], [A>xi], [A>yi]}ni=1)

and the master secret key is msk := ({ki, xi, yi}ni=1).
– KeyGen(msk,mpk, i): Output the secret key ski = (ki, xi, yi).
– Enc(mpk,m,S): Let ` := |S| and S = {i1, . . . , i`} ⊆ U = [n]. Sample r←R Zkp and compute

[u>] := [r>A>].
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Generate (skots, pkots)←R Genots(1λ), compute α := h(pkots) and

c1 := [r>A>ki1 ] ·m, v1 := [r>A>(xi1 +α · yi1)],
...

...

c` := [r>A>ki` ] ·m, v` := [r>A>(xi` +α · yi`)].

Choose a random permutation τ over [`] and compute

σ := Sig(skots, ([u>], cτ(1), vτ(1), . . . , cτ(`), vτ(`))).

The ciphertext is
ct := ([u>], cτ(1), vτ(1), . . . , cτ(`), vτ(`), pkots,σ).

– Dec(mpk, ct, ski): Parse the ciphertext ct as ([u>], c̄1, v̄1, . . . , c̄`, v̄`, pkots,σ) and the secret
key ski as (ki, xi, yi). Return ⊥ if

Ver(pkots, ([u>], c̄1, v̄1, . . . , c̄`, v̄`),σ) = 0,

otherwise, compute
v := [u>(xi +α · yi)],

where α = h(pkots). If there exists j ∈ [`] such that v = v̄j, return m ′ := c̄j/[u>ki]; other-
wise, return ⊥.

Correctness. For any ciphertext ct = ([u>], c̄1, v̄1, . . . , c̄`, v̄`, pkots,σ) for set S ⊆ U generated
by Enc, we always have

Ver(pkots, ([u>], c̄1, v̄1, . . . , c̄`, v̄`),σ) = 1

by the correctness of signature scheme (Genots,Sig,Ver). Given secret key ski = (ki, xi, yi)
for i ∈ S, there must exist an index j ∈ [`] such that

v = [u>(xi +α · yi)] = v̄j,

and then it is not hard to see that the message can be recovered from c̄j.

3.2 Security Result and Proof Overview

We prove the following theorem.

Theorem 1 Our broadcast encryption scheme in Section 3.1 is adaptively ANO-IND-CCA secure
assuming that: (1) H is collision-resistant; (2) the Dk-MDDH assumption holds in G; (3) signature
scheme (Genots,Sig,Ver) is strongly unforgeable under one-time chosen message attack. Concretely,
for any adversary A, there exist algorithms B1,B2,B3 such that

AdvBEA (λ) 6 Advmddh
G,B1

(λ) +AdvotsB2
(λ) +AdvhashB3

(λ) +O(1/p)

and Time(B1),Time(B2),Time(B3) ≈ Time(A).

12



We prove the theorem via the following game sequence.

Game0. This game is identical to the real game described in Section 2.1. In particular, our
simulation is as follows:
Setup. Run Setup(1λ,n) and send A the master public key

mpk := (G, h, (Genots,Sig,Ver), [A], {[A>ki], [A>xi], [A>yi]}ni=1)

and keep the master secret key msk := ({ki, xi, yi}ni=1). Set Qsk := ∅.
Challenge ciphertext. Receiving (m0,m1,S0,S1) from A where we let S0 = {i1,0, . . . , i`,0}

and S1 = {i1,1, . . . , i`,1}, pick b ←R {0, 1}, u∗ ←R span(A), (sk∗ots, pk∗ots) ←R Genots(1λ),
choose a random permutation τ over [`], let α∗ = h(pk∗ots) and compute

ct∗1 := ([u∗>], c∗1 , v∗1 , . . . , c∗` , v
∗
`)

where c∗j = [u∗>kiτ(j),b ] ·mb and v∗j = [u∗>(xiτ(j),b +α
∗ · yiτ(j),b)] for j ∈ [`]. Output the

challenge ciphertext

ct∗ := (ct∗1 , pk∗ots,σ
∗ := Sig(sk∗ots, ct

∗
1)).

Simulating KeyO. On input i ∈ U, output ski = (ki, xi, yi) and update Qsk := Qsk ∪ {i}.
Simulating DecO. On input (ct, i), parse

ct = (ct1 = ([u>], c1, v1, . . . , c`, v`), pkots,σ),

reject the query if

(a) ct = ct∗

or (b) Ver(pkots, ct1,σ) = 0.

Then compute α = h(pkots) and v = [u>(xi + α · yi)]. If there exists j ∈ [`] such that
v = vj, returnm ′ := cj/[u>ki]; otherwise, return ⊥.

Finalize. Received b ′ from A, return 1 if b = b ′; otherwise return 0.
Let Wini denote the event that A in Gamei guesses b correctly. Since Game0 perfectly
simulates the real game, we have AdvBEA (1λ) = |Pr[Win0] − 1/2|.

Game1. This game is identical to Game0 except that we sample u∗ ←R Zk+1
p when generating

the challenge ciphertext ct∗. It is easy to see that this game is indistinguishable from
Game0 under the Dk-MDDH assumption. Formally, we have the following lemma.

Lemma 2 (Game1 ≈c Game0). There exists an adversary B1 such that

|Pr[Win1] − Pr[Win0]| 6 Advmddh
G,B1

(λ).

Game2. This game is identical to Game1 except that DecO, on input (ct, i), rejects the query if
(a) or (b) or

(c) pkots = pk∗ots.

This game is identical to Game1 until A submits a query with pkots = pk∗ots which survives
under condition (a) and (b). However σ in such a query will violate the strong unforge-
ability of (Genots, Sig,Ver), and this game is indistinguishable from Game1. Formally, we
have the following lemma.
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Lemma 3 (Game2 ≈c Game1). There exists an adversary B2 such that

|Pr[Win2] − Pr[Win1]| 6 AdvotsB2
(λ).

Game3. This game is identical to Game2 except the following substitution:

(c) pkots = pk∗ots 7−→ (c ′) α = α∗

This game is identical to Game2 until A submits a query with pkots 6= pk∗ots but α = α∗.
This immediately violates the collision-resistance of H, and this game is indistinguish-
able from Game2. Formally, we have the following lemma.

Lemma 4 (Game3 ≈c Game2). There exists an algorithm B3 such that

|Pr[Win3] − Pr[Win2]| 6 AdvhashB3
(λ).

Game4. This game is identical to Game3 except that except that DecO, on input (ct, i), rejects
the query if (a) or (b) or (c ′) or

(d) u /∈ span(A)

We have the following lemma stating that this game is statistically indistinguishable with
Game3.

Lemma 5 (Game4 ≈s Game3). |Win4 −Win3| 6 O(1/p).

Let qD be the number of decryption queries. The lemma can be proved in qD steps. In
the j-th step, assuming that the first j− 1 decryption queries have been processed with
condition (d), we demonstrate that the j-th query will finally be rejected if it survives un-
der condition (a), (b), (c ′) with u /∈ span(A). In other words, we can introduce condition
(d) here without changing adversary’s view. The proof (for the j-th step) relies on the
observation that we leak no more information than {A>xη, A>yη}η∈[n] when answering
the first j− 1 queries to DecO. With the help of condition (c ′), which ensures that α 6= α∗,
we can claim that u>(xi + α · yi) is independently and uniformly distributed and thus
hard to guess.

Finally, we have the following lemma which proves Theorem 1 when combining with all
previous lemmas and claims.

Lemma 6. Pr[Win4] = 1/2.

This follows from the fact that (u∗ki, u∗(xi + α · yi)) are uniformly distributed over G2, e-
specially unrelated to b, for all i ∈ Sb (resp. i ∈ Sb/S1−b) when Qsk ∩ (S0 ∩ S1) = ∅ (resp.
Qsk ∩ (S0 ∩ S1) 6= ∅), conditioned on mpk,KeyO and DecO. The analysis is similar to that for
Lemma 5.
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Perspective. Lemma 5 and Lemma 6 are at the core of our proof. Although our proofs still
rely on the proof technique of underlying Cramer-Shoup PKE, we get rid of large reduc-
tion loss by carrying out the argument in the broadcast setting directly. In particular, we
employ the technique beneath the core lemma from Kiltz and Wee [KW15] (see Lemma 1),
which allows us to take all users into account in a non-adaptive way first and then upgrade to
the adaptive setting for free. This avoids guessing adversary’s behaviour in the simulation
which caused large security loss in Libert et al.’s work [LPQ12]. Furthermore, we note that
our proof indeed involves robustness [ABN10,Moh10,LPQ12] but in an implicit manner since
we are not working with generic PKE anymore.

3.3 Omitted Proofs

Proof of Lemma 3: In Game2, let Forge denote the event that A submits a query with ct :=

(ct1, pkots = pk∗ots,σ) to DecO which can not be rejected by condition (a) and (b). Observe
that Game2 is identical to Game1 if Forge does not happen, we have

|Pr[Win2] − Pr[Win1]| 6 Pr[Forge].

We bound Pr[Forge] via the following reduction. On input pk∗ots, algorithm B2 prepares
mpk and simulates KeyO,DecO honestly as in Game2. When generating the challenge cipher-
text, it generates ct∗1 as in Game2 and output ct∗ := (ct∗1 , pk∗ots,σ∗), where σ∗ is obtained
from the SigO with input ct∗1 . Once Forge happens when answering query with (ct1, pkots =
pk∗ots,σ), B2 outputs (ct1,σ). The condition (b) ensure that σ is valid signature and condition
(a) ensure that (ct1,σ) 6= (ct∗1 ,σ∗). This readily proves the lemma. ut

Proof of Lemma 4: In Game3, let Coll be the event that A submits a query with ct :=

(ct1, pkots,σ) to DecO such that pkots 6= pk∗ots but α = α∗. Observe that Game3 is identical
to Game2 if Coll does not happen. That is we have

|Pr[Win3] − Pr[Win2]| 6 Pr[Coll].

We bound Pr[Coll] via the following reduction. On input h, B3 simulates Game3 honestly
except that we publish h in mpk and pk∗ots is created before B3 answers any queries. This will
not change the view of A since pk∗ots is independent of (m0,m1,S0,S1). Once Coll happens
when answering query with (ct1, pkots,σ), B3 outputs (pkots, pk∗ots) as a collision. This readily
proves the lemma. ut

Proof of Lemma 5: We prove the lemma via the following hybrid argument:

Game3 = Game3.0 ≈s Game3.1 ≈s Game3.2 ≈s · · · ≈s Game3.qD = Game4

where Game3.j, for all j ∈ [0,qD], is the same as Game3 except that for the first j queries sent
to DecO, we introduce condition (d).

Let BadSpanj be the event that the j-th query is rejected in Game3.j but is replied with
m ′ 6= ⊥ in Game3.j−1. We prove the theorem by showing that

|Pr[Win3.j−1] − Pr[Win3.j]| 6 Pr[BadSpanj] for all j ∈ [qD].
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Let (ct = ([u>], c1, v1, . . . , c`, v`, pkots,σ), i) be the j-th query. The event BadSpanj can be re-
stated as follows: the j-th query survives under condition (a), (b), (c ′) with u /∈ span(A)

but there exists i ′ ∈ [`] such that vi ′ = [u>(xi + α · yi)]. To bound Pr[BadSpanj], we intro-
duce another event BadSpan ′j which is defined exactly as BadSpanj except that we replace
[u>(xi +α · yi)] with a random group element [v]←R G. Firstly, since v is independent of A’s
behaviour, we have that

Pr[BadSpan ′j] = `/p.

Secondly, we claim that

Pr[BadSpanj] = Pr[BadSpan ′j].

This follows from the fact that, for all Qsk ∈ [n], all Sb ∈ [n] and all i ∈ [n] \Qsk, we have

mpk,DecO :

KeyO :

ct∗ :

→ DecO :



A, {A>xη, A>yη}η∈[n]

{xη, yη}η∈Qsk

{u∗>(xη +α∗ · yη)}η∈Sb
u>(xi +α · yi)


≡



A, {A>xη, A>yη}η∈[n]

{xη, yη}η∈Qsk

{u∗>(xη +α∗ · yη)}η∈Sb
v


when xη, yη ←R Zk+1

p for all η ∈ [n] and v ←R Zp for all u, u∗ /∈ span(A). We note that
(1) the first j − 1 decryption queries leak no more information than mpk since all queries
with u /∈ span(A) will be rejected (see the first line); (2) we naturally assume that i /∈ Qsk,
otherwise the adversary can simulate DecO (on this query) by itself; (3) two distributions
are perfectly identical, so our non-adaptive statement implies the adaptive one. This readily
proves the lemma. ut

Proof of Lemma 6: We will prove that Pr[Win4] = 1/2 in two cases. Combining them together
immediately proves the lemma.
Case 1: Qsk ∩ (S0 ∩ S1) = ∅. We claim that (c∗j , v

∗
j ) are uniformly distributed over G2 for all

j ∈ [`]. This means that ct∗ is actually independent of b and the adversary’s advantage is
0 in this case. This follows from the fact that, for all Qsk ⊆ [n] and all Sb ⊆ [n] satisfying
Qsk ∩ Sb = ∅, we have

mpk,DecO :

KeyO :

→ ct∗ :


A, {A>kη, A>xη, A>yη}η∈[n]

{kη, xη, yη}η∈Qsk

{u∗>kη, u∗>(xη +α∗ · yη)}η∈Sb

 ≡


A, {A>kη, A>xη, A>yη}η∈[n]

{kη, xη, yη}η∈Qsk

{c̃∗η, ṽ∗η}η∈Sb


when kη, xη, yη ←R Zk+1

p for all η ∈ [n] and c̃∗η, ṽ∗η ←R Zp for all η ∈ Sb if u∗ /∈ span(A).
Case 2: Qsk ∩ (S0 ∩ S1) 6= ∅. We claim that all (c∗j , v

∗
j ) such that iτ(j),b ∈ Sb \ S1−b are uni-

formly distributed over G2. This follows from a statistical statement identical to that in Case
1 except that (c∗j , v

∗
j ) with iτ(j),b ∈ Sb ∩ S1−b remain unchanged. The claim is sufficient to

argue that ct∗ reveals nothing about b since it must hold thatm0 = m1 in this case. ut
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4 Tightly Secure ANOBE with Shorter Ciphertext

4.1 Construction

– Setup (1λ,n): Run PG := (p, G1, G2, GT , e,g1,g2)←R PGGen(1λ). Sample

A, B←R Dk, X, Y←R Z
(k+1)×(k+1)
p , ki ←R Zk+1

p for i ∈ [n].

Select a key-binding secure symmetric encryption scheme (E,D) with the key space K :=

G1 and a collision-resilient hash function h←R H mapping from {0, 1}∗ to Zp. The master
public key is

mpk :=

PG, (E,D), h;
[A>]1, {[A>ki]1}ni=1, [A>X]1, [A>Y]1

[B]2, [XB]2, [YB]2


and the master secret key is msk := {ki}ni=1.

– KeyGen (msk,mpk, i): Output the secret key ski := ki.
– Enc (mpk,m,S): Let ` := |S| and S = {i1, . . . , i`} ⊆ U. Sample r←R Zkp and compute

[u>]1 := [r>A>]1.

Select session key K←R G1 and compute

c0 := EK(m), c1 := [r>A>ki1 ]1 ·K, . . . , c` := [r>A>ki` ]1 ·K

Choose a random permutation τ over [`] and compute

[π]1 := [r>A>(X +α ·Y)]1

where α := h([u>]1, c0, cτ(1), . . . , cτ(`)). The ciphertext is

ct := ( [u>]1, c0, cτ(1), . . . , cτ(`), , [π]1 ).

– Dec(mpk, ct, ski): Parse ct as ([u>]1, c0, c̄1, . . . , c̄`, [π]1) and ski as ki. Compute

α = h([u>]1, c0, c̄1, . . . , c̄`)

and check
e([π]1, [B]2)

?
= e([u>]1, [(X +α ·Y)B]2). (1)

If Equation (1) does not hold, return⊥; otherwise, do the following two steps from j := 1.
1. Compute K ′ := c̄j/[u>ki]1 and m ′ := DK ′(c0). If m ′ 6=⊥, return m ′ and halt; other-

wise, go to the second step.
2. If j = `, return ⊥ and halt; otherwise, do the first step with j := j+ 1.
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Correctness. For any ciphertext ct := ([u>]1, c0, c̄1, . . . , c̄`, [π]1) for set S ⊆ U produced by
Enc, we have

e([π]1, [B]2) = e([r>A>(X +α ·Y)]1, [B]2) = e([u>]1, [(X +α ·Y)B]2)

where α = h([u>]1, c0, c̄1, . . . , c̄`). That is the ciphertext always satisfies Equation (1). Given a
secret key ski = ki for i ∈ S, we know that there exists i ′ ∈ [`] such that ci ′ = [r>A>ki]1 · K.
The correctness of our ANOBE then follows from the following two observations:

1. For each j < i ′, we know that cj = [r>A>kj ′ ]1 ·K for some j ′ ∈ S \ {i}, and thus we have

cj/[u>ki]1 6= K

with overwhelming probability. From the key-binding feature of (E,D), the decryption
algorithm Dec will return nothing before the i ′-th iteration.

2. It is easy to see that
ci ′/[u>ki]1 = K.

By the correctness of (E,D), the decryption algorithm Dec will returnm in the i ′-th itera-
tion.

4.2 Security Result and Proof Overview

We prove the following theorem.

Theorem 2 Our broadcast encryption described in Section 4.1 is ANO-IND-CCA secure assuming
that: (1) H is collision-resistant; (2) the Dk-MDDH assumption holds in G1; (3) the Dk-KerMDH

assumptions holds in G2; (4) (E,D) is semantically secure. Concretely, for any adversary A, there
exist algorithms B1,B2,B3,B4, such that

AdvBEA (λ) 6 Advmddh
B1,G1

(λ) +AdvhashB2
(λ) +Advkmdh

B3,G2
(λ) + 2 ·AdvseB4

(λ) +O(1/p)

and Time(B1),Time(B2),Time(B3),Time(B4) ≈ Time(A).

We prove the theorem via the following game sequence.

Game0. This game is identical to the real game described in Section 2.1. In particular, our
simulation is as follows:

Setup. Run Setup(1λ,n) and send A the master public key

mpk :=

PG, (E,D), h;
[A>]1, {[A>ki]1}ni=1, [A>X]1, [A>Y]1

[B]2, [XB]2, [YB]2


and keep the master secret key msk := {ki}ni=1 as well as X, Y. We also set Qsk := ∅.
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Challenge ciphertext. Receiving (m0,m1,S0,S1) from A where we let S0 = {i1,0, . . . , i`,0}
and S1 = {i1,1, . . . , i`,1}, pick b ←R {0, 1}, u∗ ←R span(A), K∗ ←R G1 and choose a
random permutation τ, and compute

ct∗1 := ([u∗>]1, c∗0 , c∗1 , . . . , c∗`)

where c∗j = [u∗>kiτ(j),b ]1 · K∗ for all j ∈ [`] and c∗0 = EK∗(mb). Compute α∗ = H(ct∗1)

and output the challenge ciphertext

ct∗ := ( ct∗1 , [π∗]1 := [u∗>(X +α∗ ·Y)]1 ).

Simulating KeyO. On input i ∈ U, output ki and update Qsk := Qsk ∪ {i}.
Simulating DecO. On input (ct, i), parse

ct = (ct1 = ([u>]1, c1, . . . , c`, c0), [π]1),

compute α = h(ct1) and reject the query (by returning ⊥) if

(a) ct = ct∗

or (b) e([π]1, [B]2) 6= e([u>]1, [(X +α ·Y)B]2).

Then recoverm using ki as Dec and returnm.
Finalize. Received b ′ from A, return 1 if b = b ′; otherwise return 0.
We let Wini denote the event that A guesses b correctly in Gamei. Since Game0 perfectly
simulates the real game, we have AdvBEA (1λ) = |Pr[Win0] − 1/2|.

Game1. This game is identical to Game0 except that we sample u∗ ←R Zk+1
p when generating

the challenge ciphertext ct∗. This game is indistinguishable from Game0 under the Dk-
MDDH assumption. Formally, we have the following lemma and the proof is analgous to
that for Lemma 2.

Lemma 7 (Game1 ≈c Game0). There exists an adversary B1 such that

|Pr[Win1] − Pr[Win0]| 6 Advmddh
B1,G1

(λ)

Game2. This game is identical to Game1 except that DecO, on input (ct, i), returns ⊥ if (a) or
(b) or

(c) ct1 6= ct∗1 but α = α∗.

By the collision-resilience of H, this game is indistinguishable from Game1. Formally, we
have the following lemma and the proof is similar to that for Lemma 4.

Lemma 8 (Game2 ≈c Game1). There exists an algorithm B2 such that

|Pr[Win2] − Pr[Win1]| 6 AdvhashB2
(λ)

Game3. This game is identical to Game2 except the following substitution:

(b) e([π]1, [B]2) 6= e([u>]1, [(X +α ·Y)B]2) 7−→ (b ′) [π]1 6= [u>(X +α ·Y)]1.

This game is the same as Game2 until A sends DecO a query which is rejected by condition
(b ′) but survives under condition (b). One can see that such a query immediately gives a
solution to the Dk-KerMDH problem w.r.t [B]2. Formally, we have the following lemma.
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Lemma 9 (Game3 ≈c Game2). There exists an algorithm B3 such that

|Pr[Win3] − Pr[Win2]| 6 Advkmdh
B3,G2

(λ)

Game4. This game is identical to Game3 except the following substitution

(b ′) [π]1 6= [u>(X +α ·Y)]1 7−→ (b ′′)u /∈ span(A) ‖ [π]1 6= [u>(X +α ·Y)]1.

Here “‖” denotes the OR operation which neglects the second operand if the first one
is satisfied. We have the following lemma stating that this game is statistically close to
Game3.

Lemma 10 (Game4 ≈s Game3). |Pr[Win4] − Pr[Win3]| 6 O(1/p).

Let qD be the number of decryption queries. The lemma will be proved in qD steps. In
the j-th step, assuming that the first j− 1 decryption queries have been processed with
condition (b ′′), we demonstrate that the j-th query with u /∈ span(A) can be rejected by
condition (a), (b ′), (c) with high probability. This simply follows from Lemma 1 (the core
lemma).

To complete the proof of Theorem 2, we show the following lemma.

Lemma 11 (Bounding Pr[Win4]). There exists an algorithm B4 such that

Pr[Win4] 6 1/2 + 2 ·AdvseB4
(λ)

To prove the lemma, we consider two cases: (1) when Qsk ∩ (S0 ∩ S1) = ∅, we can prove
that [u∗>ki]1 for i ∈ Sb are independently and uniformly distributed over G1, which hide
both Sb and K∗. The proof is similar to the proof of Lemma 6. Then the semantic security of
(E,D) allows us to hide mb; (2) when Qsk ∩ (S0 ∩ S1) 6= ∅, we can only prove that [u∗>ki]1
for i ∈ Sb \ S1−b are randomly distributed, but it is sufficient for proving the lemma since
m0 = m1.

4.3 Two Simple Missing Proofs

Proof of Lemma 9: In Game3, define BadKer the event that A sends DecO a query which is
rejected by condition (b ′), but survives under condition (b). It is easy to see that if BadKer
does not occur, Game3 is identical to Game2. Namely we have

|Pr[Win3] − Pr[Win2]| 6 Pr[BadKer].

We bound Pr[BadKer] via the following reduction. On input [B]2, B3 samples X, Y←R Z
(k+1)×(k+1)
p

and simulates Game3 honestly using [B]2. Once BadKer happens when answering query with
ct = (ct1 = ([u>]1, c0, c1, . . . , c`), [π]1), B3 computes and outputs

[t> := π− u>(X + h(ct1) ·Y)]1.

We note that (1) the query has been rejected by condition (b ′), we have t 6= 0; (2) the condition
(b) ensures that t ∈ Ker(B). This readily proves the lemma. ut
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Proof of Lemma 10: We prove the lemma via the following hybrid argument:

Game3 = Game3.0 ≈s Game3.1 ≈s Game3.2 ≈s · · · ≈s Game3.qD = Game4

where Game3.j, for all j ∈ [0,qD], is the same as Game3 except that for the first j queries sent
to DecO, the condition (b ′) is replaced by condition (b ′′).

Let BadSpanj be the event that the j-th query is rejected in Game3.j but survives in Game3.j−1.
We have that

|Pr[Win3,j−1] − Pr[Win3,j]| 6 Pr[BadSpanj].

The event BadSpanj can be restated as follows: the j-th query survives under condition
(a), (b ′), (c) with u /∈ span(A). We first claim that α 6= α∗. Then Lemma 1, the core lem-
ma, immediately implies that Pr[BadSpanj] < 1/p. The observation is we leak no more in-
formation than A>X, A>Y when answering the first j− 1 queries to DecO due to the newly
introduced condition u /∈ span(A).

Let the j-th query be associated with (ct1,π). We justify the claim (α 6= α∗) as follows.
Thanks to condition (c), we only need to show that ct1 6= ct∗1 . We suppose ct1 = ct∗1 . Observe
that, (1) when π 6= π∗, the query will be rejected by condition (b ′); (2) when π = π∗, the
query will be rejected by condition (a). This readily proves the claim and thus complete the
proof of the lemma. ut

4.4 Proof for Lemma 11

We will prove Lemma 11 by considering two cases. Let Win1
4 and Win2

4 denote that event
Win4 occurs in Case 1 and Case 2, respectively. This notation also applies to all later events.

Case 1:Qsk ∩ (S0 ∩S1) = ∅. We define the following two auxiliary games.

Game5. This game is identical to Game4 except that we pick

c∗j ←R G1 for all j ∈ [`].

This game is statistically indistinguishable with Game4, which follows that fact that all
[u∗>ki]1 in ct∗1 is independently and uniformly distributed conditioned on mpk, KeyO and
DecO. Formally, we show the following lemma. The proof is quite similar to the proof for
Lemma 6 (Case 1).

Lemma 12 (Game4 ≈s Game5). Pr[Win1
4] = Pr[Win1

5].

Game6. This game is identical to Game5 except that we compute

c0 ←R EK∗(0)

This game is indistinguishable with Game5 due to the semantic security of (E,D). Formal-
ly, we have the following lemma.

Lemma 13 (Game6 ≈c Game5). There exists an algorithm B4 such that

|Pr[Win1
6] − Pr[Win1

5]| 6 2 ·AdvseB4
(λ)

and Time(B4) ≈ Time(A).
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Observe that the challenge ciphertext ct∗ in Game6 is independent of b and we have that
Pr[Win1

6] = 1/2. This immediately gives the following bound.

Pr[Win1
4] 6 1/2 + 2 ·AdvseB4

(λ).

We now provide the full proof of Lemma 13 which completes our proof.

Proof of Lemma 13: We construct B4 as follows. On input (E,D), B4 prepares mpk honestly
as in Game5 using the input. Both KeyO and DecO can be simulated honestly.

For the challenge ciphertext, B4 samples [u∗]1 and c∗1 , . . . , c∗` as in Game5. Then it picks
b ←R {0, 1} and submits (mb, 0) to the environment, the ciphertext returned is set to be c∗0 .
Finally, the last component [π∗]1 is computed as in Game5.

Observe that, when c∗0 ←R EK∗(mb) for some random K∗, our simulation is identical to
Game5; otherwise, when c∗0 ←R EK∗(0), our simulation is identical to Game6. This readily
proves the lemma. ut

Case 2:Qsk ∩ (S0 ∩S1) 6= ∅. We define the following auxiliary game.

Game5. This game is identical to Game4 except that we pick

c∗i ←R G1 for all i ∈ Sb \ S1−b.

This game is statistically indistinguishable from Game4, which follows from the fact that
all u∗>ki with i ∈ Sb \S1−b are uniformly distributed over Zp conditioned on mpk, KeyO
and DecO. Formally, we show the following lemma. The proof is quite similar to the proof
for Lemma 6 (Case 2).

Lemma 14 (Game5 ≈s Game4 in Case 2). Pr[Win2
5] = Pr[Win2

4].

Observe that we only need to know S0 ∩ S1 in order to generate c∗1 , . . . , c∗` in Game5 and they
do not leak b. Furthermore c∗0 does not leak b since m0 = m1 in Case 2. Therefore we have
Pr[Win2

5] = 1/2 and thus

Pr[Win2
4] 6 1/2.

Final Analysis. Let Case1 and Case2 be the events that A outputs (S0,S1) in Case 1 and Case
2, respectively. Because Pr[Case1] + Pr[Case2] = 1, we have

Pr[Win4] = Pr[Win1
4] · Pr[Case1] + Pr[Win2

4] · Pr[Case2]

6 1/2 + 2 ·AdvseB4
(λ) · Pr[Case1]

6 1/2 + 2 ·AdvseB4
(λ).

This completes the proof of Lemma 11.
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5 Conclusion

In this paper, we described two concrete ANOBE schemes. The first one is an instan-
tiation of Libert et al.’s generic ANOBE. However, by working out the proof directly, we
achieved a constantly tight reduction to standard assumptions. Furthermore, we pointed
out that this scheme supports fast decryption for free and thus enjoys shorter ciphertexts.
By the second scheme, we showed how to shorten the ciphertext again while preserving the
tightness at the cost of slower decryption.

Acknowledgment. We greatly thank Benoı̂t Libert for his encouragement and support. We
also thank all anonymous reviewers for their constructive comments.
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Wee16. Hoeteck Wee. Déjà Q: Encore! Un petit IBE. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A,
Part II, volume 9563 of LNCS, pages 237–258. Springer, Heidelberg, January 2016. 3

YFDL04. Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. ID-based encryption for com-
plex hierarchies with applications to forward security and broadcast encryption. In Vijayalakshmi
Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM CCS 04, pages 354–363. ACM Press,
October 2004. 3

25


	Improved Anonymous Broadcast Encryptions
	Introduction
	Contributions
	Technical Overview

	Preliminaries
	Anonymous Broadcast Encryption
	Prime-Order (Bilinear) Groups
	Cryptographic Primitives
	Core Lemma

	Tightly Secure ANOBE with Fast Decryption
	Construction
	Security Result and Proof Overview
	Omitted Proofs

	Tightly Secure ANOBE with Shorter Ciphertext
	Construction
	Security Result and Proof Overview
	Two Simple Missing Proofs
	Proof for Lemma 11

	Conclusion


