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We investigate anonymous broadcast encryptions (ANOBE) in which a ciphertext hides not only the message but also the target recipients associated with it. Following Libert et al.'s generic construction [PKC, 2012], we propose two concrete ANOBE schemes with tight reduction and better space efficiency. -The IND-CCA security and anonymity of our two ANOBE schemes can be tightly reduced to standard k-Linear assumption (and the existence of other primitives). For a broadcast system with n users, Libert et al.'s security analysis suffers from O(n 3 ) loss while our security loss is constant. -Our first ANOBE supports fast decryption and has a shorter ciphertext than the fast-decryption version of Libert et al.'s concrete ANOBE. Our second ANOBE is adapted from the first one. We sacrifice the fast decryption feature and achieve shorter ciphertexts than Libert et al.'s concrete ANOBE with the help of bilinear groups. Technically, we start from an instantiation of Libert et al.'s generic ANOBE [PKC, 2012], but we work out all our proofs from scratch instead of relying on their generic security result. This intuitively allows our optimizations in the concrete setting.

Table of Contents 1 Introduction

Broadcast Encryption. Broadcast encryption [Ber91,FN94] (BE) is a public-key cryptosystem designed for securely sending information to multiple users via a public channel. In a BE system, we may index each user by integers 1, . . . , n and name set U := {1, . . . , n} the universe. It would be convenient to describe BE in the framework of Functional Encryption [BSW11]. An authority publishes a set of public parameters generated by the Setup algorithm. Each user's secret key is then created by the KeyGen algorithm from the master secret key which is the output of Setup. By invoking the encryption algorithm Enc, a sender can create a ciphertext for users specified by a target set S ⊆ U. Any user with an index i ∈ S is able to decrypt the ciphertext using the Dec algorithm.

The basic security requirement is collusion-resistance which ensures that a ciphertext leaks no information about the message even when multiple users outside the target set S decide to cooperate. More formally, it is required that {ct ← R Enc(mpk, S, m 0 )} ≈ c {ct ← R Enc(mpk, S, m 1 )} where mpk is the public parameters, (S ⊆ U, m 0 , m 1 ) are chosen by the adversary; and we allow the adversary to adaptively learn secret keys for all i / ∈ S. With more powerful functional encryptions such as attribute-based encryptions [SW05], [GPSW06,OT10,LOS + 10,CGW15], we can securely broadcast information in a structural way which is more efficient and much easier to manage. However the classical BE still serves as the most general tool for broadcasting information in the systems where users are not wellorganized, e.g., a country-wide pay-TV system.

Anonymity. Since been introduced, a series of BE schemes have been published [FN94], [NNL01,YFDL04,BGW05,DPP07,GW09,Wee16], but they only ensure the confidentiality of the message while the target set S is entirely exposed to the public. In fact, the description of S will be directly transmitted through the insecure channel for decryption. However in many applications, the confidentiality of the target set is also crucial. For instance, in the pay-TV setting, everyone has access to the full list of subscribers, which is not acceptable. Therefore, it is desirable and non-trivial to build a BE system taking both the message and the target set into account in terms of confidentiality. In this paper, we call the latter feature anonymity and name such a BE as anonymous broadcast encryption [LPQ12] (ANOBE). More formally, it is required that {ct ← R Enc(mpk, S 0 , m 0 )} ≈ c {ct ← R Enc(mpk, S 1 , m 1 )} where (m 0 , m 1 , S 0 , S 1 ) are chosen by the adversary and secret keys for all i / ∈ (S 0 \ S 1 ) ∪ (S 1 \ S 0 ) can be revealed. The subtlety is that any secret key for i ∈ S 0 ∩ S 1 will give an adversary the power to correctly decrypt both ciphertexts above. In this case, m 0 = m 1 is disallowed in order to avoid the trivial attack.

State of the Art. Although anonymity is crucial for BE, it has not received much attentions to construct ANOBE with the proper security guarantee.

In 2006, Barth et al.

[BBW06] first identified the anonymity (i.e., recipient privacy in their work) in the context of encrypted file system. They introduced the notion of ANOBE in the name of private broadcast encryption. In their work, two constructions were described. The first one is a generic construction from an IND-CCA secure PKE with key-privacy and a strongly unforgeable signature scheme. They claimed that it achieves IND-CCA security and anonymity but in the selective (or static) model which means that the adversary must commit the challenge target sets (S 0 , S 1 ) in advance. Basically, a BE ciphertext there is a set of PKE ciphertexts intended for every recipient in S bound together via a signature. One drawback of this construction is that the decryption time is proportional to |S| since each receiver has to try to decrypt each PKE ciphertext one by one. In their second construction, they introduced a method helping a receiver to find the right PKE ciphertext and reduced the decryption cost to constant. However, it unfortunately relies on the random oracle model.

At PKC 2012, Libert el al.

[LPQ12] formally revisited Barth et al.'s results. They described the adaptive security for ANOBE where the adversary can choose the challenge target sets (S 0 , S 1 ) at any time (i.e., the security notation we have reviewed), and showed that it can be achieved from IND-CCA secure PKE (plus strongly secure signatures). Note that this result is quite strong in that the underlying PKE is not necessarily key-private. Moreover, the receiver can decrypt in a constant time. However, the size of ciphertext depends on n, the size of universe. They then demonstrated that Barth et al.'s first BE is actually IND-CCA secure and anonymous in an adaptive sense and provided an alternative construction from IBE [Sha84,CHK04]. This ANOBE has shorter ciphertext (of size O(|S|)) but requires the underlying PKE to be weakly robust [ABN10,Moh10] and key-private, and the decryption cost increases to O(|S|). They also formalized the method helping to reduce the decryption cost in Barth et al.'s second construction [BBW06] as anonymous hint system, which can be viewed as a variant of extractable hash proof systems [Wee10]. The classical randomness-reuse technique [Kur02,BBS03] was then formally studied to reduce the ciphertext size. Finally, a concrete ANOBE based on the Kurosawa-Desmedt PKE [KD04] was proposed. Having their generic ANOBE, they showed that the Kurosawa-Desmedt PKE can be adapted to be keyprivate and robust, and also support randomness-reuse technique.

Also at PKC 2012, Fazio and Perera [FP12] proposed an ANOBE scheme with sublinearsize ciphertexts but with a much weaker outsider-anonymity where users identified by S 0 ∩ S 1 are not considered to be malicious. More formally, the adversary is forbidden to get any secret key for i ∈ S 0 ∩ S 1 . However Barth et al.'s early work [BBW06] has actually recognized such an inside attacker as a hazard and illustrated how serious the issue is under a chosenciphertext attack. In the end, we want to note that Libert et al.'s results [LPQ12] are still the best in the sense that they achieve (1) IND-CCA security, (2) fully anonymity and (3) randomoracle-freeness. To our best knowledge, there is no follow-up result with all these features simultaneously even when taking the identity-based variant into account (see recent work [HWL + 16] for more details).

Contributions

In this paper, we propose two concrete ANOBE schemes. Both of them are obtained by optimizing an instantiation of Libert et al.'s generic construction [LPQ12] with Cramer-Shoup PKE [CS98,CS02]. We prove, from scratch, that they are secure in the sense of [LPQ12] from the standard k-Linear (k-Lin) assumption and the existence of several other cryptographic primitives (such as strongly unforgeable signature and collision-resistant hash function) .

Although our proposals do not deviate from Libert et al.'s generic framework [LPQ12], our new start point and customized security proof allow us to gain shorter ciphertexts and tighter reduction than the concrete instantiation in [LPQ12]. (Recall that it is based on Kurosawa-Desmedt PKE [KD04] and the security result follows the generic construction directly.) A comparison between them is shown in Table 1 where we consider instantiations of our two ANOBE under DDH=1-Lin (or SXDH=1-Lin) assumption 3 . We note that these two instantiations are the most efficient ones. , but it permits us to use some customized method to optimize the system.

Tighter Reduction. In [LPQ12]

, their security reduction suffers from O(n 3 ) loss where n is the size of the universe. This makes it infeasible for large-scale systems such as aforementioned pay-TV application. In particular, we need to use a larger group to compensate the loss, which of course increases the bandwidth and computation costs. In our work, we prove the security of two ANOBE from basic assumption and only suffer constant security loss, which is of both theoretical and practical interest. We argue that the result is non-trivial: A potential solution is to employ an IND-CCA secure PKE with tight reduction for multiple users (like [GHKW16,Hof17]) in Libert et al.'s generic construction [LPQ12]. However, the simulator still needs to guess which public keys will be associated with target set which is chosen adversarially and causes significant security loss.

Technical Overview

Our starting point is an instantiation of Libert et al.'s generic construction with Cramer-Shoup PKE [CS98,CS02]. In this overview, we first give this instantiation and describe how to derive our two ANOBE schemes from it.

Starting point. Assume a prime-order group (p, G, g). We let [a] := g a ∈ G for all a ∈ Z p and extend it to matrix over Z p . Assume S := {i 1 , . . . , i }. We can instantiate Libert et al.'s construction using Cramer-Shoup PKE under k-Lin assumption as below: The above BE is IND-CCA secure and anonymous according to Libert et al.'s generic result. However, we can do better by showing a tighter reduction for this concrete ANOBE. The security loss of Libert et al.'s reduction (which is O(n 3 )) is mainly caused by blackbox-reduction to the underlying PKE where the simulation need to guess some information about challenge target set. We prove our security result from scratch. In particular, we employ the proof technique for IND-CCA PKE in the multi-user setting [GHKW16,Hof17] but adapt it to our broadcast encryption case. We found that we can now avoid guessing adversary's behavior and also corresponding reduction loss.

mpk : { [A] , [A k i ], [A x i ], [A y i ] } i∈[n] , (Gen ots , Sig, Ver), h sk i : k i , x i , y i ct S : { [r A ] , [r A k i j ] • m, [r A (x i j + α • y i j )] } j∈[ ] , pk ots , σ where A ← R Z (k+1)×k p , k i , x i , y i ← R Z k+1 p for i ∈ [n] and r ← R Z k p .
Our first ANOBE: Shorter Ciphertext for Fast Decryption. The above instantiation has not been equipped with anonymous hint system [LPQ12], so the decryption cost should be O( ). (Recall that, intuitively, an anonymous hint system can help the decryptor to find the right ciphertext component intended for him and avoid O( ) factor.) However we observe that {[r A (x i j + α • y i j )]} j∈[ ] can serve as the hints for fast decryption. This benefits from the fact that tag α is shared by all users in S. In the decryption procedure, a user with secret Observe that we have group elements (i.e., {[r A (x i j + α • y i j )]} j∈[ ] ) for consistency check (which is necessary for IND-CCA security) in our first ANOBE. If we assume that each recipient can correctly guess which part is intended for him/her, we can see that only one of these elements will be used in the decryption procedure. Therefore a promising idea is to ask all recipients to share the consistency check process. A direct way to do so is to

key k i , x i , y i can recover v = [r A (x i + α • y i )] and try to find the index j * such that v = [r A (x i j * + α • y i j * )],
replace {[r A (x i j + α • y i j )]} j∈[ ] with [r A (x + α • y)]
and publish [A x] and [A y] in mpk. Unfortunately, there is a fatal issue. To do the consistency check, we should give each user x and y directly and they will be leaked to an adversary through any corrupted user. This totally breaks the IND-CCA security. We circumvent the difficulty by making the consistency check public using the technique by Kiltz and Wee [KW15]. In particular, we adapt our first ANOBE to G 1 of a pairing group

(p, G 1 , G 2 , G T , e) and replace [r A (x + α • y)] 1 with [r A (X + α • Y)] 1
where X, Y ← R Z (k+1)×(k+1) p . In the public parameter mpk, we publish

([A X] 1 , [A Y] 1 ) and ([B] 2 , [XB] 2 , [YB] 2 )
where B ← R Z (k+1)×k p and the right-hand side part allow anyone to publicly check the ciphertext consistency.

We have successfully compressed the ciphertext but lose the correctness of decryption since we do not have hint system now. It is easy to fix using key-binding symmetric encryption scheme (E, D). That is we pick session key K from the key space of (E, D) and

replace [r A k i j ] 1 • m with [r A k i j ] 1 • K, E K (m).
We note that we are not pursuing fast decryption now. We can further get rid of σ by defining α as in Cramer-Shoup PKE [CS98,CS02]. We sketch our second ANOBE as follows:

mpk : (E, D), h; { [A ] 1 , [A k i ] 1 , [A X] 1 , [A Y] 1 } i∈[n] ; [B] 2 , [XB] 2 , [YB] 2 sk i : k i ct S : { [r A ] 1 , [r A k i j ] 1 • K, E K (m) , [r A (X + α • Y)] 1 } j∈[ ]
where all terms in gray box are shared by all users/receivers. As our first ANOBE, the reduction loss is constant.

Compared with Libert et al.'s concrete ANOBE [LPQ12], our second ANOBE is based on weaker assumptions -we don't require the existence of strongly one-time signature and (E, D) is not necessarily authenticated encryption. Furthermore, in the ciphertext, we share as many components as possible among receivers in the target set, the remaining group elements seem to be inevitable by the lower bound [KS12].

Organization. Our paper is organized as follows. We review some basic notions in Section 2. Our two ANOBE constructions along with security analysis will be presented in Section 3 and Section 4, respectively. We finally conclude the paper in Section 5.

Preliminaries

Notations. For n ∈ N, we define [n] := {1, 2, . . . , n}. We use a ← R A to denote the process of uniformly sampling an element from set A and assigning it to variable a. For two sets S 0 , S 1 , define S 0 S 1 := (S 0 \ S 1 ) ∪ (S 1 \ S 0 ). "p.p.t." stands for probabilistic polynomial time.

Anonymous Broadcast Encryption

Algorithms. Let U := [n] be the universe. A broadcast encryption (BE) scheme consists of four algorithms (Setup, KeyGen, Enc, Dec):

-Setup(1 λ , n) → (mpk, msk): on input 1 λ and n, the setup algorithm outputs a master public key mpk and a master secret key msk. -KeyGen(mpk, msk, i) → sk i : on input mpk, msk and an index i ∈ U, the key generation algorithm outputs a secret key sk i . -Enc(mpk, m, S) → ct S : on input mpk, a message m and a subset S ⊆ U, the encryption algorithm outputs a ciphertext ct S . -Dec(mpk, ct S , sk i ) → m/⊥: on input mpk, ct S and sk i , the decryption algorithm outputs m or a failure symbol ⊥.

Correctness. For all λ, all (mpk, msk) ← R Setup(1 λ , n), all m, all S ⊆ U, and all i ∈ S, it is required that Dec(mpk, Enc(mpk, m, S), KeyGen(mpk, msk, i)) = m.

Chosen-ciphertext security and anonymity. For any adversary A , define

Adv BE A (1 λ ) := Pr          b = b (mpk, msk) ← R Setup(1 λ , n), b ← R {0, 1} (m 0 , m 1 , S 0 , S 1 ) ← R A KeyO(•),DecO(•,•) (1 λ , mpk) ct * ← R Enc(mpk, m b , S b ) b ← R A KeyO(•),DecO(•,•) (1 λ , mpk, ct * )          - 1 2
where oracles work as follows:

-KeyO: on input i, key extraction oracle KeyO outputs sk i ← R KeyGen(msk, mpk, i) and sets Q sk := Q sk ∪ {i} which is initialized to be ∅ at the beginning. -DecO: on input (ct, i), decryption oracle DecO outputs Dec(mpk, ct, sk i ) when ct * (a.k.a.

challenge ciphertext) has not been defined or ct = ct * .

A broadcast encryption scheme achieves chosen-ciphertext security and anonymity (ANO-IND-CCA) if, for all p.p.t. adversary A, Adv BE A (λ) is negligible in λ under the restrictions that (1)

|m 0 | = |m 1 | and |S 0 | = |S 1 |; (2) Q sk ∩ (S 0 S 1 ) = ∅; (3) if Q sk ∩ (S 0 ∩ S 1 ) = ∅, then m 0 = m 1 .

Prime-Order (Bilinear) Groups

Prime-order group. A group generator GGen is a p.p.t. algorithm which takes 1 λ as input and outputs a description G := (p, G, g). Here G is a finite cyclic group of prime order p and g is a random generator of G. Throughout the paper, we will use implicit representation [EHK + 13]. We let [a] := g a ∈ G for all a ∈ Z p . For a matrix A = (a ij ) ∈ Z m×n p , we let

[A] = (g a ij ) ∈ G m×n .
Prime-order bilinear group. A group generator PGGen is a p.p.t. algorithm which takes 1 λ as input and outputs a description PG := (p, G 1 , G 2 , G T , e, g 1 , g 2 ) of (asymmetric) bilinear group. Here G 1 , G 2 , G T are finite cyclic groups of prime order p and e is an admissible bilinear map. g 1 ∈ G 1 and g 2 ∈ G 2 are random generators of G 1 and G 2 , and g T := e(g 1 , g 2 ) will be a generator of group G T . The implicit representation is also be applied to prime-order bilinear groups: We let [a] s := g a s ∈ G s for all a ∈ Z p and s ∈ {1, 2, T }. The notation can be easily extended to matrices analogously and we let e([A] 1 , [B] 2 ) := [AB] T for matrices A and B when the multiplication is well-defined.

Cryptographic assumption. For any k ∈ N, we call D k a matrix distribution if it outputs full-rank matrices in Z (k+1)×k p in polynomial time. We may assume that for all A ← R D k , the first k rows of A form an invertible matrix.

We will use the D k -Matrix Diffie-Hellman (D k -MDDH) assumption in G described as follows. The D k -MDDH assumption in G 1 and G 2 are analogous.

Assumption 1 (D k -MDDH)

We say that the D k -Matrix Diffie-Hellman assumption holds relative to GGen, if for any p.p.t. adversary A, the following advantage function is negligible in λ. Assumption 2 (D k -KerMDH) Let s ∈ {1, 2}. We say that the D k -Kernel Matrix Diffie-Hellman Assumption holds relative to PGGen, if for any p.p.t. adversary A, the following advantage function is negligible in λ.

Adv mddh A,G (λ) := | Pr[A(G, [A], [As]) = 1] -Pr[A(G, [A], [u]) = 1]| where G ← R GGen(1 λ ), A ← R D k , s ← R Z k p ,
Adv kmdh A,G s (λ) := Pr[A a ⊥ = 0 ∧ a ⊥ = 0 | [a ⊥ ] 3-s ← R A(PG, [A] s )]
where PG ← R PGGen(1 λ ), A ← R D k .

Cryptographic Primitives

Our constructions will use the following cryptographic primitives:

Key-binding secure symmetric encryption. A symmetric encryption scheme with a key space K consists of two algorithms (E, D):

-E K (m) → c : the encryption algorithm generates a encryption c of the message m under the secret key K. -D K (c) → m/⊥ : the decryption algorithm decrypts the ciphertext c using K, and returns m or a failure symbol ⊥.

The correctness can be stated as follows: for all K ← R K and all message m, we have D K (E K (m)) = m with overwhelming probability. We then review the semantic security of symmetric encryptions. For any adversary A, define

Adv se A (λ) := Pr       b = b (m 0 , m 1 ) ← R A(1 λ , K) K ← R K, b ← R {0, 1}, c * ← R E K (m b ) b ← R A(1 λ , K, c * )       - 1 2 .
A symmetric encryption is semantically secure, if for all p.p.t. adversary A, the advantage function Adv se A (λ) is negligible in λ. Furthermore, we require the symmetric encryption to be key-binding [Fis99]. Namely, for any message m and any secret key K ∈ K, there exists no key K ∈ K such that K = K and D K (E K (m)) =⊥. See [Fis99] for more details.

Collision-resilient hash function.

A family of hash functions H is said to be collisionresistant if, for all p.p.t. algorithm A, the following advantage function is negligible in λ.

Adv hash A (λ) := Pr[h(x) = h(y) ∧ x = y | h ← R H, (x, y) ← R A(1 λ , h)].
Strongly secure one-time signature. A signature scheme consists of the following three algorithms.

-Gen ots (1 λ ) → (sk ots , pk ots ) : on input the security parameter λ, the key generation algorithm outputs a signing key sk ots and the verification key pk ots . -Sign(sk ots , m) → σ : on input sk ots and a message m, the signing algorithm outputs a signature σ.

-Ver(pk ots , m, σ) → 0/1 : on input pk ots , m, and σ, the verification algorithm outputs 0 (reject) or 1 (accept).

We require the signature scheme strongly unforgeable against all adversaries with at most one message-signature pair. Formally, for any adversary A, we define

Adv ots A (λ) := Pr   Ver(pk ots , m * , σ * ) = 1 ∧ (m, σ) = (m * , σ * ) (sk ots , pk ots ) ← R Gen ots (1 λ ) (m * , σ * ) ← R A SigO(•) (1 λ , pk ots )   - 1 2 ,
where the oracle SigO takes m as input and returns σ ← R Sign(sk ots , m), and can only be called once. We say that a signature scheme is strongly unforgeable under one-time chosen message attack if the advantage function Adv ots A (λ) is negligible in λ for all p.p.t. adversary A.

Core Lemma

We review the core lemma in [KW15].

Lemma 1 (Core lemma, [KW15]

). Let k ∈ N. For any A, B ∈ Z (k+1)×k p and any (possibly unbounded) adversary A, we have

Pr   u / ∈ span(A) ∧ α = α * X, Y ← R Z (k+1)×(k+1) p ∧ π = u (X + α • Y) (u, α, π) ← R A O(•) (A X, A Y, XB, YB)   1 p
where O(α * ) → X + α * • Y may only be called one time.

3 Tightly Secure ANOBE with Fast Decryption

Construction

Our first broadcast encryption scheme is described as follows.

-

Setup(1 λ , n): Run G := (p, G, g) ← R GGen(1 λ ). Sample A ← R D k and k i , x i , y i ← R Z k+1 p for i ∈ [n].
Select a strongly unforgeable one-time signature scheme (Gen ots , Sig, Ver) and a hash function h : {0, 1} * → Z p from H. The master public key is

mpk := (G, h, (Gen ots , Sig, Ver), [A], {[A k i ], [A x i ], [A y i ]} n i=1 )
and the master secret key is msk := ({k i , x i , y i } n i=1 ). -KeyGen(msk, mpk, i): Output the secret key sk i = (k i , x i , y i ).

-Enc(mpk, m, S):

Let := |S| and S = {i 1 , . . . , i } ⊆ U = [n]. Sample r ← R Z k p and compute [u ] := [r A ].
Generate (sk ots , pk ots ) ← R Gen ots (1 λ ), compute α := h(pk ots ) and

c 1 := [r A k i 1 ] • m, v 1 := [r A (x i 1 + α • y i 1 )], . . . . . . c := [r A k i ] • m, v := [r A (x i + α • y i )].
Choose a random permutation τ over [ ] and compute

σ := Sig(sk ots , ([u ], c τ(1) , v τ(1) , . . . , c τ( ) , v τ( ) )).
The ciphertext is

ct := ([u ], c τ(1) , v τ(1) , . . . , c τ( ) , v τ( ) , pk ots , σ).
-Dec(mpk, ct, sk i ): Parse the ciphertext ct as ([u ], c1 , v1 , . . . , c , v , pk ots , σ) and the secret key sk i as

(k i , x i , y i ). Return ⊥ if Ver(pk ots , ([u ], c1 , v1 , . . . , c , v ), σ) = 0, otherwise, compute v := [u (x i + α • y i )],
where α = h(pk ots ). If there exists j ∈ [ ] such that v = vj , return m := cj /[u k i ]; otherwise, return ⊥.

Correctness.

For any ciphertext ct = ([u ], c1 , v1 , . . . , c , v , pk ots , σ) for set S ⊆ U generated by Enc, we always have Ver(pk ots , ([u ], c1 , v1 , . . . , c , v ), σ) = 1 by the correctness of signature scheme (Gen ots , Sig, Ver). Given secret key sk i = (k i , x i , y i ) for i ∈ S, there must exist an index j

∈ [ ] such that v = [u (x i + α • y i )] = vj ,
and then it is not hard to see that the message can be recovered from cj .

Security Result and Proof Overview

We prove the following theorem.

Theorem 1 Our broadcast encryption scheme in Section 3.1 is adaptively ANO-IND-CCA secure assuming that: (1) H is collision-resistant; (2) the D k -MDDH assumption holds in G; (3) signature scheme (Gen ots , Sig, Ver) is strongly unforgeable under one-time chosen message attack. Concretely, for any adversary A, there exist algorithms B 1 , B 2 , B 3 such that

Adv BE A (λ) Adv mddh G,B 1 (λ) + Adv ots B 2 (λ) + Adv hash B 3 (λ) + O(1/p)
and Time(B 1 ), Time(B 2 ), Time(B 3 ) ≈ Time(A).

We prove the theorem via the following game sequence.

Game 0 . This game is identical to the real game described in Section 2.1. In particular, our simulation is as follows: Setup. Run Setup(1 λ , n) and send A the master public key

mpk := (G, h, (Gen ots , Sig, Ver), [A], {[A k i ], [A x i ], [A y i ]} n i=1 )
and keep the master secret key msk := ({k i , x i , y i } n i=1 ). Set Q sk := ∅. Challenge ciphertext. Receiving (m 0 , m 1 , S 0 , S 1 ) from A where we let S 0 = {i 1,0 , . . . , i ,0 }

and Simulating KeyO. On input i ∈ U, output sk i = (k i , x i , y i ) and update Lemma 2 (Game 1 ≈ c Game 0 ). There exists an adversary B 1 such that

S 1 = {i 1,1 , . . . , i ,1 }, pick b ← R {0, 1}, u * ← R span(A), (sk * ots , pk * ots ) ← R Gen ots (1 λ ),
Q sk := Q sk ∪ {i}. Simulating DecO. On input (ct, i), parse ct = (ct 1 = ([u ], c 1 , v 1 , . . . , c , v ), pk ots , σ),
| Pr[Win 1 ] -Pr[Win 0 ]| Adv mddh G,B 1 (λ).
Game 2 . This game is identical to Game 1 except that DecO, on input (ct, i), rejects the query if (a) or (b) or (c) pk ots = pk * ots . This game is identical to Game 1 until A submits a query with pk ots = pk * ots which survives under condition (a) and (b). However σ in such a query will violate the strong unforgeability of (Gen ots , Sig, Ver), and this game is indistinguishable from Game 1 . Formally, we have the following lemma. Game 3 . This game is identical to Game 2 except the following substitution:

(c) pk ots = pk * ots -→ (c ) α = α *
This game is identical to Game 2 until A submits a query with pk ots = pk * ots but α = α * . This immediately violates the collision-resistance of H, and this game is indistinguishable from Game 2 . Formally, we have the following lemma.

Lemma 4 (Game 3 ≈ c Game 2 ). There exists an algorithm B 3 such that

| Pr[Win 3 ] -Pr[Win 2 ]| Adv hash B 3 (λ).
Game 4 . This game is identical to Game 3 except that except that DecO, on input (ct, i), rejects the query if (a) or (b) or (c ) or

(d) u / ∈ span(A)
We have the following lemma stating that this game is statistically indistinguishable with Game Let q D be the number of decryption queries. The lemma can be proved in q D steps. In the j-th step, assuming that the first j -1 decryption queries have been processed with condition (d), we demonstrate that the j-th query will finally be rejected if it survives under condition (a), (b), (c ) with u / ∈ span(A). In other words, we can introduce condition (d) here without changing adversary's view. The proof (for the j-th step) relies on the observation that we leak no more information than {A x η , A y η } η∈[n] when answering the first j -1 queries to DecO. With the help of condition (c ), which ensures that α = α * , we can claim that u (x i + α • y i ) is independently and uniformly distributed and thus hard to guess.

Finally, we have the following lemma which proves Theorem 1 when combining with all previous lemmas and claims. This follows from the fact that (u * k i , u * (x i + α • y i )) are uniformly distributed over G 2 , especially unrelated to b, for all i ∈ S b (resp. i ∈ S b /S 1-b ) when Q sk ∩ (S 0 ∩ S 1 ) = ∅ (resp. Q sk ∩ (S 0 ∩ S 1 ) = ∅), conditioned on mpk, KeyO and DecO. The analysis is similar to that for Lemma 5.

Let (ct = ([u ], c 1 , v 1 , . . . , c , v , pk ots , σ), i) be the j-th query. The event BadSpan j can be restated as follows: the j-th query survives under condition (a), (b), (c ) with u / ∈ span(A) but there exists

i ∈ [ ] such that v i = [u (x i + α • y i )].
To bound Pr[BadSpan j ], we introduce another event BadSpan j which is defined exactly as BadSpan j except that we replace [u (x i + α • y i )] with a random group element [v] ← R G. Firstly, since v is independent of A's behaviour, we have that Pr[BadSpan j ] = /p.

Secondly, we claim that Pr[BadSpan

j ] = Pr[BadSpan j ].
This follows from the fact that, for all

Q sk ∈ [n], all S b ∈ [n] and all i ∈ [n] \ Q sk , we have mpk, DecO : KeyO : ct * : → DecO :          A, {A x η , A y η } η∈[n] {x η , y η } η∈Q sk {u * (x η + α * • y η )} η∈S b u (x i + α • y i )          ≡          A, {A x η , A y η } η∈[n] {x η , y η } η∈Q sk {u * (x η + α * • y η )} η∈S b v          when x η , y η ← R Z k+1 p for all η ∈ [n] and v ← R Z p for all u, u * /
∈ span(A). We note that (1) the first j -1 decryption queries leak no more information than mpk since all queries with u / ∈ span(A) will be rejected (see the first line); (2) we naturally assume that i / ∈ Q sk , otherwise the adversary can simulate DecO (on this query) by itself; (3) two distributions are perfectly identical, so our non-adaptive statement implies the adaptive one. This readily proves the lemma. Select a key-binding secure symmetric encryption scheme (E, D) with the key space K := G 1 and a collision-resilient hash function h ← R H mapping from {0, 1} * to Z p . The master public key is mpk :=   PG, (E, D), h; 

Proof of

[A ] 1 , {[A k i ] 1 } n i=1 , [A X] 1 , [A Y] 1 [B]

Conclusion

In this paper, we described two concrete ANOBE schemes. The first one is an instantiation of Libert et al.'s generic ANOBE. However, by working out the proof directly, we achieved a constantly tight reduction to standard assumptions. Furthermore, we pointed out that this scheme supports fast decryption for free and thus enjoys shorter ciphertexts. By the second scheme, we showed how to shorten the ciphertext again while preserving the tightness at the cost of slower decryption.

  The public parameter mpk is basically n public keys of Cramer-Shoup PKE 6 sharing [A] which is a common technique in the multi-user setting. The ciphertext for S contains ciphertexts of Cramer-Shoup PKE with randomness [r A ] reused as [LPQ12]. Following Libert et al.'s suggestion, they are then bound together via a strongly unforgeable signature σ under fresh verification key pk ots instead of encrypting m||pk ots .

  and u ← R Z k+1 p . The famous k-Linear (k-Lin) assumption is an instantiation of the D k -MDDH assumption. The classical decisional Diffie-Hellman (DDH) assumption (a.k.a symmetric external Diffie-Hellman (SXDH) assumption in asymmetric bilinear groups) is just the k-Lin assumption with k = 1. See [EHK + 13] for more details. For bilinear groups, we also use the D k -Matrix Kernel Diffie-Hellman (D k -KerMDH) Assumption [MRV16], which is implied by the D k -MDDH assumption.

  choose a random permutation τ over [ ], let α * = h(pk * ots ) and computect * 1 := ([u * ], c * 1 , v * 1 , . . . , c * , v * ) where c * j = [u * k i τ(j),b ] • m b and v * j = [u * (x i τ(j),b + α * • y i τ(j),b )] for j ∈ [ ].Output the challenge ciphertext ct * := (ct * 1 , pk * ots , σ * := Sig(sk * ots , ct * 1 )).

  reject the query if (a) ct = ct * or (b) Ver(pk ots , ct 1 , σ) = 0. Then compute α = h(pk ots ) and v = [u (x i + α • y i )]. If there exists j ∈ [ ] such that v = v j , return m := c j /[u k i ]; otherwise, return ⊥. Finalize. Received b from A, return 1 if b = b ; otherwise return 0.Let Win i denote the event that A in Game i guesses b correctly. Since Game 0 perfectly simulates the real game, we haveAdv BE A (1 λ ) = | Pr[Win 0 ] -1/2|. Game 1 .This game is identical to Game 0 except that we sample u * ← R Z k+1 p when generating the challenge ciphertext ct * . It is easy to see that this game is indistinguishable from Game 0 under the D k -MDDH assumption. Formally, we have the following lemma.

Lemma 3 (

 3 Game 2 ≈ c Game 1 ). There exists an adversary B 2 such that | Pr[Win 2 ] -Pr[Win 1 ]| Adv ots B 2 (λ).

3 . 5 (

 35 Lemma Game4 ≈ s Game 3 ). |Win 4 -Win 3 | O(1/p).

Lemma 6 .

 6 Pr[Win 4 ] = 1/2.

Lemma 6 :

 6 We will prove that Pr[Win 4 ] = 1/2 in two cases. Combining them together immediately proves the lemma. Case 1: Q sk ∩ (S 0 ∩ S 1 ) = ∅. We claim that (c * j , v * j ) are uniformly distributed over G 2 for all j ∈ [ ]. This means that ct * is actually independent of b and the adversary's advantage is 0 in this case. This follows from the fact that, for allQ sk ⊆ [n] and all S b ⊆ [n] satisfying Q sk ∩ S b = ∅, we have mpk, DecO : {A k η , A x η , A y η } η∈[n] {k η , x η , y η } η∈Q sk {u * k η , u * (x η + α * • y η )} η∈S b {A k η , A x η , A y η } η∈[n] {k η , x η , y η } η∈Q sk { c * η , ṽ * η } η∈S b when k η , x η , y η ← R Z k+1 p for all η ∈ [n] and c * η , ṽ * η ← R Z p for all η ∈ S b if u * / ∈ span(A). Case 2: Q sk ∩ (S 0 ∩ S 1 ) = ∅. We claim that all (c * j , v * j ) such that i τ(j),b ∈ S b \ S 1-b are uniformly distributed over G 2 .This follows from a statistical statement identical to that in Case 1 except that (c * j , v * j ) with i τ(j),b ∈ S b ∩ S 1-b remain unchanged. The claim is sufficient to argue that ct * reveals nothing about b since it must hold that m 0 = m 1 in this case.

-

  Setup (1 λ , n): Run PG := (p, G 1 , G 2 , G T , e, g 1 , g 2 ) ← R PGGen(1 λ ). Sample A, B ← R D k , X, Y ← R Z (k+1)×(k+1) p , k i ← R Z k+1 p for i ∈ [n].

  2 , [XB] 2 , [YB] 2   and the master secret key is msk := {k i } n i=1 . -KeyGen (msk, mpk, i): Output the secret key ski := k i . -Enc (mpk, m, S): Let := |S| and S = {i 1 , . . . , i } ⊆ U. Sample r ← R Z k p and compute [u ] 1 := [r A ] 1 .Select session key K ← R G 1 and computec 0 := E K (m), c 1 := [r A k i 1 ] 1 • K, . . . , c := [r A k i ] 1 • KChoose a random permutation τ over [ ] and compute[π] 1 := [r A (X + α • Y)] 1 where α := h([u ] 1 , c 0 , c τ(1) , . . . , c τ( ) ). The ciphertext is ct := ( [u ] 1 , c 0 , c τ(1) , . . . , c τ( ) , , [π] 1 ).-Dec(mpk, ct, sk i ): Parse ct as ([u ] 1 , c 0 , c1 , . . . , c , [π] 1 ) and sk i as k i . Computeα = h([u ] 1 , c 0 , c1 , . . . , c )and checke([π] 1 , [B] 2 ) ? = e([u ] 1 , [(X + α • Y)B] 2 ).(1)If Equation (1) does not hold, return ⊥; otherwise, do the following two steps from j := 1.1. Compute K := cj /[u k i ] 1 and m := D K (c 0 ). If m =⊥, return m and halt; otherwise, go to the second step. 2. If j = , return ⊥ and halt; otherwise, do the first step with j := j + 1.

Table 1 .

 1 Comparison of our two proposals and the concrete ANOBE from [LPQ12] in terms of ciphertext size and reduction tightness. Table (a) is for the schemes supporting fast decryption while we tolerate linear decryption cost in Table (b). In our comparison, the system has n users and is the size of target set S. We let G be a finite group where DDH holds while G 1 denotes the first source group of a bilinear group where SXDH holds. The column "Reduction" shows the security loss.

	(a) Comparing our first ANOBE with	(b) Comparing our second ANOBE with
	[LPQ12] plus anonymous hint system.	[LPQ12] without anonymous hint system.
	Scheme	|ct|	Reduction	Scheme	|ct|	Reduction
	[LPQ12] (4 + 5)|G| + 2|Z p | O(n 3 )	[LPQ12] (2 + 5)|G| + 2|Z p | O(n 3 )
	Sec. 3 (2 + 5)|G| + 2|Z p |	O(1)	Sec. 4	( + 6)|G 1 |	O(1)
	Shorter Ciphertext. Our first ANOBE scheme supports fast decryption. Compared with
	the concrete ANOBE in [LPQ12] equipped with their DDH-based anonymous hint system 4 ,
	our ANOBE can save rougly 50% bandwidth. Our second ANOBE is derived from the first
	one. We sacrifice fast decryption and peruse shorter ciphertext. Compared with concrete
	ANOBE in [LPQ12], our second ANOBE works with bilinear groups and roughly saves 50%
	bandwidth 5 . We highlight that this construction almost touches the lower bound of cipher-
	text size in an anonymous broadcast encryption [KS12]. It is quite surprising that we start
	from a less efficient basic PKE			

scheme but finally achieves better space efficiency. We note that the Cramer-Shoup PKE [CS98,CS02] is indeed less efficient than Kurosawa-Desmedt PKE [KD04]

  which indicates the right ciphertext. This already saves the bandwidth since we need the DDH-based anonymous hint system in [LPQ12] to upgrade Libert et al.'s concrete ANOBE in order to achieve fast decryption. Even with randomness reuse technique, this will introduce 2 • |S| additional group elements to the ciphertext. The perspective here is that {[r A (x i j + α • y i j )] } j∈[ ] act as crucial components for achieving IND-CCA security and hints for fast decryption at the same time while they are realized separately in Libert et al.'s concrete ANOBE.Can we reduce the ciphertext size if we can tolerate slower decryption?

	Our Second ANOBE: Compressing Ciphertext Again. We now ask:

We assume that (1) the verification key and signature for strongly unforgeable one-time signatures consist of 3 group elements and 2 integers, respectively [Gro06] (see Section

4, [CCS09]);(2) the authenticated encryption with key-binding property has a ciphertext of roughly 2 group elements (see Section 6, [LPQ12]).4 The resulting ANOBE will also support fast decryption, here we share the randomness between ANOBE and anonymous hint system.5 Here we implement the concrete ANOBE from [LPQ12] using elliptic curve.

Here we use a direct generalization of Cramer-Shoup PKE under the k-Lin assumption. The original Cramer-Shoup PKE corresponds to the case k = 1.
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Perspective. Lemma 5 and Lemma 6 are at the core of our proof. Although our proofs still rely on the proof technique of underlying Cramer-Shoup PKE, we get rid of large reduction loss by carrying out the argument in the broadcast setting directly. In particular, we employ the technique beneath the core lemma from Kiltz and Wee [KW15] (see Lemma 1), which allows us to take all users into account in a non-adaptive way first and then upgrade to the adaptive setting for free. This avoids guessing adversary's behaviour in the simulation which caused large security loss in Libert et al.'s work [LPQ12]. Furthermore, we note that our proof indeed involves robustness [ABN10, Moh10,LPQ12] but in an implicit manner since we are not working with generic PKE anymore.

Omitted Proofs

Proof of Lemma 3: In Game 2 , let Forge denote the event that A submits a query with ct := (ct 1 , pk ots = pk * ots , σ) to DecO which can not be rejected by condition (a) and (b). Observe that Game 2 is identical to Game 1 if Forge does not happen, we have

We bound Pr[Forge] via the following reduction. On input pk * ots , algorithm B 2 prepares mpk and simulates KeyO, DecO honestly as in Game 2 . When generating the challenge ciphertext, it generates ct * 1 as in Game 2 and output ct * := (ct * 1 , pk * ots , σ * ), where σ * is obtained from the SigO with input ct * 1 . Once Forge happens when answering query with (ct 1 , pk ots = pk * ots , σ), B 2 outputs (ct 1 , σ). The condition (b) ensure that σ is valid signature and condition (a) ensure that (ct 1 , σ) = (ct * 1 , σ * ). This readily proves the lemma.

Proof of Lemma 4:

In Game 3 , let Coll be the event that A submits a query with ct := (ct 1 , pk ots , σ) to DecO such that pk ots = pk * ots but α = α * . Observe that Game 3 is identical to Game 2 if Coll does not happen. That is we have

We bound Pr[Coll] via the following reduction. On input h, B 3 simulates Game 3 honestly except that we publish h in mpk and pk * ots is created before B 3 answers any queries. This will not change the view of A since pk * ots is independent of (m 0 , m 1 , S 0 , S 1 ). Once Coll happens when answering query with (ct 1 , pk ots , σ), B 3 outputs (pk ots , pk * ots ) as a collision. This readily proves the lemma.

Proof of Lemma 5:

We prove the lemma via the following hybrid argument:

where Game 3.j , for all j ∈ [0, q D ], is the same as Game 3 except that for the first j queries sent to DecO, we introduce condition (d).

Let BadSpan j be the event that the j-th query is rejected in Game 3.j but is replied with m = ⊥ in Game 3.j-1 . We prove the theorem by showing that

Correctness. For any ciphertext ct := ([u ] 1 , c 0 , c1 , . . . , c , [π] 1 ) for set S ⊆ U produced by Enc, we have

where α = h([u ] 1 , c 0 , c1 , . . . , c ). That is the ciphertext always satisfies Equation (1). Given a secret key sk i = k i for i ∈ S, we know that there exists

The correctness of our ANOBE then follows from the following two observations:

1. For each j < i , we know that c j = [r A k j ] 1 • K for some j ∈ S \ {i}, and thus we have

with overwhelming probability. From the key-binding feature of (E, D), the decryption algorithm Dec will return nothing before the i -th iteration. 2. It is easy to see that

By the correctness of (E, D), the decryption algorithm Dec will return m in the i -th iteration.

Security Result and Proof Overview

We prove the following theorem. 

and Time(B 1 ), Time(B 2 ), Time(B 3 ), Time(B 4 ) ≈ Time(A).

We prove the theorem via the following game sequence.

Game 0 . This game is identical to the real game described in Section 2.1. In particular, our simulation is as follows:

Setup. Run Setup(1 λ , n) and send A the master public key

and keep the master secret key msk := {k i } n i=1 as well as X, Y. We also set Q sk := ∅.

Challenge ciphertext.

Receiving (m 0 , m 1 , S 0 , S 1 ) from A where we let S 0 = {i 1,0 , . . . , i ,0 } and

and choose a random permutation τ, and compute

) and reject the query (by returning ⊥) if

Then recover m using k i as Dec and return m. Finalize. Received b from A, return 1 if b = b ; otherwise return 0. We let Win i denote the event that A guesses b correctly in Game i . Since Game 0 perfectly simulates the real game, we have

This game is identical to Game 0 except that we sample u * ← R Z k+1 p when generating the challenge ciphertext ct * . This game is indistinguishable from Game 0 under the D k -MDDH assumption. Formally, we have the following lemma and the proof is analgous to that for Lemma 2.

Lemma 7 (Game 1 ≈ c Game 0 ). There exists an adversary B 1 such that

Game 2 . This game is identical to Game 1 except that DecO, on input (ct, i), returns ⊥ if (a) or (b) or (c) ct 1 = ct * 1 but α = α * . By the collision-resilience of H, this game is indistinguishable from Game 1 . Formally, we have the following lemma and the proof is similar to that for Lemma 4.

Lemma 8 (Game 2 ≈ c Game 1 ). There exists an algorithm B 2 such that

Game 3 . This game is identical to Game 2 except the following substitution:

This game is the same as Game 2 until A sends DecO a query which is rejected by condition (b ) but survives under condition (b). One can see that such a query immediately gives a solution to the D k -KerMDH problem w.r.t [B] 2 . Formally, we have the following lemma.

Lemma 9 (Game 3 ≈ c Game 2 ).

There exists an algorithm B 3 such that

Game 4 . This game is identical to Game 3 except the following substitution

Here " " denotes the OR operation which neglects the second operand if the first one is satisfied. We have the following lemma stating that this game is statistically close to Game 3 .

Lemma 10 (Game

Let q D be the number of decryption queries. The lemma will be proved in q D steps. In the j-th step, assuming that the first j -1 decryption queries have been processed with condition (b ), we demonstrate that the j-th query with u / ∈ span(A) can be rejected by condition (a), (b ), (c) with high probability. This simply follows from Lemma 1 (the core lemma).

To complete the proof of Theorem 2, we show the following lemma.

Lemma 11 (Bounding Pr[Win 4 ]

). There exists an algorithm B 4 such that

To prove the lemma, we consider two cases: (1) when Q sk ∩ (S 0 ∩ S 1 ) = ∅, we can prove that [u * k i ] 1 for i ∈ S b are independently and uniformly distributed over G 1 , which hide both S b and K * . The proof is similar to the proof of Lemma 6. Then the semantic security of (E, D) allows us to hide m b ; (2) when Q sk ∩ (S 0 ∩ S 1 ) = ∅, we can only prove that [u * k i ] 1 for i ∈ S b \ S 1-b are randomly distributed, but it is sufficient for proving the lemma since m 0 = m 1 .

Two Simple Missing Proofs

Proof of Lemma 9: In Game 3 , define BadKer the event that A sends DecO a query which is rejected by condition (b ), but survives under condition (b). It is easy to see that if BadKer does not occur, Game 3 is identical to Game 2 . Namely we have

We bound Pr[BadKer] via the following reduction. On input

and simulates Game 3 honestly using [B] 2 . Once BadKer happens when answering query with ct = (ct 1 = ([u ] 1 , c 0 , c 1 , . . . , c ), [π] 1 ), B 3 computes and outputs

We note that (1) the query has been rejected by condition (b ), we have t = 0; (2) the condition (b) ensures that t ∈ Ker(B). This readily proves the lemma.

Proof of Lemma 10:

We prove the lemma via the following hybrid argument:

where Game 3.j , for all j ∈ [0, q D ], is the same as Game 3 except that for the first j queries sent to DecO, the condition (b ) is replaced by condition (b ). Let BadSpan j be the event that the j-th query is rejected in Game 3.j but survives in Game 3.j-1 . We have that

The event BadSpan j can be restated as follows: the j-th query survives under condition (a), (b ), (c) with u / ∈ span(A). We first claim that α = α * . Then Lemma 1, the core lemma, immediately implies that Pr[BadSpan j ] < 1/p. The observation is we leak no more information than A X, A Y when answering the first j -1 queries to DecO due to the newly introduced condition u / ∈ span(A). Let the j-th query be associated with (ct 1 , π). We justify the claim (α = α * ) as follows. Thanks to condition (c), we only need to show that ct 1 = ct * 1 . We suppose ct 1 = ct * 1 . Observe that, (1) when π = π * , the query will be rejected by condition (b ); (2) when π = π * , the query will be rejected by condition (a). This readily proves the claim and thus complete the proof of the lemma.

Proof for Lemma 11

We will prove Lemma 11 by considering two cases. Let Win 1 4 and Win 2 4 denote that event Win 4 occurs in Case 1 and Case 2, respectively. This notation also applies to all later events. Case 1: Q sk ∩ (S 0 ∩ S 1 ) = ∅. We define the following two auxiliary games.

Game 5 . This game is identical to Game 4 except that we pick

This game is statistically indistinguishable with Game 4 , which follows that fact that all [u * k i ] 1 in ct * 1 is independently and uniformly distributed conditioned on mpk, KeyO and DecO. Formally, we show the following lemma. The proof is quite similar to the proof for Lemma 6 (Case 1).

Lemma 12 (Game

]. Game 6 . This game is identical to Game 5 except that we compute

This game is indistinguishable with Game 5 due to the semantic security of (E, D). Formally, we have the following lemma.

Lemma 13 (Game 6 ≈ c Game 5 ). There exists an algorithm B 4 such that

and Time(B 4 ) ≈ Time(A).

Observe that the challenge ciphertext ct * in Game 6 is independent of b and we have that Pr[Win 1 6 ] = 1/2. This immediately gives the following bound.

We now provide the full proof of Lemma 13 which completes our proof.

Proof of Lemma 13:

We construct B 4 as follows. On input (E, D), B 4 prepares mpk honestly as in Game 5 using the input. Both KeyO and DecO can be simulated honestly.

For the challenge ciphertext, B 4 samples [u * ] 1 and c * 1 , . . . , c * as in Game 5 . Then it picks b ← R {0, 1} and submits (m b , 0) to the environment, the ciphertext returned is set to be c * 0 . Finally, the last component [π * ] 1 is computed as in Game 5 .

Observe that, when c * 0 ← R E K * (m b ) for some random K * , our simulation is identical to Game 5 ; otherwise, when c * 0 ← R E K * (0), our simulation is identical to Game 6 . This readily proves the lemma.

Case 2: Q sk ∩ (S 0 ∩ S 1 ) = ∅. We define the following auxiliary game. This completes the proof of Lemma 11.