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Abstract: In a high dimensional multiple testing framework, we present new confidence
bounds on the false positives contained in subsets S of selected null hypotheses. The coverage
probability holds simultaneously over all subsets S, which means that the obtained confidence
bounds are post hoc. Therefore, S can be chosen arbitrarily, possibly by using the data set
several times. We focus in this paper specifically on the case where the null hypotheses are
spatially structured. Our method is based on recent advances in post hoc inference and
particularly on the general methodology of Blanchard et al. (2017); we build confidence
bounds for some pre-specified forest-structured subsets {Rg,k € K}, called the reference
family, and then we deduce a bound for any subset S by interpolation. The proposed bounds
are shown to improve substantially previous ones when the signal is locally structured. Our
findings are supported both by theoretical results and numerical experiments. Moreover,
we show that our bound can be obtained by a low-complexity algorithm, which makes our
approach completely operational for a practical use. The proposed bounds are implemented
in the open-source R package sansSouci*.

AMS 2000 subject classifications: Primary 62G10; secondary 62H15.
Keywords and phrases: post hoc inference, selective inference, multiple testing, Simes
inequality, Forest structure, DKW inequality.

1. Introduction
1.1. Background

Modern statistical data analysis often involves asking many questions of interest simultaneously,
possibly using the data repeatedly, as long as the user feels that this could provide additional
information. To avoid selection bias due to various forms of data snooping, specific strategies can
be proposed to take into account the procedure as whole, and be investigated as to the statistical
guarantees they provide. This problem is often referred to as selective inference, a long standing
research field, with a recent renewal of interest. An historical reference is the work of Scheffé

*available from https://github.com/pneuvial/sanssouci.

1
imsart-generic ver. 2014/10/16 file: DurandBNR2018.tex date: September 14, 2018


mailto:guillermo.durand@upmc.fr
mailto:gilles.blanchard@math.uni-potsdam.de
mailto:pierre.neuvial@math.univ-toulouse.fr
mailto:etienne.roquain@upmc.fr
https://github.com/pneuvial/sanssouci

/Post hoc false positive control 2

(1953) (see also Scheffé, 1959, p. 69), which is to our knowledge the earliest work proposing
simultaneous selective inference. In the context of linear regression, Berk et al. (2013) proposed
an improvement of this Scheffé protection by defining a less conservative correction term (the so-
called PoSI constant), see also Bachoc et al. (2018); Bachoc et al. (2018) for recent developments
on this issue.

Other strategies perform inference on the observed selection set only, either by a false coverage
rate control (Benjamini and Yekutieli, 2005; Benjamini and Bogomolov, 2014) or by a controlling a
criterion conditional to a specific initial selection step, see the series of works Fithian et al. (2017);
Taylor and Tibshirani (2015); Tibshirani et al. (2016); Choi et al. (2017); Taylor and Tibshirani
(2018). In other studies, the selection step is based on sample splitting, see Cox (1975); Bithlmann
and Mandozzi (2014); Dezeure et al. (2015), which is another way to tackle selective inference by
explicitly avoiding data reuse.

We follow in this paper the aim of establishing confidence bounds on the number of false positives
in a multiple testing framework, simultaneously over all possible set of selected hypotheses. If we
observe a random variable X ~ P, P belonging to some model P, for which m null hypotheses
Hy; C P,i € N, = {1,...,m} are under investigation for P, the aim is to build a function
V(X,):SCN,, = V(X,S) (denoted by V(S) for short) satisfying

VPEeP,  Pxep (vs C Np, |S O Ho(P)| < V(S)) >1—a, (1)

where Ho(P) = {i € N,,, : P satisfies Hp;} is the set of true null hypotheses. The bound V()
will be referred to as a post hoc bound throughout this manuscript.

The problem of constructing post hoc bounds has been first tackled specifically in the case
where the selection sets S are of the form of p-value level sets: {i : p;(X) < t}, ¢t € [0,1], where
each p;(X) is a p-value for the null hypothesis Hy;, 1 < ¢ < m. The resulting bounds are often
referred to as confidence envelopes, see Genovese and Wasserman (2004); Meinshausen (2006).
Later, Genovese and Wasserman (2006) and Goeman and Solari (2011) proposed to extend this
approach to arbitrary subsets S, by using a methodology based on performing 2™ — 1 local tests
(one for each intersection hypothesis), with a possible complexity reduction by using shortcuts.
In particular, the approach of Goeman and Solari (2011) extensively relies on the closed testing
principle, which was introduced by Marcus et al. (1976). This approach has been further extended
in Meijer and Goeman (2015); Meijer et al. (2015) by using the sequential rejection principle
of Goeman and Solari (2010). This allows to incorporate structural informations into the post
hoc bound. In particular, the method in Meijer et al. (2015), whose goal inspired the present
work, deals with geometrically structured null hypotheses, along space or time and shows that
incorporating such an external information can substantially improve the detection of signal and
thus can increase the accuracy of the resulting post hoc bound.

More recently, Blanchard et al. (2017) (BNR below) have proposed a flexible methodology that
adjusts the complexity of the bound by way of a reference family: the post hoc bound is based on
a family R = ((Rk(X),Ck(X))keIC (leCk for short), with R, C N,, (and Ry # Ry if k # k/),
Cr € N, that satisfies the following joint error rate (JER) control:

VP e P, Py.p (Vk € K, |Ry N Ho(P)| < gk) >1—a, 2)

An important difference between (1) and (2) is that S in (1) is let arbitrary and typically chosen
by the user, whereas Ry, (j in (2) is part of the methodology and is chosen by the statistician to
make (2) hold. Once the reference family is fixed, a post hoc bound is obtained from (2) simply
by interpolation, by exploiting the constraints that the event in (2) imposes to the unknown set
Ho(P), namely that it is a subset A with the property "Vk € K, |Rx N A| < (i”:

Vai(S) = max { |SNA|,ACN,,,Vk € K, |[Rp N A| < ()}, SCN,y,. (3)

Hence, if (2) holds, then V' = Vi satisfies (1). This post-hoc bound will be referred to as the
optimal bound (relative to a given reference family).
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1.2. Contributions of the paper

In this paper, we propose new post hoc bounds that incorporate the specific spatial structure
of the null hypotheses. While this aim is similar in spirit to Meijer et al. (2015), our method
is markedly different, as it relies on the general strategy laid down by BNR, with a specifically
structured reference family Ry, k € K (see Section 6.1 for a comparison between our approach and
the one of Meijer et al., 2015). In addition, the way the method is built here is different than the
one proposed in Section 3-6 of BNR: the main focus in BNR is the case of (random) reference sets
Ry, = Ry (X) that are designed in order to satisfy (2) with (, = k — 1 (thus corresponding to a
“joint k-family-wise error rate”). By contrast, in the present work the reference sets Ry are fixed
in advance, and the (random) bounds on the number false positives (, = (x(X) are designed to
satisfy the constraint (2). The rationale behind this approach is that the reference sets Ry can
be chosen arbitrarily by the statistician, so that it can accommodate any pre-specified structure
(reflecting some prior knowledge on the considered problem). Since we are interested in structured
signal, we focus on a reference family enjoying a forest structure, meaning that two reference sets
are either disjoint or nested.

The second ingredient of our method is the local bounds (x(X), that should estimate |Ry N
Ho(P)| with a suitable deviation term. While any deviation inequality can be used, we have
chosen to focus on the DKW inequality (Dvoretzky et al., 1956), that has the advantage to be
sub-Gaussian. Hence, the uniformity over the range k € I can be obtained by a simple union
bound without being too conservative.

Let us mention that using the DKW inequality to obtain a confidence bound for the proportion
of null hypotheses is not new, see Genovese and Wasserman (2004) (Equation (16) therein), Mein-
shausen (2006), and Farcomeni and Pacillo (2011). While our bound is a uniform improvement
of the existing version (see Remark 4.3 below for more details), our main innovation is to use
the DKW bound in a local manner and to appropriately combine these local bounds to derive
an overall post hoc bound. The improvement can be substantial, as illustrated in our numerical
experiments.

The paper is organized as follows: precise setup and notation are introduced in Section 2. For
any reference family with a forest structure, the optimal post hoc bound is computed in Section 3.
The calibration of the local bounds (i and of the overall reference family is done in Section 4. This
section also includes a theoretical comparison with previous methods, which quantifies formally the
amplitude of the improvement induced by the new method. The latter is supported by numerical
experiments in Section 5, where a hybrid approach is also introduced to mimic the best between the
new approach and the existing Simes bound (the latter being defined in (7) below). A discussion
is given in Section 6 and the proofs are provided in Section 7. Additional technical details are
postponed to Appendices A and B.

2. Preliminaries
2.1. Assumptions

We focus on the common situation where a test statistic T;(X) is available for each null hypothesis
Hy ;. For i € N,,, each statistic T;(X) is transformed into a p-value p;(X), satisfying the following
assumptions:

Vi€ Ho, VE€1[0,1], P(ps(X) <t) <t (Superunif)
{pi(X) }ien, is a family of independent p-values and is independent of {p;(X)}ien,. (Indep)

Extending our results to the case where (Indep) fails is possible, see the discussion in Section 6.

2.2. Classical post hoc bounds

As argued in BNR, computing the optimal post hoc bound (3) relative to a given reference family
(R, Ck)kex can be NP-hard, and simpler, more conservative versions can be provided, that is,
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/Post hoc false positive control 4
bounds V' such that for all S C N,,, V5i(R) < V(R). A simple upper-bound for Vi} is given by
Var(S) = S| Amin G +[S\ Rel}, S C N (4)
It is straightforward to check that
Va(S) < Va(S), SCN,,. (5)

While this inequality is strict in general, BNR established that it is an equality if the reference
family is nested, that is,

K={1,...,K} and R, C R1 for 1 <k < K — 1. (Nested)

Condition (Nested) is mild when the sequence (j is nondecreasing, e.g., {x = k — 1.

A consequence of (5) is that Vg is a post hoc bound in the sense of (1) as soon as the reference
family R is such that (2) holds. A simple union bound under (Superunif) yields that (2) holds
with R = {(R1,(1)}, R ={i € N,,, : p; < a/m}, (1 = 0. This leads to the Bonferroni post hoc
bound

Vaont(S) = Z]l {pi(X) >a/m}, S CN,. (6)
i€s

The more subtle Simes inequality (Simes, 1986), valid under (Superunif)—(Indep), ensures that (2)
holds with R = {(Rk,Ck),1 <k <m}, Ry = {i € Ny, : p; < ak/m}, ¢, = k — 1. This leads to
the Simes post hoc bound

Viimes(S) = min {Zn {pi(X) > ak/m} +k — 1} ., SCN,,. (7)
€S

1<k<m

As noted in BNR, this bound is identical to post hoc bound of Goeman and Solari (2011), which
will be used as a benchmark in this paper.

2.3. Improved interpolation bound

When the sequence (, is not nondecreasing, inequality (5) can be far too conservative. We introduce
the following extension: for a reference family R = (Ry(X), Cx(X))kex of cardinal K = |K]|,

VZ(S)= min (ch/\|SﬁRk+‘S\ U R«

QCK,|Q|<q eo keQ

Vor(S) = VK (S), S C N, . (9)

>, 1<q<K, SCNpy; (8)

Obviously, we have ‘791% =Vx and 179?.‘ is non-increasing in q. The following result shows that these
bounds are all conservative versions of Vi.

Lemma 2.1. For any reference family R, we have
Vi (S) < Vi (S) < VA(S) < Vw(S), 1<¢< K, SCN,,. (10)

In particular, if R is such that (2) holds, then Vix is a post hoc bound in the sense of (1).

Lemma 2.1 is proved in Section 7.1. The inequality Vi (S) < Vor(S) in (10) is strict in general,
see Example 2.2. As we will show in the next section, this relation is nevertheless an equality when
R has a specific forest structure, which makes Viz a particularly interesting bound.

Ezample 2.2. Let m =4, K =3, Ry = {1,2,4}, Ry = {2,3,4}, R3 = {1, 3,4}. Consider the event
where (1(X) = (2(X) = (3(X) = 1. For S = Ny, we easily check that Vi{(S) =1 and Vir(S) = 2.
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3. Post hoc bound for forest structured reference family
3.1. Forest structure

Definition 3.1. A reference family R = (R, (x)rex is said to have a forest structure if following
property is satisfied:
Vi, k' € K, RN Ry € {Rk, Ry, @}, (FOI“eSt)

that is, two elements of { Ry }rex are either disjoint or nested.

The forest structure is general enough to cover a wide range of different situations, as for

instance the disjoint case
ViK' e K, k#k = R, N Ry = 2. (Disjoint)

and the nested case (Nested). In general, if each Ry, is considered as a node and if an oriented edge
Ry < Ry is depicted between two different sets Ry and Ry if and only if Ry C Ry and there is
no Ry such that Ry C Ri» © Ry; the obtained graph correspond to a (directed) forest in the
classical graph theory sense, see e.g. Kolaczyk (2009). An illustration is given in Figure 1. The
positions of the nodes in this picture rely on the depth of SR, which can be defined as the function

K — N*

For instance, under (Disjoint), ¢(k) = 1 for all k¥ € K, while under (Nested), ¢(k) = K +1 — k for
all 1<k <K.

Ezample 3.2. Let m = 25, Ry = {1,...,20}, Ry = {1,2}, Ry = {3,...,10}, Ry = {11,...,20},
Rs = {5,...,10}, Rg = {11,...,16}, Ry = {17,...,20}, Rs = {21,22}, Ry = {22}. Then the
corresponding reference family /R = (Ry, (i )1<k<o satisfies (Forest). The sets Ry, Rg are of depth 1;
the sets Ry, R3, R4, Rg are of depth 2; the sets R5, Rg, R7 are of depth 3.

Fic 1. Graph corresponding to the reference family given in Example 3.2.

A useful characterization of a forest-structure reference family is given in the next lemma.

Lemma 3.3. For any reference family R = (R, (k) ek having the structure (Forest), there exists
a partition (Pp)1<n<n 0f Ny such that for each k € IC, there exists some (i,7) with1 <i<j <N
and Ry = P;.;, where we denote

Piyy= |J P, 1<i<j<N. (12)

i<n<j

Conversely, for some partition (Pp)1<n<n 0f Ny, consider any reference family of the form R =
(Pijs Cij)iyec with C C {(i,5) € N& : i < j} such that for (i,5), (i, ") € C, we have

[i,51 N[, ' = @; or [i, 5] C [¢,4']; or [¢,4'] C [4,4] ,

where [i, j] denotes the set of all integers between i and j. Then R has the structure (Forest).
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For the ease of notation, the set C will be identified to K throughout the paper, which leads to
the following slight abuse: denoting indifferently k € K or (i,5) € K, and

R = (Ri,Cu)rex or R = (Ppj, i) ek (13)

We call “atoms” the elements of the underlying partition (P,)1<n<n because they have the
thinnest granularity in the structure and because any subset Ry, of the family can be expressed as
a combination of these atoms. Note however that this partition is not unique. A simple algorithm
to compute (P,), and the proof of Lemma 3.3 are provided in Appendix B. An example of such
a partition is given in Example 3.4 and Figure 2.

Ezample 3.4. For the reference family given in Example 3.2, a partition as in Lemma 3.3 is given by
Py =Ry, Py = R3\ Rs, P3 = R5, Py = Re, P5 = Ry, P = Rs \ Ry, Pr = Ry, Py = Ny, \ {R1 URs}.

-
7 Y
@ @ L
N ‘/
AR
 Pg )
«

1

1
1
4
’ Y
|P2‘
. ’

FI1G 2. Graph corresponding to the reference family given by Ezample 3.2, with the associated partition (atoms)
{Pn,1 < n < N}, displayed by light gray nodes and given in Example 3.4. The nodes that correspond to atoms
that are not in the reference family are depicted with a dashed circle.

An important particular case in our analysis is the case where the forest structure includes all

atoms, that is
Vne{l,...,N}, P, € {Ry,k € K}. (All-atoms)

When (All-atoms) does not hold (as in Example 3.4), we can impose this condition by adding
them to the structure, building in this way the completed reference family:

Definition 3.5. Consider any reference family R = (P;.5, (;,j)i,5)ex satisfying (Forest) and asso-
ciated to atoms (P,)1<n<n by (13). Let KT = {(i,4),1 < i < N : (i,4) € K}, Civi = |Pii| = | P
for all (i,4) € KT, and K® = K UK™T. Then the completed version of R is given by R® =
(Pi:js Gij)injyexe -

For the reference family 9 given by Example 3.2, the completed version R® is depicted in
Figure 3.

3.2. Deriving the optimal post hoc bound

The next result shows that the expression of the optimal post hoc bound Vg can be simplified
when R satisfies (Forest).

Theorem 3.6. Let R be a reference family having the structure (Forest). Then the optimal bound
Vg (3) can be derived from the bounds Vgi (8) and Vir (9) in the following way:

VD;(S) :‘79%(5)3 S C Np; (14)
Vi (8) = Vai(S), §C N, (15)
where d is the maximum number of disjoint sets that can be found in the reference family, that is,

d=max{|Q,Q C K :Vk,k' € Q, k#k = Ry N Ry = &}.
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/?\

FIG 3. Graph corresponding to the completed version R® of the reference family R given by Example 3.2 with the
atoms given in Example 3.4.

A byproduct of Theorem 3.6 is that, if (Nested) holds, Vi = ‘79}{(5) = Vg and we recover
Proposition 2.5 of BNR. Another interesting case is the structure (Disjoint), where Vix has a
simpler form. This is summarized in the following result.

Corollary 3.7. Let R be a reference family.

(i) if R satisfies (Nested), then Vg = V.
(i1) if R satisfies (Disjoint), then V3 (S) = Zle C NS N R+ IS \ Uszl Ry

Theorem 3.6 and Corollary 3.7 are respectively proved in Section 7.2 and Section 7.3.

The proof of Theorem 3.6 being constructive, it provides an algorithm to compute easily Vi (S),
that we now describe. Let us first introduce an additional piece of notation. For some reference
family 3 = (Pi.;, (i) i.5)ex of depth function ¢ (see (11)), we denote

K" = {(i,j) € K: ¢(i,j) = hor (i = j and ¢(i,i) < h)}, h>1.

Hence, each K" contains the indexes of the sets of depth A and also the atoms with an inferior
depth. Figure 4 displays some K" for the reference family of Example 3.2.

ICq ICo IC3

FIG 4. Display of the nodes corresponding to K*, K2, K3 (in orange) for the reference family given in Example 3.2.

, S CNyp,.

Algorithm 1 below gives the steps to compute Vi (S): first, complete the family 8 by adding all
the members of the partition, as explained in Definition 3.5, in order to get R®. By Lemma A.4, we
have Vg () = Vi (S), so that this operation does not change the targeted quantity. In particular,
(All-atoms) holds after this step. Second, the algorithm uses a reverse loop, which successively
updates a vector V whose components correspond to active nodes; the current value of the bound is
equal to the sum of the components of V. Each step of the loop will update the value of V' to make
the bound possibly smaller, to obtain at the end V;(S). The time complexity of the Algorithm 1
for a given S is O(Hm), where H = maxyeci ¢(k) is the maximal depth of the reference family.
where ¢ is the depth function defined by (11).
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Let us describe the loop in more detail by using the particular situation of Figure 5. Initial-
ization: H = 3 and K = K2, which corresponds to the active nodes in the rightmost graph.
Hence, V is equal to the vector of values (i A |S N Ry| among these nodes. First step: h = 2
hence K" = K2, for which the active nodes are displayed in the middle graph. Each of these nodes
k € K2, gives a bound (;, A |S N Ry| that should be compared with the one of the previous step,
that is, Y, Suce, Vi where Succy denotes the offspring of Ry. The vector V' is defined by the
best choice among these two. Second (and final) step: h = 1 hence K" = K! (leftmost graph)
which only contains the roots of the forest and where V is updated following the same process.
The algorithm then returns Vi (S) = > cic1 Va-

Algorithm 1: Computation of Vi (S)
Data: R = (Pi:jaci,j)(i,j)e)C and S C Nm
Result: Vi (S).
R +— RO, K +— KP (completion, see Definition 3.5);
H <— maxgex ¢(k), see (11);
Vi— (G NS N Ril) s
for he {H—-1,...,1} do

newV <— (0),cxcn;

for k € K" do

Succy, +— {k' € KM Ry C R };

8 newVj, <— min (Ck A S N Ry, Zk/GSucck Vk/);
9 end
10 V +— newV;
11 end
12 return Zke)cl V.

N 0 oA W N F

L NN
&8

Fic 5. Same as Figure j but for the completed version.

4. Local calibration of the reference family

In this section, we explain how to build a reference family R such that (2) holds. The results
presented in this section hold for any deterministic (Rj); and the calibration concerns only ((x)k
here.

4.1. Calibration of (;, by DKW inequality

In this section, we estimate |S N Ho| by using an approach close in spirit to the so-called Storey
estimator (Storey, 2002). The latter depends on a parameter, denoted by ¢ here, that has to be
chosen appropriately (see Blanchard and Roquain, 2009 for a discussion on this issue). To avoid
this caveat while improving accuracy, we can derive an estimator uniform on ¢ by using the DKW
inequality (Dvoretzky et al., 1956), with the optimal constant of Massart (1990).
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For any deterministic subsets Ry C N,,,, k € K, K = |K|, let

_ e | Tiew, M) > 3\
Ge(X) = [Bi| A min, {2(1 " <4(1 2t 1 ¢ > , kek, (16)

where C' = %log (%) and |z| denotes the largest integer smaller than or equal to x.

Proposition 4.1. Consider any deterministic (different) subsets R, C N,,, k € K (K = |K|)
and assume o/ K < 1/2. Assume that for all k € K, the p-value family {p;(X), i € Ry} sat-
isfies (Superunif) and (Indep). Then the JER control (2) holds for the reference family R =
(R, Cu(X))kex, for which the local bounds i, are given by (16).

Combining Proposition 4.1 with Lemma 2.1, we obtain that, under the assumptions of Propo-
sition 4.1, the bound

Viww = Vox given by (9) with R = (R, (1 (X))eex and Cx(X) given by (16), (17)

satisfies (1) and thus is a valid post hoc bound.

Proposition 4.1 is proved in Section 7.4. Note that ((X) > [log(K/a)/2| > 1 as soon as
a < e 2K. Hence, this contrasts with previous approaches (Blanchard et al., 2017; Goeman and
Solari, 2011), for which ¢, = 0 was included in the reference family. This means that using this
reference family induces a minimum cost. In the next section, we will see that this cost is generally

compensated by the accuracy of the joint estimation of |Ry N Hol|, k € K.
Remark 4.2. In practice, (x(X) in (16) can be computed as

2
C +( C? L o5t >1/2
2(1 = p) 41-pep)?* 1-pu

where s = |Ri| and 0 = poy < py < -+ < ps) are the ordered p-values of {p;(X),i € Ry}.

Ce(X) = s A Jnin

Remark 4.3. With our notation, the previous (1—a)-confidence bound of Genovese and Wasserman
(2004) (Equation (16) therein) corresponds to take

Sier, Upi(X) >t} + [Ri|V/2C J

1-1¢

GW (x R .
=
K (X)) = [Ri[ A tem[ég) \‘

By using (33) in Lemma A.1 witha=1—-1t,b=C,c=3 ", p 1{pi(X) > t}, and d = |Ry|, we
can see that the quantity (&' (X) is always larger than the (x(X) given by (16). Hence our result
is a uniform improvement of Genovese and Wasserman (2004).

Remark 4.4. The local bounds ¢ in (16) depend on the target level « only through C, where
202 = log(K/a). Therefore, the post hoc bounds derived from Proposition 4.1 are expected to
depend only weakly on «.. This important point is illustrated in our numerical experiments (Section
5), where this property is used to propose a hybrid post hoc bound taking the best of both the
Simes and the DKW-based bounds.

4.2. Comparison to existing post hoc bounds

To explore the benefit of the new reference family when the signal is localized, let us consider a
stylized model where the signal is localized according to a regular partition

Rp,={1+(k—-1)s,...,ks}, 1<k<K, (18)

composed of K regions of equal size s. In particular, this reference family satisfies (Disjoint).
Among the regions Ry, only Ry contains false nulls, and r € (0,1) denotes the proportion of signal
in Ry, that is

r=|Ry NHil/|Ry. (19)
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The remaining regions contain no signal, that is |Ry N H;| =0, for k& > 2.

In addition, we consider an independent Gaussian one-sided setting where the false nulls have
mean p > 0, that is, we assume that X; ~ N (0,1) if s € Hg and X; ~ N (u,1) if i € H;, and the
p-values are derived as p;(X) = ®(X;), i € N,,, where ® denotes the upper-tail of the standard
normal distribution.

Proposition 4.5. Let us consider the post hoc bounds Vi, (6); Vime (7) and the new post hoc
bound Vyiw given by (17) and associated to the reference regions Ry, defined above. In the setting
defined above, we have

E(Vor(R1)) 2B+ 2 (14 ©

s (1 m s 7 (0 7)) -
W > (1= 1)1 —as/m)+ 18— ' (as/m)); (21)
W — (A=) —a/m)+rB(—B (a/m)). (22)

This proposition is proved in Section 7.5. In particular, combining (20) and (21) yields
D 4C C
BV () _ 1AL+ 2 B0 + 35 (14 )
E(Vainer(F1)) ™ (1= 1)1~ as/m) +r B(u—F ' (as/m))

This ratio is displayed in Figure 6 for a choice of model parameters. The new bound can substan-
tially improve the Simes bound over a wide range of effect sizes.

(23)

1.2

0.8

3
o

FI1G 6. Y -azis: upper bound of the ratio between the new bound and the Simes bound, see (23). X -axis: effect size
w.m=107, s=m?/3, K=m/s, r =3/5, a =0.1.
This improvement can also be put forward by an asymptotic approach.

Corollary 4.6. Let us consider the framework of Proposition 4.5. In the asymptotic setting in m
where s tends to infinity with s > log K and p tends to infinity with p — 671(0¢/m) — —00, we

have
limsup{E(VMW(Rl))}gl—r, and limsup{E(VBO”’(RI))}:l.
m | Ry m | R

If moreover s < m (i.e., K — o0) and 76_1(as/m) — —00, we have

limsup{]E(VDGg(Rl))}gl—r, and limsup{W}zl.
m 1 m 1

In particular, this corollary establishes that the order of the new bound can improve the Simes
bound by a factor 1 — r.

imsart-generic ver. 2014/10/16 file: DurandBNR2018.tex date: September 14, 2018



/Post hoc false positive control 11
5. Numerical experiments
5.1. Setting

In this section we perform numerical experiments to compare our new post hoc bound Vpyw (17)
with Simes post hoc bound (7). Let ¢ be some fixed integer, say larger than 1. We consider two
versions of our new bound:

e The first version of our post hoc bound, denoted Vpay, is defined by (17) in which the
reference family 3P is the regular partition of N,, given by (18) for KPa'* = 29 (s = m /29
being assumed to be an integer).

e The second version of our post hoc bound, denoted V;yee, is defined similarly by (17), but
the reference family $R'"®® is given this time by the perfect binary tree whose leaves are the
elements of JRP#*. Hence, by using the notation of Lemma 3.3, this means P, = {1 + (k —
1)s,...,ks}, 1 <k <29 The cardinal of the reference family is thus K¢ = 291 — 1.

The true/false null hypothesis configuration is as follows: the false null hypotheses are contained
in Py for 1 < k < K, for some fixed value of K;. The quantity r is defined similarly as in (19), as
the fraction of false null hypotheses in those Py, and is set to r € {0.5,0.75,0.9, 1}. All of the other
partition pieces only contain true null hypotheses. Finally, the true null p-values are distributed
as i.i.d. V(0,1), and false null p-values are distributed as i.i.d. A (zz, 1), where j is a fixed value
in {2,3,4}. This construction is illustrated in Figure 7 for ¢ = 3 (leading to KP¥* = 8 and
K'r® = 15) and K; = 2. In our experiments, we have chosen ¢ = 7 and s = 100 (corresponding
to KP2'* =128 and K™ = 255 and m = 12800), and K; = 8.

Tree

Partition

Fic 7. Partition and perfect binary tree structures used in simulations, here with ¢ = 3 and K1 = 2 (KP?™* =8
and K'®® = 15). The pink nodes are those containing some signal.

We also performed numerical experiments with s € {10,20,50} and K; € {1,4,16}, and with
Poisson- and Gaussian-distributed fi. Because the results are qualitatively similar, we only report
the above-described setting.

5.2. Comparing confidence envelopes

One possible way to evaluate the performance of post hoc bounds is to consider the associated
confidence envelopes on the number of true discoveries among the most significant hypotheses.
Formally, for k = 1,...,m, we let Sy = {i1,...,i,}, where i; is the index of the j*® smallest
p-value. Note that focusing on such sets is a priori favorable to the Simes bound, for which the
reference family are among the Si. In Figure 8, each panel corresponds to a particular choice of
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/Post hoc false positive control 12

the model parameters d (in rows) and i (in columns). Each panel compares the actual number of
true positives (k — [Ho N Sk|), & = 1,...,m (labelled “Oracle”) to post hoc bounds of the form
(k—=V(Sk)), k=1,...,m, where V is Vsimes, Vpart, O Viree. In this figure, the confidence level is
set to 1 — a = 95%.

method
_ — Oracle
g — part

— Simes

— tree

200 400 600 800 0 200 400 600 800 0
Hypotheses sorted by p.value

=l
1l
N
=I
1l
w

600 -

N

o

o
'

J

N
o
o

SL0=

o
'

95% lower confidence envelope on the number of true positives
N B
o 8 8

@

o

o
'

6

@

o

o
'

N

o

o
'

n

=]

o
'

o-

Fic 8. 95% lower confidence envelopes on the number of true positives obtained from Simes inequality and from
the proposed methods are compared to the actual (Oracle) number of true positives.

The chosen model parameters span a wide range of situations between very low and very high
signal. For very low signal (i = 2,7 = 0.75, top-left panel), all the bounds are trivial, i.e. provide
V(Sk) close to |Sk| (= k). As expected, all the bounds get sharper as the signal to noise ratio
increases, that is, as i or r increase, and for very high signal (i = 4,7 = 1, bottom-right panel), all
the bounds are very close to the actual number of true positives. The tree-based bound dominates
the partition-based bound, which is expected because in this particular experiment, the regions Py
containing signal are adjacent (see Figure 7), and the multiscale nature of the tree-based bound
allows it to take advantage of large-scale clusters. When the signal regions are not adjacent, these
two bounds are very close (additional numerical experiments not shown). Our proposed bounds
are more sensitive to the proportion of signal in each active region, while the Simes bound is more
sensitive to the strength of the signal in those regions. As a result, none of the Simes and the
“tree” bound is uniformly better than the other one. The Simes bound is typically sharper than
the “tree” bound for small values of k, but becomes more conservative for larger values of k. This
is expected, because the “tree” bound is based on estimating the proportion of non-null items,
while the Simes bound is based on pinpointing non-null items.

5.3. Hybrid approach

An interesting question raised in Section 4.1 (Remark 4.4) is how these bounds are influenced by
the target confidence level, which is fixed to 1 — a = 95% in Figure 8. In Figure 9 we compare
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/Post hoc false positive control 13

the bounds obtained across values of « (corresponding to different line types) for i € {3,4} and
r € {0.75,0.9}. The influence of « on the Simes bound is quite substantial. This is consistent
with the shape of the bound (7), the p-values are directly compared to . The influence of a on
the bounds derived from (16) is much weaker, as expected from Remark 4.4. In particular, the
envelopes derived from the “tree” method are very close to each other when « varies from 0.001 to
0.05. These striking differences suggest to introduce hybrid confidence envelopes that could take

600 -

IN

o

=]
'

method
200-

— ftree

— part

— Simes

— Oracle

— 1le-04

-+ 0.001

4007 --- 0.05

Lower confidence envelope on the number of true positives
S
o
:

0 200 400 600 800 0 200 400 600 800
Hypotheses sorted by p.value

Fic 9. Influence of the target level parameter v on upper confidence envelopes on the number of true positives.

advantage of the superiority of the Simes bound on sets Sy for small k& with that of the DKW-
tree-based bound on sets Sy for larger k. For a fixed v € [0, 1], let us define the bound V,},..q as
follows. For S C N,,,

‘/h’Z/brid(a7 S) = min (VSimcs((l - ’7)0‘7 S)v VtreE(’Yaa S)) )

where the notation in the bounds explicitly acknowledges the dependence of the bounds in the
target level a. By an union bound, V;},...(c, ") is a (1 — «)-level post hoc bound. Figure 10 gives
an illustration with a = 0.05 and v = 0.02. In this case, the hybrid envelope is the minimum of
the Simes envelope at level (1 — v)a = 0.049 and the DKW-tree-based envelope at level 0.001.
Because (1 — )« is very close to a, the confidence envelope V,2,02 is essentially equivalent to the
Simes-based confidence envelope for small k; for larger values of k, V2,92 is only slightly worse
than the DKW-tree-based confidence envelope at level ya = 0.001.

6. Discussion
6.1. Comparison to Meijer et al. (2015)

Since our aim is similar to the one of Meijer et al. (2015) (denoted MKG below for short), let us
make a short qualitative comparison between MKG and our study. First, while both approaches
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600 -

N
o
o

S.°0

N
o
o

method

— Oracle
— Simes
— tree

hybrid

o

@
o
o

— 0.05
-+ 0.001

N
o
o

Lower confidence envelope on the number of true positives
60=1

N
o
o

0 200 400 600 800 0 200 400 600 800
Hypotheses sorted by p.value

Fic 10. Combining Simes and tree-based confidence envelopes on the number of true positives into a hybrid confi-
dence envelope.

are based on graph-structured subsets { Ry, k € K}, the geometrical shapes of the nodes Ry are
different: the nodes in MKG correspond to all possible consecutive intervals, possibly overlapping,
while our regions are based on partitioned regions at different resolutions. Our approach avoids
redundancies of the tests but is suitable when the signal is structured according to the pre-specified
partition structure, and may lead to a less accurate bound otherwise. This in turn impacts the
way the local pieces of information are combined. The MKG approach uses a sequential, top-down
algorithm, with an a-recycling method (that allows, for instance, to spend the same nominal level
a both for a parent and its child). By contrast, our approach uses a bottom-up algorithm, with
an overall nominal level adjusted by a simple overall union bound, which is generally conservative
but seems fair here as the nodes are disjoint (at each resolution).

Second, the criteria used are different: MKG focus on simultaneous FWER control of local tests
of intersections of null hypotheses N;ecr, Ho,i, £ € K, while our statistical criterion ensures with
high probability |Ho N Rk| < (g, for all k € K, for some bounds (i. As already noted in BNR
(see the supplementary file therein), the two approaches coincide when (, = |Rx| — 1, because
|Ho N Ri| > |Ri| — 1 is equivalent to the fact that N;jer, Ho; is true. Hence, a family {Ry, k € K}
violating |Ho N Ry| > |Rk| — 1 for some k will also wrongly reject N;er, Ho,; for some k. However,
when using another type of (i, such as the DKWM device used here, such a connection is not
valid anymore and the two criteria does not incorporate the local structure of the nodes in the
same way. Here, using (s based on classical estimators will in principle lead to better post hoc
bounds.

Third, within each node, the local statistics used are not of the same nature: in MKG, the
local tests are based on a multivariate x2-type test, see Goeman et al. (2004). Here, we use an
estimator relying on individual p-values that exploits the independence structure. This means that
the assumptions made in MKG are much weaker, since it is valid under arbitrary dependence. Our
approach can in principle also accommodate such a distributional setting, but this needs additional
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investigations, see the discussion in Section 6.2.

Finally, let us mention a setting for which the two methods can be fairly compared. First take the
MKG method with Bonferroni local tests. As proved in MKG, the resulting FWER controlling
procedure (reject the Hy,; for which V({i}) = 0) then reduces to the Holm procedure Holm
(1979). By contrast, if we consider ( equals to the number of accepted null hypotheses by the
Holm procedure restricted to Ry, (satisfying (Disjoint)), our methodology induces another overall
FWER controlling procedure: simply the one rejecting all the null hypotheses rejected by the local
Holm procedures. Both FWER, controlling procedures are valid under arbitrary independence.
Interestingly, if the signal is sparse but localized in one of the pre-specified Ry, the new procedure
will dominate the Holm procedure (this is supported by a numerical experiment and a theoretical
study, not reported here for short). This illustrates, once again, that our methodology can improve
the state of the art, even in a very elementary framework.

6.2. Extension to general local confidence bounds

In this work, the local bounds (; have been designed by using the DKW inequality. This can be
straightforwardly extended to the case where the bound (16) is replaced by (i (X) = Li(a/K),
for which the function Lg(-) is a local bound satisfying the condition

YAe (0,1), VkeK, VPeP, ]P’XNP(|Rk. NHo(P)| < Lk(A)) <A (24)

The properties of the final post hoc bound will obviously depend on the choice of L. For instance,
the validity of our post hoc bounds relies on (Indep), which is a strong assumption. The latter is
only used to make the DKW inequality valid. If this assumption is violated, we should use another
local bound Ly, that satisfies condition (24) under the specific dependence setting of the data.
For instance, when the dependence is known or satisfies a randomization hypothesis (see Hemerik
and Goeman, 2018), such a local bound can be easily constructed by applying the A-calibration
methodology of BNR (e.g., the one corresponding to the balanced template therein). However, the
computational complexity of the final post hoc bound will substantially increase, which will make
such an approach difficult to use in practice. Solving this problem seems challenging and is left
for future work.

7. Proofs
7.1. Proof of Lemma 2.1

The second and third inequalities in (10) are straightforward from the fact that ‘79% is non-

increasing in g and ‘79% = V. For the first inequality, let S C N,,, and consider A C N,,, such that
Vk € K, |Rr N A| < (. For any Q C K, we get

ISNA|< Z|SmAmRk|+‘SmAm<U Rk>

keQ keQ
< ZCk/\|SﬂRk|+’5\ U Bl
keQ keQ
which implies the result.
7.2. Proof of Theorem 3.6
In this proof, we fix S C N,,. Also, we let
AR)={ACN,,:Vke K, |[R,NA| <}, (25)
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so that Vi (S) = max e g(m) |S N Al. Also note that (8)—(9) can be rewritten as

) | (26)

First, by Lemma A .4, it is sufficient to prove (14) for R®. Hence, we can focus without generality
on the case where (All-atoms) holds. Recall that this means that (i,7) € K for all 1 <4 < N. Now,
to prove that Vey(S) = V5i(S), it suffices to build A C S such that A € A(R) and |A| = Vor (9).
The key point is that for any h, A is the disjoint union of the A N Ry, k € K", because the Ry,
k € K", form a partition of N,,, (by Lemma A.2). Let H = maxycx ¢(k) be the greater depth of
the Forest structure, we will construct A with a decreasing recursion over h € {1,..., H}. To this
end, we need some additional notation: first, for any k € K, let Ky, = {k' € K : Ry C Ry} be the
set of indexes of elements that are subsets of Ry. Then, for any h, let K=" = Un<wi<m K" . Note
that 2! = K. Finally let

S\URk

Vor(S) :;c'gzlc (Z Ce NS N Ry | +
keK!

ke’

7.2.1. Proof of (14)

P" = {P c K=" : the Ry, k € P, form a partition of N,,},

and note that the result of Lemma A.3 (that is, equation (34)) can be rewritten in

Vor(S) = mi A LS N Ryl 27
%= (S) ;g%lll;fk | k| (27)

The decreasing recursion starts like this: noting that X is the set of all the (i,)’s, 1 <i < N,
we define A¥ by choosing (arbitrarily) Ci,iN\|SNP;.;| distinct elements of SNP;.; foreach 1 <4 < N.
Note that we have both

Vi e K22, AT N Ry| < G,

and
|AH| = Z Ce NS N Rg| = HliIlH Z Ck NS N Ry,
keKH i keP
since P = {ICH}.
Now let h be given and assume we have constructed an A"*! S such that both

Vk € K2 1AM N Ry | < ¢,
and

h+1| _ :
|ARHL| = ngﬂ%@ A|S N Ry

= > G AISN R (28)

kephti

for a given P"*! € P+ Using that A" = 3, pnia [A" N Ry| and that [A"T! N Ry
Ce A 1S N Ry| for all k € P we deduce that |[A" ™1 N Ry| = ¢ A |S N Ry for all k € PhHL.

Now we want to construct A" by defining all the A" N Ry, k € K". By writing that Rj, =
Uk/ephﬂmm Ry, the union being disjoint, we have first that, for all k € K",

IN

|Ah+1 ﬂRk| — Z ‘Ah+1 ﬂRk/|
k' ePhINKy

Z G A SN Ry

k' €PhHINK,
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Second, we have that:

min ZC}C/\‘SQRH: min ( Z Ck//\|SﬂRk/> (29)
PEP 1 oh rern TR \wépnk,
= Z min <(kA|SﬂRk|,Pglqgi£}+l ( Z Ck//\|San/|>> (30)
keKh k'€PNKy
= Z min <Ck/\|SﬂRk|, Z Ck//\SﬂRM) (31)
keKn k'ePh+t1INKy
= Y min (G A SN R, [A"T N Ry) .
kekh

In the above, (29) holds by additivity and because for every P € ", any element of P is also an
element of one of the PNKy, k € K". Moreover, for every P € " and k € K", PNK}, is either {k},
either a set of elements of depth > h + 1, hence (30). Finally, (31) holds because all the minima
in (30) are realized in P"*!, otherwise the minimality of P"*! in (28) would be contradicted.

We finally construct all the A" N Ry, k € K", in the following way: if | A" TN Ry| < ¢ A|SN Ry,
we let A" N Ry, = A" N Ry, else we let A" N Ry, be a subset of (;, A |S N Ry| distinct elements of
AP+l R, This both ensures that

| A" = min Y G A SN Ry,
PeRt [P

and that
Vi e K=", |APM 0 Ry| < ¢,

because K=" = KM U 2P+ and AP ¢ AP, which ends the recursion. N
Now letting A = A, we have found an A C S such that A € A (R) and |A| = Vixr(S) (by (27)).

7.2.2. Proof of (15)
By (14) and Lemmas A.3 and A.4, we have

Vi(S) = Voo (S) = Vara (S) = > G A IS N Ry,
ke

for some K C K% such that the Ry, k € K, form a partition of N,,. Hence,

VA(S) = D GAISORE+ > GeAISN Ry

kekKnic kER\K
= > GAISOR+ > SN Ry
kekKnic ke\K

D GAISOR+ S\ | Ral

keKNK keknK

because the Ry, k € K\ K are all disjoint. Now, |[K N K| < d by definition of d, which means that
the latter display is larger than or equal to Vg (S), which proves the result.

7.3. Proof of Corollary 3.7

Proof of (i) This is a direct byproduct of Theorem 3.6, because if (Nested) holds, then d =1
and thus Vi = Vg)‘é = Vg}{ =Va.
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Proof of (%) By Theorem 3.6, Vi = Vig = V;X defined by (8)-(9). Now, for any S C N,,, for
any @ C K with |Q| < K — 1, by denoting ko any element not in @), we have

ng N U Ry | =9,
ke

by (Disjoint), and

S GAISAR+ S\ | Re| = 1SN Ri| + > G A ISR+ [S\ | | Ri U Ry,
keQ keQ keQ keQ

ZC}CO/\|SQR/€O|+ZQ€/\|SQR]€|+ S\ URkURkO
keQ keQ

= > GAISNRI+ S\ |J R

keQU{ko} keQuU{ko}

Hence, the minimum in (8) within the 1795 expression is attained for Q = K and the result is
proved.

7.4. Proof of Proposition 4.1

Let us show that for all A € (0,1/2), for any S C N,, with cardinal s = |S|, we have with
probability at least 1 — A that

|SNHo| < min

32
nin, (32)

og(/N/2 . [log(1/3)/2 . N(S)2)
( 51— 1) *{ EEnEN 1—t} > ’

for N¢(S) = > icg H{pi(X) > t}. Let v = [S N Ho| (assumed to be positive without loss of gen-
erality) and Uy, ..., U, being v i.i.d. uniform random variables. The DKW inequality (with the
optimal constant of Massart, 1990) ensures that, with probability at least 1 — A, for all ¢ € [0, 1],
we have

vt Z 1{U; >t} — (1 —t) > —/log(1/))/(2v).

Now using Lemma A.1 with z = v'/2, a = 1 —t, b = \/log(1/\)/2 and ¢ = 3°;_, 1{U; > t} pro-
vides (32) but with NV;(S) replaced by ¢. Since p;(X) stochastically dominates U;, by independence
N¢(S) also dominates ¢, which yields

Vk € K, P(|Ry, N Ho| > (X)) < %

by choosing A = 4. Then (2) follows by a classical union bound argument.

7.5. Proof of Proposition 4.5

We have for any ¢ € [0,1),

E(Viont(£1))

S = S P > a/m+sTt 3D Pi(X) > afm)

1€ER1NHo 1€ER1NH,

= (1= —a/m)+r(1-B@ (a/m)— ),
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which gives (22). Next,

Viimes(R1) = min {Z 1{pi(X) > ak/m} + k — 1}

1<k<s | :
i€Ry

> 3 1 {pi(X) > as/m),

1€Ry

which gives (21). Finally, for all ¢ € [0, 1), by denoting N =}, 1{p;(X) > t}, we have

C c? N Y
E(Voxw(R1)) <E (2(1 " {4(1 T t} )

2
C N 1/2
<E||— —
x| (1)
< C? +EN+ 20
T(1-t)2 1-—-t (1—¢)3/2
. ¢ _EN 20 (EN 1/2
—(1-8)2 1-t 1—t \1—¢ ’

J0

where we used \/z +y < \/z + /7 for all z,y > 0 and that = — /2 is concave. Since

EIN/IRif] = (1L =r)(1=t)+7 (1-B@ (1) - ),
and E[N] < s(1 —t), this provides
E(Voxw (£1)) : oo c? P — q’_l(t» —1y2 2C
Tﬁ gmtln{s W+1_T+TT+S / 1—t}

Taking ¢ = 1/2 gives (20).
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Appendix A: Auxiliary lemmas

The following lemma holds.
Lemma A.1. For alla > 0 and b,c,z > 0, the two following assertions are equivalent

(i) ¢ —ax? > —bx;

.o b b2
(ZZ)$§%+\/E+§.

In particular, we have for all d > 0,
2
b b2 c c+d'/?p
— — 4+ - < - ).
d/\<2a+ 4a2+a> _d/\( " ) (33)

Proof. The equivalence between (i) and (ii) is obvious. For d > 0, if we have the inequality

2
(b/(2a) + /6% (da?) + c/a) > d, then (i) is satisfied with & = d/2, which entails c—ad > —bd'/?

2
and gives d < (¢ + d'/?b)/a. Tf, on the contrary, (b/(2a) + /0% /(4a?) + c/a) < d, then

2
2 2
(b + b+c> =L+§+g\/b2/(4a2)+c/a

2a 4a?2  a 2a?
—c4l (b/(20) + VP [(4a?) + cfa) < < + b
a a a a
This entails the result. O

The two following lemmas are used in the proof of Theorem 3.6, in the case where condi-
tion (All-atoms) holds.

Lemma A.2. For a reference family that has a Forest structure, if (All-atoms) holds, then for
any h > 1, the P;.;, (i,j) € K", form a partition of N,,.

Proof. Let h > 1. Let (i,5),(#,5') € K" such that (i,7) # (i/,5'). By (Forest), either P;.; and
P;:.jr are disjoint, or, without loss of generality, P;.; C Py.jr. If ¢(¢’, j') = h then the latter is not
possible because that would mean that ¢(i,j) > h + 1. If ¢/ = j, then P;.; C P,.;» would imply
that P;U---U P; C Py which in turn implies ¢ = j = ¢’ = j/ which is also impossible. So P;.; and
Pyr.jr are disjoint.

Now take any e € N,,,. (P,)1<n<n Is a partition so there exists some n < N such that e € P,.
If ¢(n,n) < h then (n,n) € K". If ¢(n,n) > h, then {k € K : P, C R;} has at least h elements.
Furthermore those elements are nested by (Forest), so there exists k € K such that P, C Ry and
#(k) = h, hence e € Ry, with k& € K". Finally in both cases e € Ukeicr Br 50 Ny = Upexen Br,
which concludes the proof. O

Lemma A.3. For a reference family that satisfies (Forest) and (All-atoms), we have

Vr(S) = min > G N ISN Ryl (34)
C —
the Ry, k€K, kek

form a partition of Ny,

that is, the minimum in (26) is always achieved on a partition of Ny,.
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Proof. Let any K’ C K. Because property (Forest) is true, there exists K C K’ such that the Ry,
k € K}, are pairwise disjoint, and

Vk e K',3k' € K, Ry, C Ryr.

Note that this implies that Uke)C’l Ry = Upeier Ri- Likewise, because K includes all the (7,4),1 <
1 < N, there exists K} C K such that the R, k € Kj, are pairwise disjoint, and

N\ | Be= | B

keK] ke,

Let K = K} UK} and note that the Ry, k € K, form a partition of N,,,. To conclude the proof
of (34), we write that

Z Ce N ‘SﬂRkl +
ke’

S\URk

keK’

3" G AISNRE+ (S [No\ | R |2

keK’ kek;

ST GAISOR+ > SN Rl >

kek) keK),

ST GAISORE+ D GAISORE =Y G AISN Ryl O
keK) keK kek

The last lemma is useful for the general case where (All-atoms) no longer holds, by making use
of the completed Forest structure introduced in Definition 3.5.

Lemma A.4. For a reference family R = (R, Ck)rex that has a Forest structure, and K+, K®,
R® as in Definition 3.5, we have for all S C Ny, :

Ve () = Va(5),
Ve () = Vi ().
Proof. Tt is trivial that A (R) = A (RP) (see (25)) because (i, = |Ry| for k € KT, hence Vs (S) =

Vgi(S). Tt is also obvious that Vay(S) > Vige (S) by (26) and since K € K®. Now let any K/ ¢ K.
Let Kf = K'NK and K5 = K'NK™*. Note that K’ is the disjoint union of K} and K. Then,

ST GAISOR+|S\ U Re|= D GAISOR+ D ISORi|+ S\ | B
ke keK! kek; ek, keK!
> Z Ce NS N Rkl + S\ U Ry
kEK, keK,
> Vn(S),
because ( = |Ry| for k € K. Hence Vie (S) > Vay(S), which concludes the proof. O

Appendix B: Material for Lemma 3.3

Algorithm 2 below builds (P,) and follows directly from the proof. It may be useful for the reader
to start by looking the algorithm, in order to get a sense of what the formal proof does.
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Proof of Lemma 3.3. Let H = maxgex ¢(k), where ¢ is the depth function defined by (11). We
use a recursion to build, for each 1 < h < H, an integer N* > 1 and a partition P* = (Pf;)lSnSNh
which satisfy the following three properties:

P" is a partition of N,,, (M)

Vk € K such that ¢(k) < h,3(i,j) € {1,...,N"}": R, = | PP, (2h)
i<n<j

Vk € K such that ¢(k) = h,In € {1,...,N"} : R, = P} (k)

We start the recursion with & = 1. Let Suce; = {k € K : ¢(k) = 1},

New; = {Ry : k € Succ1} U {Nm\ U Rk} \ {9},

keSucey

and N = | New;|. We let P! be the family of elements of New;. (£}) is true because, by (Forest),
for k,k' € Sucey, k # k', R and Ry are disjoint (otherwise they can’t have same depth). (23)
and (£3) are trivially true.

Now let h € {2,...,H} and assume that there exists N~ and P! satisfying (221 1),
(P81 and (2871, Forall n € {1,..., N1}, let

Succh, = {k € K: ¢(k) =hand R, C P '},

Newp , = {Ry : k € Succpn,} U { P=1\ U Ry » \ {2},

keSucch n
Sh =3 _ INewp, | (with [Newy, o] = 0 by convention), and (PShfi_lJrl’ ce Pshg;) be the family

of the elements of New,,. Then let N* = S%, | and P" = (P{,..., PL,). Note that for each

1 <n < N'' Ph=1is the disjoint union of PJ, I ., PL., because by (Forest), for k, k' €
n—1 n

Succ n, k # k', Ry and Ry are disjoint (otherwise they can’t have same depth). This and (21"~ 1)
imply (20). Let k € K such that ¢(k) < h, then (£271) and (227') imply that there exists
(i,7) € {1,..., N""1}2 such that Ry = Uicn<; Ph=1. Hence

Ry = U Pt

h—1 h—1
sl +1<n<s”

and we get (2%). Finally let k € K such that ¢(k) = h. Let k&’ be the unique element of K such that
o(k') =h —1 and Ry C Ryr. By (2571, there exists n € {1,..., N"~'} such that Ry = P"~1.
Hence k € Succy, ,, and Ry, is equal to one of the elements of Newy, ,,, which gives us (?}’?’})

Now that the recursion has ended, properties (2{), (2#) and (24) imply the existence of
the desired partition. The proof of the converse statement is straightforward from (12). O

For the purpose of Algorithm 2, we let len and con be the concatenation and length functions
such that, for all Si,...,S,,S+1 C N,y and S = (S1,...,5,), len(S) = n, con(S,S,11) =
(S1,-..55n, Sn+1) if Spt1 # @ and con(S, @) = S.
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Algorithm 2: Computation of (P,)1<n<n

© 0 N 0 oks W N

-
=]

11

12
13
14
15
16

Data: R = (R, (k) rex satisfying (Forest).
Result: P = (Pn)1<n<n such that for each k € K, there exists some (i, j) such that Ry, = U, <,,<; Pn-

P +— (Np);
N+ 1;
H +— maxgex (k);

for he (1,...,H) do

newP «— ();

Sucep,p +—

end

end
P «— newP;
N <— len(P);

end
return P

forne {1,...,N} do

{k € K: Ry C Pn,¢(k) = h};

for k € Succy,,, do
| newP <— con(newP, Ry);

newP <— con (Pn \ UkESucchm Rk,newP>;
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