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Abstract: In a high dimensional multiple testing framework, we present new confidence
bounds on the false positives contained in subsets S of selected null hypotheses. These bounds
are post hoc in the sense that the coverage probability holds simultaneously over all S, pos-
sibly chosen depending on the data. This paper focuses on the common case of structured
null hypotheses, e.g., along a tree, a hierarchy or geometrically (spatially or temporally).
Following recent advances in post hoc inference, we build confidence bounds for some pre-
specified forest-structured subsets and deduce a bound for any subset S by interpolation.
The proposed bounds are shown to improve substantially previous ones when the signal is
locally structured. Our findings are supported both by theoretical results and numerical ex-
periments. Moreover, our bounds can be obtained by an algorithm (with complexity bilinear
in the sizes of the reference hierarchy and of the selected subset) that is implemented in the
open-source R package sansSouci available from https://github.com/pneuvial/sanssouci,
making our approach operational.
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1. Introduction

1.1. Background

Modern statistical data analysis often involves asking many questions of interest simultaneously,
possibly using the data repeatedly, as long as the user feels that this could provide additional
information. To avoid selection bias due to various forms of data snooping, specific strategies can
be proposed to take into account the procedure as whole, and be investigated as to the statistical
guarantees they provide. This problem is often referred to as selective (or post hoc) inference, a long
standing research field, with a recent renewal of interest. To name only few studies, inference on
the observed selection set can be done by controlling the false coverage rate control (Benjamini and
Bogomolov, 2014; Benjamini and Yekutieli, 2005; Weinstein and Ramdas, 2019) or by controlling
a criterion conditional to a specific initial selection step, see the series of works Choi et al. (2017);
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Fithian et al. (2017); Taylor and Tibshirani (2018, 2015); Tibshirani et al. (2016). In other studies,
the selection step is based on sample splitting, see Bühlmann and Mandozzi (2014); Cox (1975);
Dezeure et al. (2015), which is another way to tackle selective inference by explicitly avoiding data
reuse. Another strategy is to provide a statistical guarantee uniformly over all selected sets. A
historical reference is the work of Scheffé (1953) (see also Scheffé, 1959, p. 69), see also Berk et al.
(2013) and Bachoc et al. (2018, 2019) for recent developments on this issue.

We follow in this paper the aim of establishing confidence bounds on the number of false
positives specifically in the multiple testing framework, simultaneously over all possible sets of
selected hypotheses, so that the user can resort to arbitrary use of the data before selecting a set
of hypotheses, consider several concurrent selections, change their mind, and so on. Such a post
hoc setting has been considered in particular by Blanchard et al. (2020); Genovese and Wasserman
(2006); Goeman and Solari (2011).

We are more specifically interested in the common situation where the set of null hypotheses
has a geometrical structure, such as when hypotheses are organized along a tree or a hierarchy,
or are indexed by an underlying metric space (for instance spatially or temporally). We expect
correspondingly the false hypotheses to be clustered at some contiguous positions in this structure,
possibly at different scales, and the set of selected hypotheses to be at least partially dictated by
the structure; if this is the case, we aim at deriving confidence bounds that will be sharper than
unstructured approaches.

In the context of multiple testing methods, hierarchically structured null hypotheses have ap-
peared in various application settings and statistical models. In bioinformatics applications, there
often exists prior knowledge about the units under analysis (such as genes, SNPs, proteins), sum-
marized as an ontology (which can take several forms) and it is common to apply a hierarchical
clustering algorithm resulting in a binary hierarchy. This structure can be known from prior knowl-
edge or data (Meinshausen, 2008), from independent data (Goeman and Mansmann, 2008), or be
data-driven from the same data (Kim et al., 2010). In the situation where the units have follow
spatial, temporal or other topological structure, the use of hierarchies is also common to get a
suitable multi-scale representation of this structure (Blanchard and Geman, 2005; Ehm et al.,
2010). The goal of controlling the False Discovery Rate (FDR) in such a hierarchically structured
context, and for a specific selection procedure (thus not post hoc) has been considered by Guo
et al. (2018); Ramdas et al. (2019); Yekutieli (2008), among others.

Concerning the incorporation of structural information into post hoc bounds, this line of re-
search has been followed in Meijer and Goeman (2015); Meijer et al. (2015) by using the sequential
rejection principle of Goeman and Solari (2010). In particular, the method in Meijer et al. (2015),
whose goal inspired the present work, deals with geometrically structured null hypotheses along
space or time, and shows that incorporating such an external information can substantially improve
the detection of signal and thus can increase the accuracy of the resulting post hoc bound.

1.2. Confidence bounds and the selection effect

Let us motivate our work by the following simple example. Suppose we have at hand m independent
variables Xi ∼ N (µi, 1), for some unknown ”signal” vector µ ∈ Rm+ and we denote H0 = {i : µi =
0} the set of coordinates where the signal is zero. The user’s goal is to find subset of coordinates
with non-zero signal. For a subset of selected coordinates S ⊆ {1, . . . ,m}, the number of false
positives in S is given by |S∩H0|. In practice, it is crucial to give an upper-bound of this quantity
in order to quantify the relevance of the elements of S. In the case where the set S is fixed in
advance, we can prove that the following quantity

V (S) =


(2

∑
i∈S

1{Xi ≤ 0}+
log(1/α)

2

)1/2

+

(
log(1/α)

2

)1/2
2
 ∧ |S| (1)

is a (1−α)-upper bound on |S ∩H0|, that is, P(|S ∩H0| ≤ V (S)) ≥ 1−α (in (1), bxc denotes the
largest integer smaller than or equal to x). This bound will be justified further on (see Section 4).
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The rationale is that since a N (0, 1) distribution is symmetric, the quantity 2
∑
i∈S 1{Xi ≤ 0} is

an upper-estimate of |S ∩H0|, the other terms being deviation terms depending on α.
Figure 1 reports the value of this bound on one particular simulation run with m = 100 and

S = 11 : 35(= {11, . . . , 35}). Here, the obtained bound is trivial, that is, V (S) = 25. Starting from
this, let us seek for another set S with more ”signal”, that is, with a smaller bound. In view of
(1), choosing the set S consisting of the 25 highest realizations will give a much smaller bound
V (S) = 4, which means that S should contain at least 21 significant elements. In this example,
despite the fact that µ = 0 (meaning that there is no signal at all in the data) the event V (S) = 4
occurs with probability very close to 1. This illustrates that the bound (1) does not account for
the selection effect, that is, is only valid for set S that are deterministic, not driven by the data
as the top 25 realizations.
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Fig 1. Confidence bound V (S) (not post hoc) given by (1) for S in two cases (α = 0.1). Left: valid use of this
bound. Right : invalid ”data snooped” use of this bound. In both pictures, X has been generated as m = 160 i.i.d.
N (0, 1).

1.3. Post hoc bounds

To provide guarantee for any data-driven set S that can stem from any procedure followed by the
user, one should provide a confidence bound uniformly valid over all S ⊆ Nm = {1, . . . ,m}, which
is called a post hoc bound.

The general framework is as follows : let us observe a random variable X ∼ P , P belonging to
some model P, for which m null hypotheses H0,i ⊆ P, i ∈ Nm are under investigation for P , the
aim is to build a function V (X, ·) : S ⊆ Nm 7→ V (X,S) ∈ N (denoted by V (S) for short) satisfying

∀P ∈ P, PX∼P
(
∀S ⊆ Nm, |S ∩H0(P )| ≤ V (S)

)
≥ 1− α, (2)

where H0(P ) = {i ∈ Nm : P satisfies H0,i} is the set of true null hypotheses. The bound V (·)
will be referred to as a post hoc bound throughout this manuscript.

In (2), the number |S∩H0(P )| thus corresponds to the number of false positives of the procedure
rejecting the nulls H0,i with i ∈ S. Note that (2) directly implies that V (S)/|S| is a bound for
the celebrated false discovery proportion |S∩H0(P )|/|S| of this procedure (still holding uniformly
over the sets S ⊆ Nm, S 6= ∅). Obviously, since the trivial bound V (S) = |S|, S ⊆ Nm, always
satisfies (2), we implicitly aim at finding post hoc bounds V (S) as small as possible, and possibly
for ”many interesting S”.

The problem of constructing post hoc bounds has been first tackled specifically in the case
where the selection sets S are of the form of p-value level sets: {i : pi(X) ≤ t}, t ∈ [0, 1], where
each pi(X) is a p-value for the null hypothesis H0,i, 1 ≤ i ≤ m. The resulting bounds are often
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referred to as confidence envelopes, see Genovese and Wasserman (2004); Meinshausen (2006).
Later, Genovese and Wasserman (2006) and Goeman and Solari (2011) proposed to extend this
approach to arbitrary subsets S, by using a methodology based on performing 2m − 1 local tests
(one for each intersection hypothesis), with a possible complexity reduction by using shortcuts.
In particular, the approach of Goeman and Solari (2011) extensively relies on the closed testing
principle, which was introduced by Marcus et al. (1976). More recently, Blanchard et al. (2020)
(BNR below) have proposed a flexible methodology that adjusts the complexity of the bound by
way of a reference family: the post hoc bound is based on a family R = ((Rk(X), ζk(X))k∈K
(Rk, ζk for short), where K is a finite index set, Rk ⊆ Nm (and Rk 6= Rk′ if k 6= k′), ζk ∈ N, that
satisfies the following joint error rate (JER) control:

∀P ∈ P, PX∼P
(
∀k ∈ K, |Rk ∩H0(P )| ≤ ζk

)
≥ 1− α, (3)

In this paper, we will focus on the case where the sets Rk are deterministic (not depending on
X), while the bounds ζk(X) are random, and chosen so that (3) holds. This approach is sensible
when the set of null hypotheses has some (a priori known) structure, which is reflected in the
fixed choice of the regions Rk: they will typically be clusters of hypotheses that are “close” in
the underlying structure; possibly at different scales. This rationale will be discussed in more
detail in the next sections. An important difference between (2) and (3) is that S in (2) is let
arbitrary and typically chosen by the user, whereas Rk, ζk in (3) is part of the methodology and is
chosen by the statistician to make (3) hold. Once the reference family is fixed, a post hoc bound is
obtained from (3) simply by interpolation, by exploiting the constraints that the event appearing
in (3) imposes to the unknown set H0(P ), namely that it is a subset A satisfying the property
”∀k ∈ K, |Rk ∩A| ≤ ζk”:

V ∗R(S) = max
A∈A(R)

{
|S ∩A|

}
, A(R) =

{
A ⊆ Nm | ∀k ∈ K : |Rk ∩A| ≤ ζk

}
, S ⊆ Nm . (4)

Hence, if (3) holds, then V = V ∗R satisfies (2). This post-hoc bound will be referred to as the
optimal bound (relative to a given reference family).

1.4. Toy example

Let us first mention that the numerical results of this section can be reproduced online at https:
//pneuvial.shinyapps.io/posthoc-bounds_ordered-hypotheses/, see Appendix C.1 for more
details.

To explain the rationale behind our approach, let us detail how it behaves in the simple example
mentioned in Section 1.2. Again, consider m independent variables Xi ∼ N (µi, 1), but this time
assume that there is some signal present, that is, µ 6= 0. One classical post hoc bound is given
by the Simes bound VSimes (see (9) below), which is a common benchmark that has the correct
coverage in that case, that is, satisfies (3). From an intuitive point of view, this bound will be
accurate for data driven S that are level sets, such as the k0 largest Xi. However, we are interested
in this paper in the common situation where the unknown signal µ (and thus the corresponding null
hypotheses) has some underlying structure, e.g., that the non-zero entries are clustered at some
contiguous positions in Nm. In that case, our approach consists in using some fixed, deterministic,
reference sets Rk that are also contiguous and are typically defined in either of the two following
manners :

• Partition reference family : Rpart

k = {(k − 1)s+ 1, . . . , ks}, k ∈ Kpart = {1, . . . ,m/s}, ζpart

k as
in (1) with α divided by Kpart = |Kpart| = m/s;

• Tree reference family : assuming that m = 2is for some i ∈ N: the sets Rtree

k are the nodes
of a perfect binary tree whose leaves are elements of the above partition, and ζtree

k as in
(1) with S = Rpart

k and α divided by Ktree = |Ktree| = 2i+1 − 1. One possible indexation is
Ktree = {1, . . . ,Ktree}.
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In both reference families, the scale parameter s (we assume s divides m) has to be fixed in
advance. By using a union bound argument, (3) is satisfied by both reference families, which,
according to (4), gives rise to the post hoc bounds Vpart and Vtree, respectively. We will prove (see

Corollary 3.7 below) that Vpart(S) =
∑m/s
k=1 ζ

part

k ∧ |S ∩ Rk| and that Vtree(S) can be computed as
follows:

Vtree(S) = min
Q⊆Ktree

s.t. {Rtree
k ,k∈Q}

is a partition of Nm

∑
k∈Q

ζtree

k ∧ |S ∩Rtree

k |

 . (5)

Since the number of partitions to be explored is large, formula (5) might be time-consuming
in practice and we propose an algorithm of complexity O(|S||Ktree|) to compute Vtree(S) (see
Algorithm 1 below). The idea is to compute the bound recursively by selecting the ”best” partition,
possibly using nodes at different depths in the tree. Note that our algorithm is not only valid
for a perfect binary tree structure, but for any reference sets that have a forest structure (see
Definition 3.1 below).

The bounds Vpart(S) and Vtree(S) for s = 20 are illustrated in Figures 2 and 3, and the data are
given in Figure 4, for S = {1, . . . , 45}, for some realization generated in the case where µi = µ̄ for
i ∈ {1, . . . , 40} and µi = 0 otherwise, so that H0 = {41, . . . , 180}. We easily read in Figure 2 that
Vpart(S) = 21 = 8 + 8 + 5 = ζpart

1 + ζpart

2 + |S ∩ Rpart

3 |. As for Vtree(S), according to (5), we should
optimize over all possible partitions formed by the nodes. Since the only informative ζtree

k ’s are ζtree
4 ,

ζtree
8 and ζtree

9 , the result does not depend on the chosen partition covering the set {41, . . . , 160}
so that we should only choose a partition covering the set {1, . . . , 40}, that is, either {Rtree

4 }, or
{Rtree

8 , Rtree
9 }. The first partition gives a bound 15 = 10 + 5 and the second gives 25 = 10 + 10 + 5.

Hence, Vtree(S) = 15.
This simple example already shows that taking into account the structure of the signal leads to

an improvement of the bounds. This is further supported by numerical experiments in Section 5
and by a theoretical study in Section 4.2.

R
part
1 =1:20

ζ
part
1 =8

R
part
2 =21:40

ζ
part
2 =8

R
part
3 =41:60

ζ
part
3 =20

R
part
4 =61:80

ζ
part
4 =20

R
part
5 =81:100

ζ
part
5 =20

R
part
6 =101:120

ζ
part
6 =20

R
part
7 =121:140

ζ
part
7 =20

R
part
8 =141:160

ζ
part
8 =20

Fig 2. Partition reference family with some regular structure (see text). The obtained values of the ζpartk are obtained
for the data of Figure 4.

1.5. Contributions and relation to the literature

While our aim is similar in spirit to Meijer et al. (2015), our method is markedly different, as it
relies on the general strategy laid down by BNR, with a specifically structured reference family
Rk, k ∈ K (see Section 6.1 for a comparison between our approach and the one of Meijer et al.,
2015). In addition, the way the method is built here is different than the one proposed in Section 3-
6 of BNR: the main focus in BNR is the case of (random) reference sets Rk = Rk(X) that are
designed in order to satisfy (3) with ζk = k − 1 (thus corresponding to a “joint k-family-wise
error rate”). By contrast, in the present work the reference sets Rk are fixed in advance, and the
(random) bounds on the number false positives ζk = ζk(X) are designed to satisfy the constraint
(3). Again, the rationale behind this approach is that the reference sets Rk can be chosen arbitrarily
by the statistician, so that it can accommodate any pre-specified structure (reflecting some prior
knowledge on the considered problem). Since we are interested in structured signal, we focus on a
reference family enjoying a forest structure, meaning that two reference sets are either disjoint or
nested.
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Rtree
1 =1:160

ζtree1 =160

Rtree
2 =1:80

ζtree2 =80

Rtree
3 =81:160

ζtree3 =80

Rtree
4 =1:40

ζtree4 =10

Rtree
5 =41:80

ζtree5 =40

Rtree
6 =81:120

ζtree6 =40

Rtree
7 =121:160

ζtree7 =40

Rtree
8 =1:20

ζtree8 =10

Rtree
9 =21:40

ζtree9 =10

Rtree
10 =41:60

ζtree10 =20

Rtree
11 =61:80

ζtree11 =20

Rtree
12 =81:100

ζtree12 =20

Rtree
13 =101:120

ζtree13 =20

Rtree
14 =121:140

ζtree14 =20

Rtree
15 =141:160

ζtree15 =20

Fig 3. Tree reference family for some particular perfect binary structure (see text). The obtained values of the ζtreek
are obtained for the data of Figure 4.

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●
●●
●

●●
●

●

●

●

●●●

●

●

●

●
●
●
●

●

●
●

●●●●

●
●●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●●●

0 50 100 150

−
3

−
1

1
2

3
4

S = 1:45 , VSimes(S) = 35 , Vpart(S) = 21 , Vtree(S) = 15

X

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

Fig 4. Data generated as m = 160 i.i.d. N (µ, 1), with µ̄ = 2, and associated values for the post hoc bounds VSimes(S)
Vpart(S) and Vtree(S), see text. The elements of the partition Rpart

k = {(k−1)s+ 1, . . . , ks}, 1 ≤ k ≤ Kpart for s = 20
are separated by dotted vertical lines.

The second ingredient of our method is the local bounds ζk(X), that should estimate |Rk ∩
H0(P )| with a suitable deviation term. While any deviation inequality can be used, we have
chosen to focus on the DKW inequality (Dvoretzky et al., 1956), that has the advantage to be
sub-Gaussian. Hence, the uniformity over the range k ∈ K can be obtained by a simple union
bound without being too conservative.

Using the DKW inequality to obtain a confidence bound for the proportion of null hypotheses
is not new, see Genovese and Wasserman (2004) (Equation (16) therein), Meinshausen (2006), and
Farcomeni and Pacillo (2011). While our bound is a uniform improvement of the existing version
(see Remark 4.3 below for more details), our main innovation is to use the DKW bound in a local
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manner and to appropriately combine these local bounds to derive an overall post hoc bound. The
improvement can be substantial, as illustrated in our numerical experiments.

Let us finally mention the work of Katsevich and Ramdas (2020) which provides FDP bounds
along a path driven by a specific multiple testing procedure. They deduce from these particular
bounds a fully valid post hoc bounds also by interpolation (see Section 6.2 for more details on this
work).

1.6. Organization of the paper

The paper is organized as follows: precise setup and notation are introduced in Section 2. For any
reference family with a forest structure, the optimal post hoc bound is computed in Section 3. The
calibration of the local bounds ζk and of the overall reference family is done in Section 4. This
section also includes a theoretical comparison with previous methods, which quantifies formally the
amplitude of the improvement induced by the new method. The latter is supported by numerical
experiments in Section 5, where a hybrid approach is also introduced to mimic the best between the
new approach and the existing Simes bound (the latter being defined in (9) below). A discussion
is given in Section 6 and the proofs are provided in Appendix A. Additional technical details are
postponed to Appendix B, and information to reproduce the numerical experiments of the paper
are given in Appendix C.

2. Preliminaries

2.1. Assumptions

We focus on the common situation where a test statistic Ti(X) is available for each null hypothesis
H0,i. For i ∈ Nm, each statistic Ti(X) is transformed into a p-value pi(X), satisfying the following
assumptions:

∀P ∈ P, ∀i ∈ H0(P ), ∀t ∈ [0, 1], PX∼P (pi(X) ≤ t) ≤ t; (Superunif)

∀P ∈ P, {pi(X)}i∈H0(P ) is a family of independent p-values and is independent of {pi(X)}i∈H1(P ),
(Indep)

where H1(P ) = Nm\H0(P ) denotes the indices of the false null hypotheses. Extending our results
to the case where (Indep) fails is possible, see the discussion in Section 6.3.

2.2. Classical post hoc bounds

As argued in BNR, computing the optimal post hoc bound (4) relative to a given reference family
(Rk, ζk)k∈K can be NP-hard, and simpler, more conservative versions can be provided, that is,
bounds V such that for all S ⊆ Nm, V ∗R(R) ≤ V (R). A simple upper-bound for V ∗R is given by

V R(S) = |S| ∧min
k∈K
{ζk + |S \Rk|} , S ⊆ Nm . (6)

It is straightforward to check that

V ∗R(S) ≤ V R(S), S ⊆ Nm. (7)

While this inequality is strict in general, BNR established that it is an equality if the reference
family is nested, that is,

K = {1, . . . ,K} and Rk ⊆ Rk+1 for 1 ≤ k ≤ K − 1. (Nested)

Condition (Nested) is mild when the sequence ζk is nondecreasing, e.g., ζk = k − 1.

imsart-generic ver. 2014/10/16 file: DBNR2020_HAL.tex date: July 1, 2020



G. Durand et al./Post hoc bounds for structured hypotheses 8

A consequence of (7) is that V R is a post hoc bound in the sense of (2) as soon as the reference
family R is such that (3) holds. A simple union bound under (Superunif) yields that (3) holds
with R = {(R1, ζ1)}, R1 = {i ∈ Nm : pi ≤ α/m}, ζ1 = 0. This leads to the Bonferroni post hoc
bound

VBonf(S) =
∑
i∈S

1 {pi(X) > α/m}, S ⊆ Nm. (8)

The more subtle Simes inequality (Simes, 1986), valid under (Superunif)–(Indep), ensures that (3)
holds with R = {(Rk, ζk), 1 ≤ k ≤ m}, Rk = {i ∈ Nm : pi ≤ αk/m}, ζk = k − 1. This leads to
the Simes post hoc bound

VSimes(S) = min
1≤k≤m

{∑
i∈S

1 {pi(X) > αk/m}+ k − 1

}
, S ⊆ Nm. (9)

As noted in BNR, this bound is identical to the post hoc bound of Goeman and Solari (2011),
which will be used as a benchmark in this paper.

2.3. Improved interpolation bound

When the reference family is not nested, inequality (7) can be far too conservative. We introduce
the following extension: for a reference family R = (Rk(X), ζk(X))k∈K of cardinality K = |K|,

Ṽ qR(S) = min
Q⊆K,|Q|≤q

(∑
k∈Q

ζk ∧ |S ∩Rk|+
∣∣∣∣S \ ⋃

k∈Q

Rk

∣∣∣∣
)
, 1 ≤ q ≤ K, S ⊆ Nm ; (10)

ṼR(S) = Ṽ KR (S), S ⊆ Nm . (11)

Obviously, we have Ṽ 1
R = V R and Ṽ qR is non-increasing in q. The following result shows that these

bounds are all conservative versions of V ∗R.

Lemma 2.1. For any reference family R, we have

V ∗R(S) ≤ ṼR(S) ≤ Ṽ qR(S) ≤ V R(S), 1 ≤ q ≤ K, S ⊆ Nm. (12)

In particular, if R is such that (3) holds, then ṼR is a post hoc bound in the sense of (2).

Lemma 2.1 is proved in Section A.1. The inequality V ∗R(S) ≤ ṼR(S) in (12) is strict in general,
see Example 2.2. As we will show in the next section, this relation is nevertheless an equality when
R has a specific forest structure, which makes ṼR a particularly interesting bound.

Example 2.2. Let m = 4, K = 3, R1 = {1, 2, 4}, R2 = {2, 3, 4}, R3 = {1, 3, 4}. Consider the event

where ζ1(X) = ζ2(X) = ζ3(X) = 1. For S = N4, we easily check that V ∗R(S) = 1 and ṼR(S) = 2.

3. Post hoc bound for forest structured reference family

3.1. Forest structure

Definition 3.1. A reference family R = (Rk, ζk)k∈K is said to have a forest structure if the
following property is satisfied:

∀k, k′ ∈ K, Rk ∩Rk′ ∈ {Rk, Rk′ ,∅}, (Forest)

that is, two elements of {Rk}k∈K are either disjoint or nested.
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The forest structure is general enough to cover a wide range of different situations, as for
instance the disjoint case

∀k, k′ ∈ K, k 6= k′ ⇒ Rk ∩Rk′ = ∅. (Disjoint)

and the case (Nested). In general, if each Rk is considered as a node and an oriented edge Rk ← Rk′

is depicted between two different sets Rk and Rk′ if and only if Rk ⊆ Rk′ and there is no Rk′′

such that Rk ( Rk′′ ( Rk′ ; the obtained graph correspond to a (directed) forest in the classical
graph theory sense, see e.g. Kolaczyk (2009). An illustration is given in Figure 5. The positions of
the nodes in this picture rely on the depth of R, which can be defined as the function

φ :

{
K → N∗
k 7→ 1 + |{k′ ∈ K : Rk′ ) Rk}| .

(13)

For instance, under (Disjoint), φ(k) = 1 for all k ∈ K, while under (Nested), φ(k) = K + 1− k for
all 1 ≤ k ≤ K.

Example 3.2. Let m = 25, R1 = {1, . . . , 20}, R2 = {1, 2}, R3 = {3, . . . , 10}, R4 = {11, . . . , 20},
R5 = {5, . . . , 10}, R6 = {11, . . . , 16}, R7 = {17, . . . , 20}, R8 = {21, 22}, R9 = {22}. Then the
corresponding reference family R = (Rk, ζk)1≤k≤9 satisfies (Forest). The sets R1, R8 are of depth 1;
the sets R2, R3, R4, R9 are of depth 2; the sets R5, R6, R7 are of depth 3.

R1

R2 R3 R4

R5 R6 R7

R8

R9

Fig 5. Graph corresponding to the reference family given in Example 3.2.

A useful characterization of a forest-structure reference family is given in the next lemma.

Lemma 3.3. For any reference family R = (Rk, ζk)k∈K having the structure (Forest), there exists
a partition (Pn)1≤n≤N of Nm such that for each k ∈ K, there exists some (i, j) with 1 ≤ i ≤ j ≤ N
and Rk = Pi:j, where we denote

Pi:j =
⋃

i≤n≤j

Pn, 1 ≤ i ≤ j ≤ N. (14)

Conversely, for some partition (Pn)1≤n≤N of Nm, consider any reference family of the form R =
(Pi:j , ζi,j)(i,j)∈C with C ⊆ {(i, j) ∈ N2

N : i ≤ j} such that for (i, j), (i′, j′) ∈ C, we have

Ji, jK ∩ Ji′, j′K = ∅; or Ji, jK ⊆ Ji′, j′K; or Ji′, j′K ⊆ Ji, jK ,

where Ji, jK denotes the set of all integers between i and j. Then R has the structure (Forest).

For the ease of notation, the set C will be identified to K throughout the paper, which leads to
the following slight abuse: denoting indifferently k ∈ K or (i, j) ∈ K, and

R = (Rk, ζk)k∈K or R = (Pi:j , ζi,j)(i,j)∈K. (15)

We call “atoms” the elements of the underlying partition (Pn)1≤n≤N because they have the
thinnest granularity in the structure and because any subset Rk of the family can be expressed as
a combination of these atoms. Note however that this partition is not unique. A simple algorithm
to compute (Pn)n and the proof of Lemma 3.3 are provided in Appendix B.2. An example of such
a partition is given in Example 3.4 and Figure 6.
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Example 3.4. For the reference family given in Example 3.2, a partition as in Lemma 3.3 is given by
P1 = R2, P2 = R3 \R5, P3 = R5, P4 = R6, P5 = R7, P6 = R8 \R9, P7 = R9, P8 = Nm \{R1∪R8}.

R1

R2 R3 R4

P2 R5 R6 R7

R8

P6 R9

P8

Fig 6. Graph corresponding to the reference family given by Example 3.2, with the associated partition (atoms)
{Pn, 1 ≤ n ≤ N}, displayed by light gray nodes and given in Example 3.4. The nodes that correspond to atoms
that are not in the reference family are depicted with a dashed circle.

An important particular case in our analysis is the case where the forest structure includes all
atoms, that is

∀n ∈ {1, . . . , N}, Pn ∈ {Rk, k ∈ K}. (Complete)

When (Complete) does not hold (as in Example 3.4), we can impose this condition by adding
missing atoms (together with a trivial bound) to the structure, building in this way the completed
reference family:

Definition 3.5. Consider any reference family R = (Pi:j , ζi,j)(i,j)∈K satisfying (Forest) and asso-
ciated to atoms (Pn)1≤n≤N by (15). Let K+ = {(i, i), 1 ≤ i ≤ N : (i, i) 6∈ K}, ζi,i = |Pi:i| = |Pi|
for all (i, i) ∈ K+, and K⊕ = K ∪ K+. Then the completed version of R is given by R⊕ =
(Pi:j , ζi,j)(i,j)∈K⊕ .

For the reference family R given by Example 3.2, the completed version R⊕ is depicted in
Figure 7.

R1

R2 R3 R4

P2 R5 R6 R7

R8

P6 R9

P8

Fig 7. Graph corresponding to the completed version R⊕ of the reference family R given by Example 3.2 with the
atoms given in Example 3.4.

3.2. Deriving the optimal post hoc bound

The next result shows that the expression of the optimal post hoc bound V ∗R can be simplified
when R satisfies (Forest).
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Theorem 3.6. Let R be a reference family having the structure (Forest). Then the optimal bound

V ∗R (4) can be derived from the bounds Ṽ qR (10) and ṼR (11) in the following way:

V ∗R(S) = ṼR(S), S ⊆ Nm; (16)

V ∗R(S) = Ṽ dR(S), S ⊆ Nm, (17)

where d is the maximum number of disjoint sets that can be found in the reference family, that is,

d = max{|Q|, Q ⊆ K : ∀k, k′ ∈ Q, k 6= k′ ⇒ Rk ∩Rk′ = ∅}.

A byproduct of Theorem 3.6 is that, if (Nested) holds, V ∗R = Ṽ 1
R(S) = V R and we recover

Proposition 2.5 of BNR. Another interesting case is the structure (Disjoint), where ṼR has a simpler
form. Finally, a third particular case of interest allowing for some simplification is when (Forest)
and (Complete) hold, i.e. when the forest structure already contains all atoms. We summarize
these particular cases in the following result.

Corollary 3.7. Let R = (Rk, ζk)k∈K be a reference family.

(i) if R satisfies (Nested), then V ∗R = V R.
(ii) if R satisfies (Disjoint), then V ∗R(S) =

∑
k∈K ζk ∧ |S ∩Rk|+

∣∣S \⋃k∈KRk∣∣, S ⊆ Nm.
(iii) if R satisfies (Forest) and (Complete), then

V ∗R(S) = min
Q⊆K

s.t. {Rk,k∈Q}
is a partition of Nm

∑
k∈Q

ζk ∧ |S ∩Rk|

 . (18)

Note that point (iii) justifies the formula (5) used for the motivating example in the introduction.
Theorem 3.6 and Corollary 3.7 are respectively proved in Section A.2 and Section A.3.
The proof of Theorem 3.6 being constructive, it provides an algorithm to compute easily V ∗R(S),

that we now describe. Let us first introduce an additional piece of notation. For some reference
family R = (Pi:j , ζi,j)(i,j)∈K of depth function φ (see (13)), we denote

Kh = {(i, j) ∈ K : φ(i, j) = h or (i = j and φ(i, i) ≤ h)}, h ≥ 1.

Hence, each Kh contains the indices of the sets of depth h and also the atoms with an inferior
depth. Figure 8 displays some Kh for the reference family of Example 3.2.

R1

R2 R3 R4

R5 R6 R7

R8

R9

K1

R1

R2 R3 R4

R5 R6 R7

R8

R9

K2

R1

R2 R3 R4

R5 R6 R7

R8

R9

K3

Fig 8. Display of the nodes corresponding to K1, K2, K3 (in orange) for the reference family given in Example 3.2.

Algorithm 1 below gives the steps to compute V ∗R(S): first, complete the family R by adding all
the members of the partition, as explained in Definition 3.5, in order to get R⊕. By Lemma B.4, we
have V ∗R⊕(S) = V ∗R(S), so that this operation does not change the targeted quantity. In particular,
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(Complete) holds after this step. Second, the algorithm uses a reverse loop, which successively
updates a vector V whose components correspond to active nodes; the current value of the bound
is equal to the sum of the components of V . Each step of the loop will update the value of V to
make the bound possibly smaller, to obtain at the end V ∗R(S). It is possible to write equivalently
the algorithm by applying the main computation formula (newVk line) in succession to all regions
Rk sorted by decreasing order of depth (another equivalent formulation is as a recursive formula
starting at the lowest depth nodes). If we assume that the (completed) hierarchy structure has
been computed beforehand (in particular, that the list of direct descendents of a given region is
directly available), as well as the bounds ζk, the time complexity of Algorithm 1 for a given S
is O(|S|K). Indeed, the completed forest structure is at most twice as large as the original; each
node and edge of the structure is visited once by the algorithm; and the computation of the set
intersection with S costs at most O(|S|).

Let us describe the loop in more detail by using the particular situation of Figure 9. Initializa-
tion: H = 3 and KH = K3, which corresponds to the orange nodes in the bottom graph. Hence, V
is equal to the vector of values ζk ∧ |S ∩Rk| among these nodes. First step: h = 2 hence Kh = K2,
for which the active nodes are displayed in orange in the top-right graph. Each of these nodes
k ∈ K2, gives a bound ζk ∧ |S ∩ Rk| that should be compared with the one of the previous step,
that is,

∑
k′∈Succk Vk′ , where Succk denotes the offspring of Rk. The vector V is defined by the

best choice among these two. Second (and final) step: h = 1 hence Kh = K1 (top-left graph) which
only contains the roots of the forest and where V is updated following the same process. The
algorithm then returns V ∗R(S) =

∑
k∈K1 Vk.

Algorithm 1: Computation of V ∗R(S)

Data: R = (Pi:j , ζi,j)(i,j)∈K and S ⊆ Nm.
Result: V ∗R(S).

1 R←− R⊕; K ←− K⊕ (completion, see Definition 3.5);
2 H ←− maxk∈K φ(k), see (13);
3 V ←− (ζk ∧ |S ∩Rk|)k∈KH ;

4 for h ∈ {H − 1, . . . , 1} do
5 newV ←− (0)k∈Kh ;

6 for k ∈ Kh do
7 Succk ←− {k′ ∈ Kh+1 : Rk′ ⊆ Rk};
8 newVk ←− min

(
ζk ∧ |S ∩Rk|,

∑
k′∈Succk Vk′

)
;

9 end
10 V ←− newV ;

11 end
12 return

∑
k∈K1 Vk.

4. Local calibration of the reference family

In this section, we explain how to build a reference family R such that (3) holds. The results
presented in this section hold for any deterministic (Rk)k and the calibration concerns only (ζk)k
here.

4.1. Calibration of ζk by DKW inequality

In this section, we estimate |S ∩ H0| by using an approach close in spirit to the so-called Storey
estimator (Storey, 2002). The latter depends on a parameter, denoted by t here, that has to be
chosen appropriately (see Blanchard and Roquain, 2009 for a discussion on this issue). To avoid
this caveat while improving accuracy, we can derive an estimator uniform on t by using the DKW
inequality (Dvoretzky et al., 1956), with the optimal constant of Massart (1990).
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R1

R2 R3 R4

P2 R5 R6 R7

R8

P6 R9

P8

K1

R1

R2 R3 R4

P2 R5 R6 R7

R8

P6 R9

P8

K2

R1

R2 R3 R4

P2 R5 R6 R7

R8

P6 R9

P8

K3

Fig 9. Same as Figure 8 but for the completed version.

For any deterministic subsets Rk ⊆ Nm, k ∈ K, K = |K|, let

ζk(X) = |Rk| ∧ min
t∈[0,1)

( C

2(1− t)
+

(
C2

4(1− t)2
+

∑
i∈Rk

1{pi(X) > t}
1− t

)1/2
)2
 , k ∈ K, (19)

where C =
√

1
2 log

(
K
α

)
and bxc denotes the largest integer smaller than or equal to x.

Proposition 4.1. Consider any deterministic (different) subsets Rk ⊆ Nm, k ∈ K (K = |K|)
and assume α/K < 1/2. Assume that for all k ∈ K, the p-value family {pi(X), i ∈ Rk} sat-
isfies (Superunif) and (Indep). Then the JER control (3) holds for the reference family R =
(Rk, ζk(X))k∈K, for which the local bounds ζk are given by (19).

Combining Proposition 4.1 with Lemma 2.1, we obtain that, under the assumptions of Propo-
sition 4.1, the bound

VDKW = ṼR given by (11) with R = (Rk, ζk(X))k∈K and ζk(X) given by (19), (20)

satisfies (2) and thus is a valid post hoc bound.
Proposition 4.1 is proved in Section A.4. Note that ζk(X) ≥ blog(K/α)/2c ≥ 1 as soon as

α ≤ e−2K. Hence, this contrasts with previous approaches (Blanchard et al., 2020; Goeman and
Solari, 2011), for which ζk = 0 was included in the reference family. This means that using this
reference family induces a minimum cost. In the next section, we will see that this cost is generally
compensated by the accuracy of the joint estimation of |Rk ∩H0|, k ∈ K.

Remark 4.2. In practice, ζk(X) in (19) can be computed as

ζk(X) = s ∧ min
0≤`≤s

( C

2(1− p(`))
+

(
C2

4(1− p(`))2
+

s− `
1− p(`)

)1/2
)2
 ,

where s = |Rk| and 0 = p(0) ≤ p(1) ≤ · · · ≤ p(s) are the ordered p-values of {pi(X), i ∈ Rk}.
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Remark 4.3. With our notation, the previous (1−α)-confidence bound of Genovese and Wasserman
(2004) (Equation (16) therein) corresponds to take

ζGWk (X) = |Rk| ∧ min
t∈[0,1)

⌊∑
i∈Rk

1{pi(X) > t}+ |Rk|1/2C
1− t

⌋
.

By using (36) in Lemma B.1 with a = 1 − t, b = C, c =
∑
i∈Rk

1{pi(X) > t}, and d = |Rk|, we

can see that the quantity ζGWk (X) is always larger than the ζk(X) given by (19). Hence our result
is a uniform improvement of Genovese and Wasserman (2004).

Remark 4.4. The local bounds ζk in (19) depend on the target level α only through C, where
2C2 = log(K/α). Therefore, the post hoc bounds derived from Proposition 4.1 are expected to
depend only weakly on α. This important point is illustrated in our numerical experiments (Section
5), where this property is used to propose a hybrid post hoc bound taking the best of both the
Simes and the DKW-based bounds.

4.2. Comparison to existing post hoc bounds

To explore the benefit of the new reference family when the signal is localized, let us consider a
stylized model where the signal is localized according to a regular partition

Rk = {1 + (k − 1)s, . . . , ks}, 1 ≤ k ≤ K, (21)

composed of K regions of equal size s. In particular, this reference family satisfies (Disjoint).
Among the regions Rk, only R1 contains false nulls, and r ∈ (0, 1) denotes the proportion of signal
in R1, that is

r = |R1 ∩H1|/|R1|. (22)

The remaining regions contain no signal, that is |Rk ∩H1| = 0, for k ≥ 2.

In addition, we consider an independent Gaussian one-sided setting where the false nulls have
mean µ > 0, that is, we assume that Xi ∼ N (0, 1) if i ∈ H0 and Xi ∼ N (µ, 1) if i ∈ H1, and the
p-values are derived as pi(X) = Φ̄(Xi), i ∈ Nm, where Φ̄ denotes the upper-tail of the standard
normal distribution.

Proposition 4.5. Let us consider the post hoc bounds VBonf (8); VSimes (9) and the new post hoc
bound VDKW given by (20) and associated to the reference regions Rk defined above. In the setting
defined above, we have

E(VDKW(R1))

|R1|
≤ 1 ∧

(
1− r + 2r Φ(µ) +

4C√
s

(
1 +

C√
s

))
(23)

E(VSimes(R1))

|R1|
≥ (1− r)(1− αs/m) + r Φ(µ− Φ

−1
(αs/m)); (24)

E(VBonf(R1))

|R1|
= (1− r)(1− α/m) + r Φ(µ− Φ

−1
(α/m)). (25)

This proposition is proved in Section A.5. In particular, combining (23) and (24) yields

E(VDKW(R1))

E(VSimes(R1))
≤

1 ∧
(

1− r + 2r Φ(µ) + 4C√
s

(
1 + C√

s

))
(1− r)(1− αs/m) + r Φ(µ− Φ

−1
(αs/m))

. (26)

This ratio is displayed in Figure 10 for a choice of model parameters. The new bound can sub-
stantially improve the Simes bound over a wide range of effect sizes.

This improvement can also be highlighted by an asymptotic approach.
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Fig 10. Y -axis: upper bound of the ratio between the new bound and the Simes bound, see (26). X-axis: effect size
µ. m = 107, s = m2/3, K = m/s, r = 3/5, α = 0.1.

Corollary 4.6. Let us consider the framework of Proposition 4.5. In the asymptotic setting in m

where s tends to infinity with s � logK and µ tends to infinity with µ − Φ
−1

(α/m) → −∞, we
have

lim sup
m

{
E(VDKW(R1))

|R1|

}
≤ 1− r, and lim sup

m

{
E(VBonf(R1))

|R1|

}
= 1.

If moreover s� m (i.e., K →∞) and µ− Φ
−1

(αs/m)→ −∞, we have

lim sup
m

{
E(VDKW(R1))

|R1|

}
≤ 1− r, and lim sup

m

{
E(VSimes(R1))

|R1|

}
= 1.

In particular, this corollary establishes that the order of the new bound can improve the Simes
bound by a factor 1− r.

5. Numerical experiments

The open-source R package sansSouci (Blanchard et al., 2019) implements the bounds proposed in
this paper, and provides R code to reproduce the numerical experiments reported in this section,
see Appendix C.2. All these experiments have been carried out using the R language (R Core
Team, 2019).

5.1. Setting

In this section we perform numerical experiments to compare our new post hoc bound VDKW (20)
with Simes post hoc bound (9). Let q be some fixed integer, say larger than 1. We consider two
versions of our new bound:

• The first version of our post hoc bound, denoted Vpart, is defined by (20) in which the
reference family Rpart is the regular partition of Nm given by (21) for Kpart = 2q (s = m/2q

being assumed to be an integer).
• The second version of our post hoc bound, denoted Vtree, is defined similarly by (20), but

the reference family Rtree is given this time by the perfect binary tree whose leaves are the
elements of Rpart. Hence, by using the notation of Lemma 3.3, this means Pk = {1 + (k −
1)s, . . . , ks}, 1 ≤ k ≤ 2q. The cardinal of the reference family is thus Ktree = 2q+1 − 1.
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Note that, compared with the bounds used in the toy example of the introduction, Vpart and Vtree

here use slightly improved values of the ζk’s, see (20).
The true/false null hypothesis configuration is as follows: the false null hypotheses are contained

in Pk for 1 ≤ k ≤ K1, for some fixed value of K1. The quantity r is defined similarly as in (22),
as the fraction of false null hypotheses in those Pk, and is set to r ∈ {0.5, 0.75, 0.9, 1}. All of the
other partition pieces only contain true null hypotheses. Finally, the p-values are one-sided and
computed from Gaussian observations. The true null observations are distributed as i.i.d. N (0, 1),
and false null observations are distributed as i.i.d. N (µ̄, 1), where µ̄ is a fixed value in {2, 3, 4}.
This construction is illustrated in Figure 11 for q = 3 (leading to Kpart = 8 and Ktree = 15) and
K1 = 2. In our experiments, we have chosen q = 7 and s = 100 (corresponding to Kpart = 128 and
Ktree = 255 and m = 12800), and K1 = 8.

P1:8

P1:4 P5:8

P1:2 P3:4 P5:6 P7:8

P1 P2 P3 P4 P5 P6 P7 P8Partition

Tree

Fig 11. Partition and perfect binary tree structures used in simulations, here with q = 3 and K1 = 2 (Kpart = 8
and Ktree = 15). The pink nodes are those containing some signal.

We also performed numerical experiments with s ∈ {10, 20, 50} and K1 ∈ {1, 4, 16}, and with
Poisson- and Gaussian-distributed µ̄. Because the results are qualitatively similar, we only report
the above-described setting.

5.2. Comparing confidence envelopes

One possible way to evaluate the performance of post hoc bounds is to consider the associated
confidence envelopes on the number of true discoveries among the most significant hypotheses.
Formally, for k = 1, . . . ,m, we let Sk = {i1, . . . , ik}, where ij is the index of the jth smallest
p-value. Note that focusing on such sets is a priori favorable to the Simes bound, for which the
elements of the reference family are among the Sk. In Figure 12, each panel corresponds to a
particular choice of the model parameters d (in rows) and µ̄ (in columns). Each panel compares
the actual number of true positives (k − |Sk ∩H0|), k = 1, . . . ,m (labelled “Oracle”) to post hoc
bounds of the form (k − V (Sk)), k = 1, . . . ,m, where V is VSimes, Vpart, or Vtree. In this figure, the
confidence level is set to 1− α = 95%.

The chosen model parameters span a wide range of situations between very low and very high
signal. For very low signal (µ̄ = 2, r = 0.75, top-left panel), all the bounds are trivial, i.e. output a
value V (Sk) close to |Sk| (= k). As expected, all the bounds get sharper as the signal to noise ratio
increases, that is, as µ̄ or r increase, and for very high signal (µ̄ = 4, r = 1, bottom-right panel), all
the bounds are very close to the actual number of true positives. The tree-based bound dominates
the partition-based bound, which is expected because in this particular experiment, the regions Pk
containing signal are adjacent (see Figure 11), and the multiscale nature of the tree-based bound
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Fig 12. 95% lower confidence envelopes on the number of true positives obtained from Simes inequality and from
the proposed methods are compared to the actual (Oracle) number of true positives.

allows it to take advantage of large-scale clusters. When the signal regions are not adjacent, these
two bounds are very close (additional numerical experiments not shown). Our proposed bounds
are more sensitive to the proportion of signal in each active region, while the Simes bound is more
sensitive to the strength of the signal in those regions. As a result, none of the Simes and the
“tree” bound is uniformly better than the other one. The Simes bound is typically sharper than
the “tree” bound for small values of k, but becomes more conservative for larger values of k. This
is expected, because the “tree” bound is based on estimating the proportion of non-null items,
while the Simes bound is based on pinpointing non-null items.

5.3. Hybrid approach

An interesting question raised in Section 4.1 (Remark 4.4) is how these bounds are influenced by
the target confidence level, which is fixed to 1− α = 95% in Figure 12. In Figure 13 we compare
the bounds obtained across values of α (corresponding to different line types) for µ̄ ∈ {3, 4} and
r ∈ {0.75, 0.9}. The influence of α on the Simes bound is quite substantial. This is consistent
with the shape of the bound (9), the p-values are directly compared to α. The influence of α on
the bounds derived from (19) is much weaker, as expected from Remark 4.4. In particular, the
envelopes derived from the “tree” method are very close to each other when α varies from 0.001 to
0.05. These striking differences suggest to introduce hybrid confidence envelopes that could take
advantage of the superiority of the Simes bound on sets Sk for small k with that of the DKW-
tree-based bound on sets Sk for larger k. For a fixed γ ∈ [0, 1], let us define the bound V γhybrid as
follows. For S ⊆ Nm,

V γhybrid(α, S) = min (VSimes((1− γ)α, S), Vtree(γα, S)) ,
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Fig 13. Influence of the target level parameter α on upper confidence envelopes on the number of true positives.

where the notation in the bounds explicitly acknowledges the dependence of the bounds in the
target level α. By an union bound, V γhybrid(α, ·) is a (1− α)-level post hoc bound. Figure 14 gives
an illustration with α = 0.05 and γ = 0.02. In this case, the hybrid envelope is the minimum of
the Simes envelope at level (1 − γ)α = 0.049 and the DKW-tree-based envelope at level 0.001.
Because (1− γ)α is very close to α, the confidence envelope V 0.02

hybrid is essentially equivalent to the
Simes-based confidence envelope for small k; for larger values of k, V 0.02

hybrid is only slightly worse
than the DKW-tree-based confidence envelope at level γα = 0.001.

6. Discussion

6.1. Comparison to Meijer et al. (2015)

Since our aim is similar to the one of Meijer et al. (2015) (denoted MKG below for short), let us
make a short qualitative comparison between MKG and our study. First, while both approaches
are based on graph-structured subsets {Rk, k ∈ K}, the geometrical shapes of the nodes Rk are
different: the nodes in MKG correspond to all possible consecutive intervals, possibly overlapping,
while our reference sets are based on recursive partitioning of the hypothesis space at different
resolutions. Our approach avoids redundancies of the tests but is suitable when the signal is
structured according to the pre-specified partition structure, and may lead to a less accurate
bound otherwise. This in turn impacts the way the local pieces of information are combined. The
MKG approach uses a sequential, top-down algorithm, with an α-recycling method (that allows,
for instance, to spend the same nominal level α both for a parent and its child). By contrast,
our approach uses a bottom-up algorithm, with an overall nominal level adjusted by a simple
union bound, which is generally conservative but seems fair here as the nodes are disjoint (at each
resolution).
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Fig 14. Combining Simes and tree-based confidence envelopes on the number of true positives into a hybrid confi-
dence envelope.

Second, the criteria used are different: MKG focus on simultaneous FWER control of local tests
of intersections of null hypotheses ∩i∈Rk

H0,i, k ∈ K, while our statistical criterion ensures with
high probability |Rk ∩ H0| ≤ ζk, for all k ∈ K, for some bounds ζk. As already noted in BNR
(see the supplementary file therein), the two approaches coincide when ζk = |Rk| − 1, because
|Rk ∩H0| > |Rk| − 1 is equivalent to the fact that ∩i∈Rk

H0,i is true. Hence, a family {Rk, k ∈ K}
violating |Rk ∩H0| > |Rk| − 1 for some k will also wrongly reject ∩i∈Rk

H0,i for some k. However,
when using another form of bound ζk, such as the DKW device used here, such a connection is
not valid anymore and the two criteria does not incorporate the local structure of the nodes in
the same way. Here, using bounds ζks based on classical estimators will in principle lead to better
post hoc bounds.

Third, within each node, the local statistics used are not of the same nature: in MKG, the
local tests are based on a multivariate χ2-type test, see Goeman et al. (2004). Here, we use an
estimator relying on individual p-values that exploits the independence structure. This means that
the assumptions made in MKG are much weaker, since it is valid under arbitrary dependence. Our
approach can in principle also accommodate such a distributional setting, but this needs additional
investigations, see the discussion in Section 6.3.

Finally, let us mention a setting for which the two methods can be fairly compared. First take the
MKG method with Bonferroni local tests. As proved in MKG, the resulting FWER controlling
procedure (reject the H0,i for which V ({i}) = 0) then reduces to the Holm procedure Holm
(1979). By contrast, if we consider ζk equals to the number of accepted null hypotheses by the
Holm procedure restricted to Rk (satisfying (Disjoint)), our methodology induces another overall
FWER controlling procedure: simply the one rejecting all the null hypotheses rejected by the
local Holm procedures. Both FWER controlling procedures are valid under arbitrary dependence.
Interestingly, if the signal is sparse but localized in one of the pre-specified Rk, the new procedure
will dominate the Holm procedure (this is supported by a numerical experiment and a theoretical
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study, not reported here for short). This illustrates, once again, that our methodology can improve
the state of the art, even in a very elementary framework.

6.2. Comparison to Katsevich and Ramdas (2020)

The approach followed by Katsevich and Ramdas (2020) is similar to that of BNR in the sense that
it builds on a family of reference regions Rk, satisfying a JER control of the form (3), from which a
post-hoc bound (4) can be interpolated. The main focus of Katsevich and Ramdas (2020) is on how
to construct suitable bounds ζk, under several settings, using powerful martingale techniques. In
order to apply those, all settings considered there have in common the assumption (Indep) and the
fact that the regions Rk are nested; in fact these regions are of the form Rk = {π(i); 1 ≤ i ≤ k}
for different orderings π of the hypotheses. The three orderings considered by Katsevich and
Ramdas (2020) are (1) ordered p-values; (2) a priori ordering available from side information; (3)
“interactive” ordering. In all three cases, the rationale is that the obtained bounds will have better
performance if the false hypotheses tend to be ordered before true null hypotheses.

As we have discussed earlier, ordering p-values by their magnitude without using any structural
information is not appropriate for the kind of problem we consider in the present work, and the
hierarchical tree structure we focused on does not correspond naturally to an a priori ordering
of the hypotheses: the structure we consider will be well suited to a situation where the false
hypotheses are clustered in a specific part of the tree, but we do not know which one.

Finally, the interactive ordering considered by Katsevich and Ramdas (2020) uses the principle
of “p-value masking” introduced by Lei and Fithian (2018); Lei et al. (2017). In that setting,
the ordering is constructed iteratively, where the next element π(k) in the order can be decided
arbitrarily based on the information ((g(pi))i∈Nm , (pi)i<k), g : [0, 1] → [0, 1] being a “masking
function” (one simple example is g(p) = min(p, 1 − p)). Thus, while the constructed reference
regions Rk are still nested, the iterative nature of the order construction, by progressive unmasking
of the p-values, can orient the procedure. For instance, it is conceivable that, in the tree-structured
setting considered here, the user would choose to “unmask” first the masked p-values which appear
to cluster in a same region of the tree. A more in-depth comparison to our approach would however
require to specify a precise “un-masking policy” depending on the data and on the tree structure,
which falls outside of the scope of the present discussion. The approach considered in the present
paper does not require to specify (or ask interactively from the user) such an “un-masking” policy.
We also note that, although we focused on the (Indep) assumption in order to obtain explicit
bounds (using the DKW device), our approach is potentially valid under weaker dependence
assumption, provided the number of false positives in a fixed region can be estimated in a suitable
way by a confidence bound, see Section 6.3.

6.3. Extension to general local confidence bounds

In this work, the local bounds ζk have been designed by using the DKW inequality. This can be
straightforwardly extended to the case where the bound (19) is replaced by ζk(X) = Lk(α/K),
for which the function Lk(·) is a local bound satisfying the condition

∀λ ∈ (0, 1), ∀k ∈ K, ∀P ∈ P, PX∼P
(
|Rk ∩H0(P )| ≤ Lk(λ)

)
≤ λ . (27)

The properties of the final post hoc bound will obviously depend on the choice of Lk.
In the present work, the validity of our post hoc bounds relies on (Indep), which is a strong

assumption. The latter is only used to make the DKW inequality valid. If this assumption is
violated, we should use another local bound Lk, that satisfies condition (27) under the specific
dependence setting of the data. For instance, when the dependence of the individual test statistics is
known or satisfies a randomization hypothesis (see Hemerik and Goeman, 2018), such a local bound
can be constructed by applying the λ-calibration methodology of BNR (e.g., the one corresponding
to the balanced template therein).
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Such extension would be particularly relevant in the case of linear regression models, where
the test statistics are correlated in a complex way. Certainly, testing null regression coefficients
in a linear regression model is a theme of major interest throughout the literature; furthermore,
whenever correlation is present between the covariates, it is different from the (simpler) goal of
testing multiple associations between the target and each covariate (see, for instance, the intro-
ductory discussion of Meinshausen, 2008). Beyond the presence of correlations, this setting raises
important additional issues, in particular how to handle the high-dimensional situation where the
number of covariates is much larger than the number of observations. In a general configuration,
this is a thorny issue, not to say a major hindrance. Under some specific assumptions used in
high-dimensional statistics such as the restricted isometry property (RIP), one can hope that false
positive inference on arbitrary selected sets of bounded size is feasible, though such an assumption
might be deemed unrealistic for practice. In any case, future work should concentrate on obtaining
local bounds of the form (27) for regression models under assumptions as general as possible.
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Appendix A: Proofs

A.1. Proof of Lemma 2.1

The second and third inequalities in (12) are straightforward from the fact that Ṽ qR is non-

increasing in q and Ṽ 1
R = V R. For the first inequality, let S ⊆ Nm and consider A ⊆ Nm such that

∀k ∈ K, |Rk ∩A| ≤ ζk. For any Q ⊆ K, we get

|S ∩A| ≤
∑
k∈Q

|S ∩A ∩Rk|+
∣∣∣∣S ∩A ∩ ( ⋃

k∈Q

Rk

)c∣∣∣∣
≤
∑
k∈Q

ζk ∧ |S ∩Rk|+
∣∣∣∣S \ ⋃

k∈Q

Rk

∣∣∣∣,
which implies the result.

A.2. Proof of Theorem 3.6

In this proof, we fix S ⊆ Nm. Also, we let

A(R) = {A ⊆ Nm : ∀k ∈ K, |Rk ∩A| ≤ ζk} , (28)

so that V ∗R(S) = maxA∈A(R) |S ∩A|. Also note that (10)–(11) can be rewritten as

ṼR(S) = min
K′⊆K

(∑
k∈K′

ζk ∧ |S ∩Rk|+

∣∣∣∣∣S \ ⋃
k∈K′

Rk

∣∣∣∣∣
)
. (29)

A.2.1. Proof of (16)

First, by Lemma B.4, it is sufficient to prove (16) for R⊕. Hence, we can focus without generality
on the case where (Complete) holds. Recall that this means that (i, i) ∈ K for all 1 ≤ i ≤ N . Now,
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to prove that ṼR(S) = V ∗R(S), it suffices to build A ⊆ S such that A ∈ A (R) and |A| = ṼR(S).
The key point is that for any h, A is the disjoint union of the A ∩ Rk, k ∈ Kh, because the Rk,
k ∈ Kh, form a partition of Nm (by Lemma B.2). Let H = maxk∈K φ(k) be the greater depth of
the Forest structure, we will construct A with a decreasing recursion over h ∈ {1, . . . ,H}. To this
end, we need some additional notation: first, for any k ∈ K, let Kk = {k′ ∈ K : Rk′ ⊆ Rk} be the
set of indexes of elements that are subsets of Rk. Then, for any h, let K≥h =

⋃
h≤h′≤H Kh

′
. Note

that K≥1 = K. Finally let

Ph = {P ⊆ K≥h : the Rk, k ∈ P, form a partition of Nm},

and note that the result of Lemma B.3 (that is, equation (37)) can be rewritten in

ṼR(S) = min
P∈P1

∑
k∈P

ζk ∧ |S ∩Rk|. (30)

The decreasing recursion starts like this: noting that KH is the set of all the (i, i)’s, 1 ≤ i ≤ N ,
we define AH by choosing (arbitrarily) ζi,i∧|S∩Pi:i| distinct elements of S∩Pi:i for each 1 ≤ i ≤ N .
Note that we have both

∀k ∈ K≥H , |AH ∩Rk| ≤ ζk,
and

|AH | =
∑
k∈KH

ζk ∧ |S ∩Rk| = min
P∈PH

∑
k∈P

ζk ∧ |S ∩Rk|,

since PH =
{
KH
}

.
Now let h be given and assume we have constructed an Ah+1 ⊆ S such that both

∀k ∈ K≥h+1, |Ah+1 ∩Rk| ≤ ζk,

and

|Ah+1| = min
P∈Ph+1

∑
k∈P

ζk ∧ |S ∩Rk|

=
∑

k∈Ph+1

ζk ∧ |S ∩Rk|, (31)

for a given Ph+1 ∈ Ph+1. Using that |Ah+1| =
∑
k∈Ph+1 |Ah+1 ∩ Rk| and that |Ah+1 ∩ Rk| ≤

ζk ∧ |S ∩Rk| for all k ∈ Ph+1, we deduce that |Ah+1 ∩Rk| = ζk ∧ |S ∩Rk| for all k ∈ Ph+1.
Now we want to construct Ah by defining all the Ah ∩ Rk, k ∈ Kh. By writing that Rk =⋃
k′∈Ph+1∩Kk

Rk′ , the union being disjoint, we have first that, for all k ∈ Kh,

|Ah+1 ∩Rk| =
∑

k′∈Ph+1∩Kk

|Ah+1 ∩Rk′ |

=
∑

k′∈Ph+1∩Kk

ζk′ ∧ |S ∩Rk′ |.

Second, we have that:

min
P∈Ph

∑
k∈P

ζk ∧ |S ∩Rk| =
∑
k∈Kh

min
P∈Ph

( ∑
k′∈P∩Kk

ζk′ ∧ |S ∩Rk′ |

)
(32)

=
∑
k∈Kh

min

(
ζk ∧ |S ∩Rk|, min

P∈Ph+1

( ∑
k′∈P∩Kk

ζk′ ∧ |S ∩Rk′ |

))
(33)

=
∑
k∈Kh

min

(
ζk ∧ |S ∩Rk|,

∑
k′∈Ph+1∩Kk

ζk′ ∧ |S ∩Rk′ |

)
(34)

=
∑
k∈Kh

min
(
ζk ∧ |S ∩Rk|, |Ah+1 ∩Rk|

)
.
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In the above, (32) holds by additivity and because for every P ∈ Ph, any element of P is also an
element of one of the P∩Kk, k ∈ Kh. Moreover, for every P ∈ Ph and k ∈ Kh, P∩Kk is either {k},
either a set of elements of depth ≥ h + 1, hence (33). Finally, (34) holds because all the minima
in (33) are realized in Ph+1, otherwise the minimality of Ph+1 in (31) would be contradicted.

We finally construct all the Ah∩Rk, k ∈ Kh, in the following way: if |Ah+1∩Rk| ≤ ζk∧|S∩Rk|,
we let Ah ∩Rk = Ah+1 ∩Rk, else we let Ah ∩Rk be a subset of ζk ∧ |S ∩Rk| distinct elements of
Ah+1 ∩Rk. This both ensures that

|Ah| = min
P∈Ph

∑
k∈P

ζk ∧ |S ∩Rk|,

and that
∀k ∈ K≥h, |Ah ∩Rk| ≤ ζk,

because K≥h = Kh ∪ K≥h+1 and Ah ⊆ Ah+1, which ends the recursion.
Now letting A = A1, we have found an A ⊆ S such that A ∈ A (R) and |A| = ṼR(S) (by (30)).

A.2.2. Proof of (17)

By (16) and Lemmas B.3 and B.4, we have

V ∗R(S) = V ∗R⊕(S) = ṼR⊕(S) =
∑
k∈K

ζk ∧ |S ∩Rk|,

for some K ⊆ K⊕ such that the Rk, k ∈ K, form a partition of Nm. Hence,

V ∗R(S) =
∑

k∈K∩K

ζk ∧ |S ∩Rk|+
∑

k∈K\K

ζk ∧ |S ∩Rk|

=
∑

k∈K∩K

ζk ∧ |S ∩Rk|+
∑

k∈K\K

|S ∩Rk|

=
∑

k∈K∩K

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃

k∈K∩K

Rk

∣∣∣∣∣∣ ,
because the Rk, k ∈ K \ K are all disjoint. Now, |K ∩ K| ≤ d by definition of d, which means that

the latter display is larger than or equal to Ṽ dR(S), which proves the result.

A.3. Proof of Corollary 3.7

Proof of (i) This is a direct byproduct of Theorem 3.6, because if (Nested) holds, then d = 1

and thus V ∗R = Ṽ dR = Ṽ 1
R = V R.

Proof of (ii) By Theorem 3.6, V ∗R = ṼR = Ṽ KR defined by (10)–(11). Now, for any S ⊆ Nm,
for any Q ⊆ K with |Q| ≤ K − 1, by denoting k0 any element not in Q, we have

Rk0 ∩

⋃
k∈Q

Rk

 = ∅,
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by (Disjoint), and

∑
k∈Q

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃
k∈Q

Rk

∣∣∣∣∣∣ = |S ∩Rk0 |+
∑
k∈Q

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃
k∈Q

Rk ∪Rk0

∣∣∣∣∣∣
≥ ζk0 ∧ |S ∩Rk0 |+

∑
k∈Q

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃
k∈Q

Rk ∪Rk0

∣∣∣∣∣∣
=

∑
k∈Q∪{k0}

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃

k∈Q∪{k0}

Rk

∣∣∣∣∣∣ .
Hence, the minimum in (10) within the Ṽ KR expression is attained for Q = K and the result is
proved.

Proof of (iii) : This is established in Lemma B.3.

A.4. Proof of Proposition 4.1

Let us show that for all λ ∈ (0, 1/2), for any S ⊆ Nm with cardinal s = |S|, we have with
probability at least 1− λ that

|S ∩H0| ≤ min
t∈[0,1)

(√
log(1/λ)/2

2(1− t)
+

{
log(1/λ)/2

4(1− t)2
+
Nt(S)

1− t

}1/2
)2

, (35)

for Nt(S) =
∑
i∈S 1{pi(X) > t}. Let v = |S ∩ H0| (assumed to be positive without loss of gen-

erality) and U1, . . . , Uv being v i.i.d. uniform random variables. The DKW inequality (with the
optimal constant of Massart, 1990) ensures that, with probability at least 1− λ, for all t ∈ [0, 1],
we have

v−1
v∑
i=1

1{Ui > t} − (1− t) ≥ −
√

log(1/λ)/(2v).

Now using Lemma B.1 with x = v1/2, a = 1 − t, b =
√

log(1/λ)/2 and c =
∑v
i=1 1{Ui > t} pro-

vides (35) but with Nt(S) replaced by c. Since pi(X) stochastically dominates Ui, by independence
Nt(S) also dominates c, which yields

∀k ∈ K, P (|Rk ∩H0| > ζk(X)) ≤ α

K
,

by choosing λ = α
K . Then (3) follows by a classical union bound argument.

A.5. Proof of Proposition 4.5

We have for any t ∈ [0, 1),

E(VBonf(R1))

|R1|
= s−1

∑
i∈R1∩H0

P(pi(X) > α/m) + s−1
∑

i∈R1∩H1

P(pi(X) > α/m)

= (1− r)(1− α/m) + r
(

1− Φ(Φ
−1

(α/m)− µ)
)
,

which gives (25). Next,

VSimes(R1) = min
1≤k≤s

{∑
i∈R1

1 {pi(X) > αk/m}+ k − 1

}
≥
∑
i∈R1

1 {pi(X) > αs/m},
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which gives (24). Finally, for all t ∈ [0, 1), by denoting N =
∑
i∈R1

1{pi(X) > t}, we have

E(VDKW(R1)) ≤ E

( C

2(1− t)
+

{
C2

4(1− t)2
+

N

1− t

}1/2
)2


≤ E

( C

1− t
+

{
N

1− t

}1/2
)2


≤ C2

(1− t)2
+

EN
1− t

+
2C

(1− t)3/2
E
[
N1/2

]
≤ C2

(1− t)2
+

EN
1− t

+
2C

1− t

(
EN
1− t

)1/2

,

where we used
√
x+ y ≤

√
x+
√
y for all x, y ≥ 0 and that x 7→ x1/2 is concave. Since

E [N/|R1|] = (1− r)(1− t) + r
(

1− Φ(Φ
−1

(t)− µ)
)
,

and E [N ] ≤ s(1− t), this provides

E(VDKW(R1))

|R1|
≤ min

t

{
s−1

C2

(1− t)2
+ 1− r + r

Φ(µ− Φ
−1

(t))

1− t
+ s−1/2

2C

1− t

}
.

Taking t = 1/2 gives (23).

Appendix B: Auxiliary results

B.1. Auxiliary lemmas

The following lemma holds.

Lemma B.1. For all a > 0 and b, c, x ≥ 0, the two following assertions are equivalent

(i) c− ax2 ≥ −bx;

(ii) x ≤ b
2a +

√
b2

4a2 + c
a .

In particular, we have for all d ≥ 0,

d ∧

(
b

2a
+

√
b2

4a2
+
c

a

)2

≤ d ∧
(
c+ d1/2b

a

)
. (36)

Proof. The equivalence between (i) and (ii) is obvious. For d ≥ 0, if we have the inequality(
b/(2a) +

√
b2/(4a2) + c/a

)2
≥ d, then (ii) is satisfied with x = d1/2, which entails c−ad ≥ −bd1/2

and gives d ≤ (c+ d1/2b)/a. If, on the contrary,
(
b/(2a) +

√
b2/(4a2) + c/a

)2
≤ d, then

(
b

2a
+

√
b2

4a2
+
c

a

)2

=
b2

2a2
+
c

a
+
b

a

√
b2/(4a2) + c/a

=
c

a
+
b

a

(
b/(2a) +

√
b2/(4a2) + c/a

)
≤ c

a
+
b

a
d1/2.

This entails the result.
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The two following lemmas are used in the proof of Theorem 3.6, in the case where condi-
tion (Complete) holds.

Lemma B.2. For a reference family that has a Forest structure, if (Complete) holds, then for
any h ≥ 1, the Pi:j, (i, j) ∈ Kh, form a partition of Nm.

Proof. Let h ≥ 1. Let (i, j), (i′, j′) ∈ Kh such that (i, j) 6= (i′, j′). By (Forest), either Pi:j and
Pi′:j′ are disjoint, or, without loss of generality, Pi:j ⊆ Pi′:j′ . If φ(i′, j′) = h then the latter is not
possible because that would mean that φ(i, j) ≥ h + 1. If i′ = j′, then Pi:j ⊆ Pi′:j′ would imply
that Pi ∪ · · · ∪ Pj ⊆ Pi′ which in turn implies i = j = i′ = j′ which is also impossible. So Pi:j and
Pi′:j′ are disjoint.

Now take any e ∈ Nm. (Pn)1≤n≤N is a partition so there exists some n ≤ N such that e ∈ Pn.
If φ(n, n) ≤ h then (n, n) ∈ Kh. If φ(n, n) > h, then {k ∈ K : Pn ( Rk} has at least h elements.
Furthermore those elements are nested by (Forest), so there exists k ∈ K such that Pn ( Rk and
φ(k) = h, hence e ∈ Rk with k ∈ Kh. Finally in both cases e ∈

⋃
k∈Kh Rk so Nm =

⋃
k∈Kh Rk,

which concludes the proof.

Lemma B.3. For a reference family that satisfies (Forest) and (Complete), we have

ṼR(S) = min
K⊆K

s.t. {Rk,k∈K}
is a partition of Nm

∑
k∈K

ζk ∧ |S ∩Rk|

 . (37)

that is, the minimum in (29) is always achieved on a partition of Nm.

Proof. Let any K′ ⊆ K. Let K′1 ⊆ K′ be the indices of sets that are maximal for inclusion in the
family {Rk, k ∈ K′}. Because of property (Forest), the Rk, k ∈ K′1, are pairwise disjoint, and

∀k ∈ K′,∃k′ ∈ K′1, Rk ⊆ Rk′ .

Note that this implies that
⋃
k∈K′1

Rk =
⋃
k∈K′ Rk. Likewise, because K includes all the (i, i), 1 ≤

i ≤ N , there exists K′2 ⊆ K such that the Rk, k ∈ K′2, are pairwise disjoint, and

Nm \
⋃
k∈K′1

Rk =
⋃
k∈K′2

Rk.

Let K = K′1 ∪ K′2 and note that the Rk, k ∈ K, form a partition of Nm. To conclude the proof
of (37), we write that

∑
k∈K′

ζk ∧ |S ∩Rk|+

∣∣∣∣∣S \ ⋃
k∈K′

Rk

∣∣∣∣∣ =
∑
k∈K′

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S ∩
Nm \

⋃
k∈K′1

Rk

∣∣∣∣∣∣
≥
∑
k∈K′1

ζk ∧ |S ∩Rk|+
∑
k∈K′2

|S ∩Rk|

≥
∑
k∈K′1

ζk ∧ |S ∩Rk|+
∑
k∈K′2

ζk ∧ |S ∩Rk|

=
∑
k∈K

ζk ∧ |S ∩Rk|.

The last lemma is useful for the general case where (Complete) no longer holds, by making use
of the completed Forest structure introduced in Definition 3.5.

Lemma B.4. For a reference family R = (Rk, ζk)k∈K that has a Forest structure, and K+, K⊕,

R⊕ as in Definition 3.5, we have for all S ⊆ Nm, V ∗R⊕(S) = V ∗R(S), and ṼR⊕(S) = ṼR(S).
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Proof. It is trivial that A (R) = A (R⊕) (see (28)) because ζk = |Rk| for k ∈ K+, hence V ∗R⊕(S) =

V ∗R(S). It is also obvious that ṼR(S) ≥ ṼR⊕(S) by (29) and since K ⊆ K⊕. Now let any K′ ⊆ K⊕.
Let K′1 = K′ ∩ K and K′2 = K′ ∩ K+. Note that K′ is the disjoint union of K′1 and K′2. Then,

∑
k∈K′

ζk ∧ |S ∩Rk|+

∣∣∣∣∣S \ ⋃
k∈K′

Rk

∣∣∣∣∣ =
∑
k∈K′1

ζk ∧ |S ∩Rk|+
∑
k∈K′2

|S ∩Rk|+

∣∣∣∣∣S \ ⋃
k∈K′

Rk

∣∣∣∣∣
≥
∑
k∈K′1

ζk ∧ |S ∩Rk|+

∣∣∣∣∣S \ ⋃
k∈K′1

Rk

∣∣∣∣∣
≥ ṼR(S),

because ζk = |Rk| for k ∈ K′2. Hence ṼR⊕(S) ≥ ṼR(S), which concludes the proof.

B.2. Material for Lemma 3.3

Algorithm 2 below builds (Pn) and follows directly from the proof.

Proof of Lemma 3.3. Let H = maxk∈K φ(k), where φ is the depth function defined by (13). We
use a recursion to build, for each 1 ≤ h ≤ H, an integer Nh ≥ 1 and a partition Ph = (Phn )1≤n≤Nh

which satisfy the following three properties:

Ph is a partition of Nm, (Ph
1 )

∀k ∈ K such that φ(k) < h,∃(i, j) ∈
{

1, . . . , Nh
}2

: Rk =
⋃

i≤n≤j

Phn , (Ph
2 )

∀k ∈ K such that φ(k) = h,∃n ∈
{

1, . . . , Nh
}

: Rk = Phn . (Ph
3 )

We start the recursion with h = 1. Let Succ1 = {k ∈ K : φ(k) = 1},

New1 = {Rk : k ∈ Succ1} ∪

{
Nm \

⋃
k∈Succ1

Rk

}
\ {∅},

and N1 = |New1|. We let P 1 be the family of elements of New1. (P1
1 ) is true because, by (Forest),

for k, k′ ∈ Succ1, k 6= k′, Rk and Rk′ are disjoint (otherwise they can’t have same depth). (P1
2 )

and (P1
3 ) are trivially true.

Now let h ∈ {2, . . . ,H} and assume that there exists Nh−1 and Ph−1 satisfying (Ph−1
1 ),

(Ph−1
2 ) and (Ph−1

3 ). For all n ∈ {1, . . . , Nh−1}, let

Succh,n =
{
k ∈ K : φ(k) = h and Rk ⊆ Ph−1n

}
,

Newh,n = {Rk : k ∈ Succh,n} ∪

Ph−1n \
⋃

k∈Succh,n

Rk

 \ {∅},
Shn =

∑n
n′=0 |Newh,n′ | (with |Newh,0| = 0 by convention), and

(
PhShn−1+1

, . . . , PhShn

)
be the family

of the elements of Newh,n. Then let Nh = ShNh−1 and Ph = (Ph1 , . . . , P
h
Nh). Note that for each

1 ≤ n ≤ Nh−1, Ph−1n is the disjoint union of PhShn−1+1
, . . . , PhShn

, because by (Forest), for k, k′ ∈

Succh,n, k 6= k′, Rk and Rk′ are disjoint (otherwise they can’t have same depth). This and (Ph−1
1 )

imply (Ph
1 ). Let k ∈ K such that φ(k) < h, then (Ph−1

2 ) and (Ph−1
3 ) imply that there exists

(i, j) ∈ {1, . . . , Nh−1}2 such that Rk =
⋃
i≤n≤j P

h−1
n . Hence

Rk =
⋃

Sh−1
i−1 +1≤n≤Sh−1

j

Phn ,
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and we get (Ph
2 ). Finally let k ∈ K such that φ(k) = h. Let k′ be the unique element of K such that

φ(k′) = h − 1 and Rk ( Rk′ . By (Ph−1
3 ), there exists n ∈ {1, . . . , Nh−1} such that Rk′ = Ph−1n .

Hence k ∈ Succh,n and Rk is equal to one of the elements of Newh,n, which gives us (Ph
3 ).

Now that the recursion has ended, properties (PH
1 ), (PH

2 ) and (PH
3 ) imply the existence of

the desired partition. The proof of the converse statement is straightforward from (14).

For the purpose of Algorithm 2, we let len and con be the concatenation and length functions
such that, for all S1, . . . , Sn, Sn+1 ⊆ Nm and S = (S1, . . . , Sn), len(S) = n, con(S, Sn+1) =
(S1, . . . , Sn, Sn+1) if Sn+1 6= ∅ and con(S,∅) = S.

Algorithm 2: Computation of (Pn)1≤n≤N
Data: R = (Rk, ζk)k∈K satisfying (Forest).
Result: P = (Pn)1≤n≤N such that for each k ∈ K, there exists some (i, j) such that Rk =

⋃
i≤n≤j Pn.

1 P ←− (Nm);
2 N ←− 1;
3 H ←− maxk∈K φ(k);
4 for h ∈ (1, . . . , H) do
5 newP ←− ();
6 for n ∈ {1, . . . , N} do
7 Succh,n ←− {k ∈ K : Rk ⊆ Pn, φ(k) = h};
8 for k ∈ Succh,n do
9 newP ←− con(newP,Rk);

10 end

11 newP ←− con
(
Pn \

⋃
k∈Succh,n

Rk, newP
)

;

12 end
13 P ←− newP ;
14 N ←− len(P );

15 end
16 return P

Appendix C: Reproducibility

C.1. Interactive application to reproduce the introductory example

An interactive application to reproduce the introductory example is available at: https://pneuvial.
shinyapps.io/posthoc-bounds_ordered-hypotheses/. This application has been created with
the R package shiny (Chang et al., 2019). The code for this application is itself distributed with
the R package sansSouci at https://github.com/pneuvial/sanssouci/tree/develop/inst/

shiny-examples/ordered-hypotheses.

C.2. Code and vignette to reproduce numerical experiments

The code used to perform the numerical experiments described in Section 5 is distributed with
the R package sansSouci, see: inst/DBNR/envelopes.

A more user-friendly pdf vignette to reproduce the middle panel of Figure 12 is also available as
supplementary material (pdf format). The source code for this vignette is distributed with the R
package sansSouci, see the file: vignettes/confidenceEnvelopes localized.Rmd. It is also available
directly from R via:

> remotes::install_github("pneuvial/sanssouci@develop", build_vignettes = TRUE)

> browseVignettes(package = "sansSouci")

imsart-generic ver. 2014/10/16 file: DBNR2020_HAL.tex date: July 1, 2020
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