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Abstract: 

 

Background:  

Background: We previously presented GraphVar as a user-friendly MATLAB toolbox for 

comprehensive graph analyses of functional brain connectivity. Here we introduce a 

comprehensive extension of the toolbox allowing users to seamlessly explore easily 

customizable decoding models across functional connectivity measures as well as additional 

features. 

 

New Method: GraphVar 2.0 provides machine learning (ML) model construction, validation 

and exploration. Machine learning can be performed across any combination of graph measures 

and additional variables, allowing for a flexibility in neuroimaging applications. 

 

Results: In addition to previously integrated functionalities, such as network construction and 

graph-theoretical analyses of brain connectivity with a high-speed general linear model (GLM), 

users can now perform customizable ML across connectivity matrices, graph measures and 

additionally imported variables. The new extension also provides parametric and 

nonparametric testing of classifier and regressor performance, data export, figure generation 

and high quality export. 

 

Comparison with existing methods: Compared to other existing toolboxes, GraphVar 2.0 

offers (1) comprehensive customization, (2) an all-in-one user friendly interface, (3) 

customizable model design and manual hyperparameter entry, (4) interactive results 

exploration and data export, (5) automated queue system for modelling multiple outcome 

variables within the same session, (6) an easy to follow introductory review. 

 

Conclusions: GraphVar 2.0 allows comprehensive, user-friendly exploration of encoding 

(GLM) and decoding (ML) modelling approaches on functional connectivity measures making 

big data neuroscience readily accessible to a broader audience of neuroimaging investigators. 

 

Keywords:  MATLAB, Toolbox, Functional Connectivity, Graph Theory, Machine Learning, 

Decoding, Encoding, Reproducibility, Linear SV, Elastic Net, Model Performance, Nested 

Cross Validation, Computational Neuroscience, Precision Psychiatry 

1.0 Introduction  
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1.1 Background  

The increasing popularity of non-invasive neuroimaging techniques gave rise to vast amounts 

of data capturing the structural and functional architecture of the human brain (Van Essen et 

al. 2012 ; Van Horn et Toga 2014; Thompson et al. 2014; Eickhoff et al. 2016; Miller et al. 

2016). The neuroimaging community thus faces a growing need for comprehensive methods 

and reliable tools (Poldrack et al. 2017; Smith et Nichols 2018) to derive rigorous 

neuroscientific conclusions from such datasets. 

 

Traditional statistical approaches, including the general linear model (GLM), the workhorse of 

neuroimaging analysis, attempt to localize neural activity that correlates with behavior teased 

apart through careful hypothesis driven experimental design (Bzdok 2017a; Jack et al. 2018). 

The inferential conclusions drawn from such investigations, however, have repeatedly faced 

criticism over limitations, i.e. reproducibility (Bennett et Miller 2010; Pashler et Wagenmakers 

2012). Given the accelerating availability of data, a purely hypothesis driven approach to 

cognitive investigations may no longer suffice. The application of machine learning, i.e. 

decoding, models allows for a complementary, pattern-oriented exploration of neuroimaging 

data, offering a promising solution to the identification of previously overlooked mechanisms. 

To this end, machine learning models employing functional connectivity measures hold 

promise in the search for a more informed stratification of clinical groups (Guo et al. 2012; 

Drysdale et al. 2017; Hojjati et al. 2017). 

 

Brain network theory, or connectomics is steadily gaining momentum in the evaluation of the 

whole brain as an interconnected network, emerging as a powerful tool for capturing the 

complexity of the brains function and structure (Bullmore et Bassett 2011; Gu et al. 2015; 

Sporns et Betzel 2016). Due to ease of acquisition and a widespread prevalence of magnetic 

resonance imaging (MRI) facilities in the clinical setting, resting-state functional magnetic 

resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, 

measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest 

that reflect baseline neuronal activity. Aspects of rs-fMRI analysis still present ongoing 

methodological challenges (Cole et al. 2010; Murphy et al. 2013; Power et al. 2015; Bright et 

Murphy 2015). However, rs-fMRIs low subject compliance requirements, the convenient 

acquisition of complementary within-session structural MRI data, coupled with fMRIs high 

spatial resolution, continue to support its popularity in the investigation of intrinsic functional 

connectivity. Such investigations persist to complement inferences gained from other non-
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invasive neuroimaging modalities such as magnetoencephalography (MEG) and 

electroencephalography (EEG). 

 

1.2 Drawing conclusions from data: Encoding and decoding models 

As interpretation from data may not always be intuitive, it is important to distinguish between 

encoding models (e.g., general linear models) and decoding models (e.g. machine learning 

models) when making inference from data in neuroimaging investigations (Naselaris et al. 

2010; Haufe et al. 2014). Researchers may choose between the two complementary approaches, 

guided by whether they are trying to determine the origin of a neural process through 

hypothesis driven analysis or aim to extract information from the data. Both these flavors of 

statistical approaches are available in GraphVar.  

 

Encoding, or forward, models express the observed data as functions of some underlying 

variables. They explain or model the generation of observed data, which is why they are often 

referred to as ”generative” models. When building a forward model, (i.e. with GLM) one would 

ask: ”How well does a variable or set of variables explain the generation of the observed data?”. 

Generative models are thus useful in hypothesis driven research. GLM employs normality or 

Gaussian assumptions and an explicit error distribution model. Going a step further, one may 

choose to examine such findings in the context of existing frameworks and experimental 

insights. 

 

Decoding, or backward, models on the other hand, extract latent factors as functions of 

observed data, thereby attempting to reverse the data generating process. This is different from 

a generative model, since one is concerned with extracting hidden processes that may 

contribute to the observed data free from a bias of possible generative mechanisms. In the 

search for biomarkers, model data may include other variables in addition to neuroimaging 

measures (i.e. genetic, behavioral descriptors). When building a backward model (i.e., with 

ML) one is asking: ”Which measures contribute to the observed data?”. Going a step further, 

one would examine the contribution or significance of individual features to the observed data.  

 

This notion of data-driven exploration, deploying advanced pattern-learning algorithms with 

the aim of advancing tailored healthcare and automated medical decision making, is currently 

trending in precision psychiatry (Bzdok 2017b) with efforts to extract informative features 

from large datasets including neuroimaging measures, both on a within subject and group level, 
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providing a promise towards progress in redefining traditional stratification of clinical groups 

(Lord et al. 2012; Drysdale et al. 2017; cf. Shen et al. 2017). Decoding models, thus hold great 

promise as tools for extrapolating potentially informative features from traditionally feature- 

rich neuroimaging datasets. Decoding and encoding models can be used to complement each 

other in the search for insights into cognitive mechanisms in health and disease. 

 

1.3 Large-scale network analysis and big data – Need for comprehensive tools 

Traditionally programming expertise and in-depth technical knowledge is required to 

overcome the challenges posed by functional connectivity analysis. Common challenges 

include 1) the construction of an appropriate analysis pipeline, 2) the reproducibility of such a 

pipeline once established in terms of connectivity analysis as well as appropriate statistical 

evaluation, 3) a lack of user friendly design allowing for easy customization of pipelines for 

the inexperienced user, 4) shortcomings in the visualization and interpretability of results. To 

tackle these current shortcomings of the neuroimaging toolset, the GraphVar toolbox 

(Kruschwitz et al. 2015) emerged as a GUI-based tool covering the growing need for a 

comprehensive, user friendly exploration of functional brain connectivity as well as the 

appropriate encoding model construction and evaluation associated with such analyses. 

 

Since its release, GraphVar has been downloaded more than 4900 and cited 40 times at the 

time of writing, and has been used across resting state as well as task-based investigations (e.g., 

Vatansever et al. 2015; Polli et al. 2016; Voss et al. 2016; Golbabaei et al. 2016; Caminiti et 

al. 2016; Flodin et al. 2017; Hojjati et al. 2017; Bolt et al. 2017; Wu et al. 2017; Sala et al. 

2017). 

 

Several toolboxes are currently available for the study of brain connectivity, including the Brain 

Connectivity Toolbox (Rubinov et Sporns 2010), eConnectome (He et al. 2011), GAT 

(Hosseini et al. 2012), CONN (Whitfield-Gabrieli et Nieto-Castanon 2012), BrainNet Viewer 

(Xia et al. 2013), GTG (Spielberg 2014), BASCO (Göttlich et al. 2015), GRETNA (Wang et 

al. 2015), BRAPH (Mijalkov et al. 2017), with some toolboxes such as DynamicBC (Liao et 

al. 2014) and BSMART (Cui et al. 2008) allowing for dynamic connectivity analyses. 

However, to date, none of these toolboxes seem to offer the customizable construction of 

decoding models across a comprehensive selection of functional connectivity measures. On top 

of presenting a solution to the commonly reported challenges of functional brain connectivity 

analysis, the new GraphVar ML extension allows the user to build, validate and examine 
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network based decoding models. GraphVar ML was developed under the GNU General Public 

License v3.0, and is thus fully open source and extensible by experienced users. All GraphVar 

2.0 functionalities are available on MATLAB versions 8.4 (2014b) and upwards. As such, 

GraphVar 2.0 is both UNIX and Windows OS compatible. Some functionalities rely on the 

Statistics and Machine Learning Toolbox. Additionally, the Parallel Computing Toolbox is 

required if multiple parallel workers are selected to speed up performance. 

 

2.0 Methods: Model Construction and Validation  

The aim of the subsequent sections is to provide a practical overview of core concepts with 

regard to building and assessing decoding models that may involve graph theoretic metrics. 

Notably, GraphVar ML decoding models may include various feature types. Here we justify 

the methods implemented following the logical analysis workflow (Fig. 1) involved in 

constructing, training and evaluating a ML model in GraphVar. 

 

2.1 Building a prediction model – GraphVar ML Interface 

The new GraphVar ML extension allows users to build prediction models including measures 

calculated using the user-friendly GUI as well as any additional measures imported from a 

variable sheet. If desired, the user may choose dynamic instead of static functional connectivity 

measures, generated with the sliding window approach (Hutchinson et al. 2013). To build a 

model, users should then choose an outcome variable, i.e. prediction target, for their model. 

 

The interface also allows users to run an additional model on a nuisance variable in order to 

assess its contribution to the model (Rao et al. 2015). Users can assess the influence of nuisance 

variables such as age and gender on the predictive value of the model, which may promote 

more insightful conclusions on the validity of models. Depending on the outcome variable type 

(i.e. categorical or continuous), the user may select between building a classification or 

regression model. Support Vector (SV) or Elastic Net model learning approaches are possible. 

GraphVar ML allows users to customize the model validation algorithm using a standard or 

nested K-fold cross-validation design. The nested cross-validation option offers a 3-step nested 

cross-validation structure (Whelan 2014) with in-built model selection (Fig. 4). 

 

Finally, similar to the GLM, model performance may be evaluated by formal assessments of 

significance as enabled by parametric null-hypothesis testing or non-parametric permutation 

testing (Nichols et Holmes 2002). An interactive results viewer allows easy interpretation and 
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evaluation of prediction results including various ML metrics, as well as parametric and non-

parametric p-values. For convenience GraphVar also offers the analysis of multiple outcome 

variables, results and plot export. 

 

2.2 Selecting a Prediction Target and Features 

Multiple prediction targets may be selected and will be pipelined to be executed consecutively, 

appearing stacked in the results viewer. GraphVar ML allows the user to select a multitude of 

features to populate the design matrix (Fig.3). Users may choose between graph theoretical 

measures, raw connectivity matrix and additionally imported variables from a spreadsheet. 

 

Machine learning models typically require that the features that make up the design matrix are 

pre-processed prior to model training. Functional connectivity measures calculated with the 

GraphVar GUI do not need additional pre-processing prior to model construction assuming 

that adequate preprocessing was performed prior to timeseries or connectivity matrix import. 

As mentioned in the introduction, rs-fMRI data is rich in confounds and noise, and thus requires 

additional preprocessing where the choice of preprocessing steps may greatly impact 

reproducibility (c.f. Murphy et al. 2013, Bright et Murphy 2015, Parkes et al 2017). While 

some preprocessing tools are currently available, there is currently no gold standard on how to 

definitively deal with these issues (c.f. Yan et al. 2016, Esteban et al. 2018). Please refer to 

Appendix II, where a short summary about the currently existing literature on the issue of 

critical rs-fMRI preprocessing and network construction choice is provided. 

 

Any externally imported additional variables which were not generated using the GraphVar 

pipeline should also be quality controlled for continuity, errors in entry such as duplication, 

noise and extreme outliers if they are added as features to the design matrix (Witten et al. 2016). 

Once the selected features are pooled into a design matrix, feature scaling is implemented in 

GraphVar ML to ensure standardization via Z-score normalization. Z-score normalization 

rescales features to ensure a standard normal distribution with a mean of 0 and a standard 

deviation of 1. 

 

2.3 Regularization Method 

The application of many ML models arises in data-settings where an abundance of input 

variables are available from each participant. The flipside of such data richness, is that 

classification or regression algorithm may falsely extrapolate patterns of statistical regularity. 
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Often used to correct for overfitting, model regularization can be seen as a required step 

towards improving the performance of a predictive model (Bühlmann et Hothorn 2007). 

Regularization adds a penalty on the different parameters of the model, reducing its freedom. 

Consequently, the model will be less likely to fit the noise of the training data and which in 

turn improves the generalization abilities of the model to new data. GraphVar ML currently 

supports the use of Support Vector (SV) (Cortes et Vapnik 1995) and Elastic Net (Zou et Hastie 

2005) learning methods. The choice between an Elastic Net or SV based algorithm requires an 

understanding of the difference between L1 and L2 regularization. Linear learning models may 

be penalized using an L1 or L2 regularization approach. 

 

L1 allows feature selection, promoting sparsity. Sparse models are traditionally easier to 

interpret, with zero weight features deemed unimportant for prediction. When dealing with 

correlated features, L1 regularization will select only one out of a set of correlated features in 

a winner-takes-all approach. However, if the winning feature does not generalize well, model 

predictions may be less robust. L2, on the hand, does not offer feature selection and therefore 

does not promote sparsity. Elastic Net employs a combination of both. SV can in theory be 

trained using either L1 or L2 regularization, but our current implementation uses neither. 

Instead, it relies only on the power of separating classes by a hyperplane with a variable margin 

for generalization. Because of its inbuilt trade-off, Elastic Net may be seen as advantageous 

over SV, however SV may in many cases be computationally less expensive and suitable for 

larger datasets. 

 

Within GraphVar ML, the SV algorithm is implemented using the established LIBSVM 

package (Hsu et al. 2003; Chang et Lin 2011) while Elastic Net relies on the widely-used 

implementation Glmnet (Friedman et al. 2010). Users may select between support vector 

classification (SVC), probabilistic support vector classification, support vector Regression 

(SVR), Elastic Net classification and Elastic Net Regression. Note that while regression is 

corresponds to the GLM offered in GraphVar, at this point we do not offer logistic regression, 

the complement to classification. Furthermore, the GraphVar ML framework allows a 

straightforward extension to any other regularization method by an advanced user. In Elastic 

Net, the trade-off between L1 and L2 regularization is controlled by the alpha parameter, while 

the lambda parameter controls the strength of the penalty on the coefficients. In SVC and SVR 

parameter C optimizes the size of the hyperplane margin. The parameters are preset for all 
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GraphVar ML learning methods but may either be tuned as part of the nested cross validation 

procedure or manually overwritten by the user through the Manual Model Tuning panel. 

 

2.4 Model selection and validation 

On top of providing a standard K-fold cross-validation approach, GraphVar ML provides a 

nested cross validation option with a 3-step nested cross-validation structure for prediction 

model validation (Whelan et al. 2014). The nested cross-validation structure consists of an 

outer loop (final validation), an optional middle loop (hyperparameter optimization) and an 

optional inner loop (feature selection). The hyperparameter optimization and feature selection 

options are part of the model selection procedure. Intuitively, nested cross-validation 

introduces an additional data split, using part of the training data for the lower hierarchy level. 

Within each hierarchy level, the parameters from the winning model with the best performance 

are carried over to the higher level. One may think of it as a recursive process (Fig. 4). 

 

2.4.1 Cross-Validation – The Outer Loop: In order to test the predictive performance of a 

trained prediction model, the model needs to be evaluated on new, unseen data in a process 

known as validation. A common approach in machine learning is to hold out part of the 

available data as a test set. By doing so, one obtains an estimate of the expected out-of-sample 

model performance. However, such partitioning reduces the sample size of the training data, 

increasing the risk of 1) losing important patterns in the data set, 2) introducing a result 

dependency on a particular random choice for a pair of train and test sets. 

 

K-fold cross-validation is a commonly used approach to overcome these limitations, 

partitioning the overall sample in a way that allows independence whilst employing the same 

available data. In K-fold cross validation, the data is divided into K subsets, repeating the 

holdout method K times, such that each time, one of the K subsets is used as the test 

set/validation set and the other K-1 subsets are combined to form a training set. The resulting 

predictions are then averaged over all K trials to assess the overall performance of the model. 

The choice of K in K-fold cross validation is debatable. While many algorithms conventionally 

use a K number of 5 or 10, the selection is subject to a bias-variance trade-off. A lower K is 

computationally cheaper, produces less variance and results in more bias, while a higher K is 

more expensive, produces more variance and a lower bias (Kohavi 1995). GraphVar ML allows 

users to manually select the number of K folds. If nested cross-validation is selected, the K fold 

number in the outer loop is carried over to the middle and the inner loop. 
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Notably feature scaling within GraphVar ML is implemented within each individual test and 

train split, ensuring that the scale of the training set is applied to the test set within each fold. 

This prevents data leakage, where the predictive model is unintentionally informed by the 

unseen, i.e. holdout data, invalidating the estimated prediction performance (Kaufman et al. 

2012). 

 

2.4.2 Nested cross-validation – Hyperparameter optimization in the Middle Loop:  

Hyperparameters determine how the model is fit, for example how much regularization is 

applied. Hyperparameters are typically predefined prior to model training, unless they are 

optimized through model tuning or selection, i.e. in a nested cross-validation approach 

(Kristajic et al. 2010; cf. Varoquaux et al. 2017). Hyper- parameter optimization is typically 

performed using grid search whereby a model is trained and evaluated across a combination of 

possible hyperparameters. The goal of such a grid search procedure is to determine a winning 

combination of hyperparameter values that yields the best predictive performance when 

evaluated by cross-validation. 

 

In GraphVar ML, the exhaustiveness of the grid search may be customized by selecting the 

number of optimization steps, i.e. N. The size of the parameter space is directly determined by 

this choice (cf. Hastie 2001). A higher number of steps may be computationally expensive, due 

to high dimensionality. The range of the hyperparameters ”alpha” and ”lambda” in Elastic Net 

as well as ”C” in SV are predefined within GraphVar ML. The number of hyperparameter 

optimization steps determines the scaling of the individual step size (see Table 1). 

 

 

 

2.4.3 Nested cross-validation - Feature selection in the Innermost Loop:  

Typically, the goal of feature selection is to improve predictive performance, provide faster, 

more cost effective predictors and allow a better intuition of the underlying process that 

generated the data (Guyon 2003). 

 

On top of any feature selection which may be performed during model regularization, 

GraphVar ML can perform additional optional feature selection employing a relative user-

selected threshold. Feature selection is implemented by ranking feature weights at the 
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innermost loop. A relationship between the individual features in the design matrix and the 

predicted outcome at the corresponding nested fold is determined, thereby estimating the 

contribution of each feature to the model. Here, the relationship is calculated using a linear 

model. This implementation assumes that the individual features are not correlated - as feature 

overlap cannot be accounted for. 

 

2.5 Model performance - parametric and non-parametric testing 

Regression and classification models in machine learning are typically evaluated using a set of 

standard performance measures, or metrics. Metrics derived through parametric testing alone 

describe discrepancies between known (i.e. actual) and predicted values. Non-parametric, i.e. 

permutation, assessment allows an evaluation in a null-distribution, in order to assess if a real 

label structure, that is, a real connection between the data and the labels was established by the 

trained model (Ojola et al. 2010). 

 

3.0 Methods: Model Exploration and Evaluation  

GraphVar offers an interactive viewer that allows intuitive exploration of model performance. 

Figure 5 depicts available GraphVar ML plots as a function of the selected outcome variable 

type (i.e. classification or regression). Users may individually assess results across selected 

outcome variables. The interface also allows performance comparison at multiple network 

thresholds. Furthermore, the p-value based significance of individual feature weights in each 

model may be viewed along with the corresponding feature name. If a nuisance covariate is 

included as a feature, an additional nuisance only model is built in parallel to the full model 

(incl. the nuisance covariate). This allows a side by side comparison between the full and 

nuisance only models to assess potential influences of the nuisance variable(s) on the full 

model. Users may export relevant result data in spreadsheet format (.csv and .xlxs). Live figure 

export is possible in standard formats such as .png as well as vector format quality (.eps, .pdf). 

 

3.1 Classification Metrics 

Commonly reported classification performance metrics are implemented (Fig. 6), allowing the 

user to interact with the results and assess model performance. Plots available (Fig. 5) for 

classification performance assessment include: (1) confusion matrix, (2) receiver operating 

curve, (3) precision - recall curve, (4) feature weights, (5) null distribution histogram. 
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The confusion matrix plot (Fig. 7) displays model performance summed over all folds. For 

binary classification, i.e. patients vs. controls, true positives (TP), false positives (FP), false 

negatives (FN) and true negatives (TN) are displayed, along with the corresponding percentage 

scores. The core classification performance metrics are in turn derived from the confusion 

matrix. 

 

The receiver operating characteristic (ROC) curve (Fig. 8) (Fawcett 2006) is used to compare 

the sensitivity, or true positive rate (TPR), against the specificity, or false positive rate (FPR). 

Each point on the ROC curve represents a TPR/FPR pair corresponding to a particular decision 

threshold. In GraphVar ML, the number of decision thresholds is equal to the number of 

samples. The ROC curve is calculated once across all cross validation folds by combining the 

predictions from the different folds. Another approach may be to calculate ROC curves 

separately for each fold, and then to average them. This approach may be problematic in the 

case of smaller validation sets, where the individual per-fold ROC curves would have only very 

few decision thresholds, thus limiting their resolution and interpretability. Note that this 

approach is only valid if the predictions that are being combined have the same scale. For 

GraphVar ML, this is the case because we scale features before training, thus scaling the model 

as well. 

 

Area under the curve (AUC) scores are also displayed. AUC scores range between 0 and 1.0, 

reflecting the probability that the classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative instance. Here an AUC score below 0.5 indicates the classifier 

performs below chance. 

 

The precision-recall curve shows the trade-off between precision (TP/ TP + FP) and recall (TP/ 

TP + FN) for different thresholds. Here, a large AUC score represents both high recall and high 

precision, where high precision relates to a low false positive rate, and high recall relates to a 

low false negative rate. Additional performance metrics such as accuracy, error, F1 score and 

Matthews correlation coefficient (MCC) are also reported (see Appendix I for quick reference 

glossary of terms). 

 

3.2 Regression Metrics 

Regression performance metrics are implemented (Fig. 6) for regression model assessment. 

Plots available (Fig. 5) for regression performance assessment include: (1) scatter plot (2) 



 13 

residuals plot (3) feature weights (4) null distribution histogram. The scatter plot (Fig. 9) 

displays the actual vs. predicted values, along with a line of best fit and a coefficient of 

determination score (R2). A residuals plot allows the user to access the distribution of 

standardized residuals. 

 

Additional performance metrics such as relative absolute error (RAE), root mean squared error 

(RMSE), normalized root mean squared error (NRMSE), relative squared error (RSE) and 

mean absolute error (MAE) are available to the user (see Appendix I for quick reference 

glossary of terms). 

 

3.3 Parametric p-values and Non-parametric performance metric 

Both classification and regression models may be evaluated parametrically and non-

parametrically. Figure 6 depicts the performance metrics available in GraphVar ML as a 

function of parametric or non-parametric performance testing. 

 

Parametric p-values are calculated for the ROC AUC in classification models as well as for 

feature weights for both classification and regression. Permutation based, i.e. non-parametric 

performance metrics (i.e. AUC, accuracy or error for classification and R2 for regression) 

describe the predictive performance of the model in a null distribution. This equates to 

estimating the predictive performance of the built model in the absence of an informative label-

data relationship in the training data. A histogram plot (Fig. 10) allows users to review these 

results. 

 

Non-parametric p-values are derived by placing the actual performance metric value in the 

corresponding null-model distribution and determining its percentile position. More 

specifically, permutation based assessment allows the evaluation with respect to a 

corresponding null-distribution (e.g. an alpha level of <.05 would be achieved if the actual 

performance metric falls within the upper 95th percentile of the permutation distribution). 

Moreover, GraphVar ML also provides non-parametric p-values for feature weights to assess 

the contribution of individual feature weights in each model. The number of permutations is 

customizable and should be chosen based on the desired significance level. 
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3.4 Feature weights in classification and regression models 

In comparison to standard GLM, i.e. encoding models, machine learning methods do not show 

by themselves which variables are relevant for prediction, and which are not. To get around 

this limitation, we developed an approach which allows for the intuitive interpretation of 

feature weights. 

 

Model feature weights are estimated in a mass-univariate approach using the correlations 

between the individual features in the design matrix and the predictions of the models at the 

outermost fold, with a mean score taken across all outer folds. This score estimates the 

contribution of each feature to the model on average (Fig. 11). This approach is based on the 

relationship between encoding and decoding models outlined by Haufe et al. (2014). P-values 

describing the significance of the feature weights are generated for a parametric as well as non-

parametric distribution where appropriate. Alpha values may be chosen manually, depending 

on the desired significance threshold. Finally, false discovery rate (FDR) and Bonferroni 

method are available, allowing correction in case of alpha inflation. 

 

4.0 Limitations and caveats  

While measures used to evaluate model performance (e.g. accuracy, AUC, etc.) are calculated 

across the sum of cross- validation folds, the averaging of feature weights across folds may 

cause issues for the interpretability of the final feature weights. Thus, although parametric p-

values for feature weights are available, we strongly encourage users to base conclusions on 

results derived by permutation based significance testing for the overall model feature weights. 

Future work may improve the sensitivity of multiple comparison correction by applying a 

variant of network based statistics (NBS, Zalesky et al., 2010) or spatial pairwise clustering to 

feature weights. 

 

The effect of pre-processing steps may have on the data in general and in turn the 

interpretability of the decoding model performance, remains an open question outside the scope 

of this paper. It should be noted that the GraphVar toolbox primarily targets fMRI resting state 

analyses. Other modalities, such as MEG and EEG may require additional pipeline complexity. 

GraphVar cannot account for pre-processing induced variability (please refer to Appendix II, 

where a short summary on the issue of critical rs-fMRI preprocessing and network construction 

choice is provided). However, the toolbox allows easy replication of analysis pipelines for 
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different choices of pre-processing, which may aid and encourage investigations into these 

issues. 

Of note, GraphVar currently focusses on a limited number of methods for the construction of 

networks (c.f., Kruschwitz et al., 2015) and second-level statistical analyses (i.e., GLM and 

machine-learning) and does not claim to provide an exhaustive collection of statistical 

connectomics. Methods currently not implemented but also highly relevant may include among 

others: multivariate distance matrix regression (Shehzad et al 2014), sum of powered score 

(Kim et al 2014), graphical lasso (Friedmann et al, 2007), network-constrained lasso (Li and 

Li, 2008; Azencott et al, 2013). For a more complete review on statistical connectomics please 

refer to Chapter 11 in Fornito, Zalesky et Bullmore (2016). 

 

5.0 Conclusion  

Here we introduced GraphVar ML, the new machine learning extension to the GraphVar GUI-

based MATLAB toolbox www.nitrc.org/projects/graphvar or www.rfmri.org/GraphVar. 

GraphVar ML allows users to easily build, deploy, and evaluate decoding models built using a 

comprehensive range of functional connectivity measures as well as additional subject data. 

Asides from introducing the key concepts involved in building and evaluating a decoding 

model we provide an overview of the newly available functionalities. We anticipate that the 

new version of GraphVar makes machine learning more accessible to a wider audience of 

neuroimaging researchers and clinicians and may especially encourage reproducibility in 

resting state decoding models. 

 

Besides from building and assessing decoding models for precision psychiatry, GraphVar ML 

provides a conceptual framework for the exploration of machine learning models including 

network topological measures, allowing for data driven network based decoding outside of 

neuroimaging applications. However, such execution may likely involve additional 

customization and its discussion is beyond the scope of this paper. Furthermore, the 

implemented GUI- controlled, customizable cross-validation model construction and 

evaluation framework may be used as an alternative to the inbuilt MATLAB machine learning 

functionalities. 
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Figures: 
Fig. 1: Schematic of the general GraphVar workflow including the new GraphVar ML extension. The GraphVar 

graphical user interface (GUI) allows comprehensive customization of the analysis pipeline for the data generation 

as well as machine learning steps. A separate, interactive results viewer allows the user to selectively explore the 

model results after parametric or permutation-based (non-parametric) testing. 
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Fig. 2: Screenshot of the GraphVar ML extension within the GraphVar GUI. Users may select between building 

classification or regression models using either SV or Elastic Net. Users may also choose between executing 

simple cross-validation, nested cross validation (recommended) or entering hyperparameter(s) manually (i.e. for 

reproducibility testing). Additional (i.e. for external variable-only models) variables may be added as features 

through the additional variables field. The nuisance covariates field allows users to add nuisance covariates to the 

model, evaluating their effect by comparing the full model (incl. nuisance) against the nuisance-only model 

executed in parallel. Model performance may be evaluated using parametric or permutation testing. The number 

of permutations may be entered manually. For convenience, multiple outcome variables may be selected, cued 

and executed consecutively and will appear next to each other in the live results viewer. 
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Fig. 3: Combining features into a design matrix. Users are free to choose any feature combination when populating 

the design matrix. The term graph metric and graph measure are used interchangeably. Seven cases are possible: 

(1) graph measure(s) alone, (2) raw connectivity matrix alone, (3) standalone additional variable, (4) graph 

measure and raw connectivity matrix, (5) graph measure and additional variable, (6) raw connectivity matrix and 

additional variable, (7) combination of all three data types. Optionally, features may be generated in dynamic 

connectivity mode using summary metrics.  
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Fig. 4: Cross-validation structure implemented in GraphVar ML. The GraphVar ML panel allows for a custom 

entry of K for the outermost loop (final validation), which is automatically adapted for the middle and inner loops. 

If hyperparameter optimization is selected, GraphVar ML executes optimization using a grid search, with N steps, 

accordingly (middle loop). If feature thresholding is selected GraphVar performs feature selection inside the 

innermost loop. 
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Fig. 5: Results plots options for GraphVar ML. The interactive GraphVar ML results viewer generates standard 

plots for regression and classification model performance evaluation. P-values for both parametric and non-

parametric distributions are available where relevant (shaded plots). 
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Fig. 6: An overview of the model performance metrics available in GraphVar ML. Both classification and 

regression models may be evaluated using parametric and non-parametric tests. Classifier and regressor 

performance metrics provide an overview of the prediction performance while feature weights provide a possible 

interpretation to feature significance specific to each model. 
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Fig. 7: Confusion matrix plot inside GraphVar ML Result Viewer. Confusion matrix for binary classification. 

True Positives (TP) i.e. hits, and True Negatives (TN), i.e. correct rejections, appear green while False Positives 

(FP) i.e. Type 1 error, and False Negatives (FN), i.e. Type 2 error, appear red. Overall percentage scores are 

displayed underneath number counts. 
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Fig. 8: ROC plot inside GraphVar ML Result Viewer. Sample ROC curve for binary classification. In GraphVar 

ML, each point on the ROC represents a sample. A diagonal line indicates the 0.5 AUC threshold. An ROC curve 

under the threshold line indicates chance performance. 
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Fig. 9: Scatter plot inside GraphVar ML Result Viewer. Example results of a prediction with Elastic Net 

(regression). The full (blue) as well as nuisance-only (red) model may be compared simultaneously. 
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Fig. 10: Histogram plot inside the GraphVar ML Results Viewer. The option is available for both, regression and 

classification. The performance metric for the actual model can be compared against the null distribution. Here, 

the performance of a classifier is assessed with the AUC, comparing full model (blue) and a nuisance model 

distribution (red) are displayed for simultaneous comparison. 
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Fig. 11: Feature Weights plot inside the GraphVar MLResults Viewer. The weight scores and corresponding p-

values of a connectivity matrix are selected for a review. Features may be inspected individually for their 

corresponding contribution to the overall model. 
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Tables: 
Table 1: Grid search details for GraphVar ML. Hyper-parameters associated with each available learning model, 

along with their respective spacing scales and possible ranges. Steps are even and determined by the choice of N. 

(*cf. Hsu et al. 2003). 

 
Learning model Details 

Parameter Spacing scale Range 
Linear SV classification (SVC) C logarithmic 10-2 to 103 

Linear SV regression (SVR) Nu linear 0 to 1 
Elastic Net classification Alpha linear 0 to 1 

 Lambda logarithmic 10-2 to 103 
Elastic Net regression Alpha linear 0 to 1 

 Lambda logarithmic 10-2 to 103 
 
  



 37 

Appendix I  
Table 1. Quick reference glossary of terms in GraphVar ML. 

Term Description 

Encoding i.e., Forward model. (such as GLM) How could data be generated? 

Decoding i.e., Backward model. Could one extract/identify informative features? 

Regression Predict a continuous quantity. e.g. “age” 

Classification Predict a discrete class or group label. e.g. “control”. 

Binary Classification Determine membership of 2 groups. e.g. “patient” vs. “control”. 

Feature Individual property of data. e.g. a chosen measure. 

Design Matrix i.e., Feature vector. Initially selected features to be considered in model training. 

Feature scaling Correct value range for features, decrease possible wide value range (variance). 

Standardization Type of feature scaling. Gives features properties of a standard normal distribution. 

Data leakage Properties/information from the validation data is used during model training. 

Overfitting (Model) Model fails to generalize well when validating on unseen data. 

Regularization Tuning the complexity of a model to ensure it does not overfit. 

Sparse model Model with small number of nonzero parameters or weights, opp. To “dense” model. 

L1 (Regularization) In-build feature selection. Output is sparse. 

L2 (Regularization Has analytical solution. No feature selection. Output is non-sparse. 

Support Vector Points that define i.e., “support” the decision boundary i.e., hyperplane. 

Elastic Net Linearly combines L1 and L2 regularization in Elastic Net regularization. 

Alpha (Parameter) Sets the ratio between L1 and L2 regularization in Elastic Net regularization. 

Lambda (Parameter) Sets the strength of the penalty on the coefficients in Elastic Net regularization. 

C (Parameter) Penalty parameter of error term (in linear SVM). 

Separating hyperplane margin = small (large C) or large (small C). 

Model selection i.e., model tuning. In nested cross-validation, selection of wining model settings. 

Hyperplane optimization Determine optimum choice for tunable model parameters (i.e. penalty terms) 

across a custom range. (e.g. nested cross-validation) 

Grid search Exhaustive search through a manually specified subset of the hyperparameter space. 

Feature selection Selection of subset of relevant features for use in model construction. 

Feature weights Weight attributed to individual features with regard to model i.e., prediction performance. 

Nuisance covariate i.e., nuisance variable. e.g., gender or age. which is not of interest in the analysis. 

Accuracy Ratio. Correctly predicted observation to total observations. 

Best use: balanced (class) sample datasets. Avoid: 1class dominates sample. 

Error Inverse of accuracy. Sometimes reported alt. to accuracy. 

Precision Ratio. Intuition: When model predicts condition positive, how often is it correct? 

Sensitivity (i.e., Recall) Intuition: When condition is actually positive, how often does it predict con. positive? 

Specificity Intuition: When condition is actually negative, how often does it predict con. negative? 

F1 (Score) Harmonic average of precision and recall. 

AUC (Score) Derived from ROC curve. Ranges from 1 (perfect) to zero. 0.5 indicates performance at random. 

Matthews CC Balanced measure for unevenly class balance in binary classification. Ranges from 1 (perfect) to -1. 

Standardized residuals Ratio. Plotting visualizes residual dispersion patterns on standardized scale (detect potential outliers). 

R2 Coefficient of determination. Ranges from 0 to 1 (perfect). 

RAE Relative absolute error. Allows comparison between models whose errors are measured in different units. 

RMSE Root-mean-square error/deviation. Average absolute error. Lower = better fit. 

NRMSE Normalized RSME. Allows comparison between datasets or models with different scales. 

RSE Residual standard error. Large values indicate a poor fit. 

MAE Mean absolute error. Indicates magnitude of the error. Does not specify if over or under (prediction). 
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Appendix II 
 

Short summary on the issue of critical rs-fMRI preprocessing and network construction choice 

Although the effect of pre-processing strategies on rs-fMRI data in general, and specifically on network 

construction and graph theoretic network measures, remains an open question that is outside the scope of this 

paper, we want to provide a short summary about this critical issue with the aim to direct the users` awareness to 

the importance of correct preprocessing and network construction.  

 

Rs-fMRI data is rich in confounds and noise. For this reason, it requires adequate preprocessing, and the choice 

of preprocessing steps may greatly impact reliability (c.f. Murphy et al. 2013, Bright et Murphy 2015, Parkes et 

al 2017). Although some all-in-one preprocessing tools have emerged (e.g., DPABI, Yan et al. 2016; FMRIPrep, 

Esteban et al. 2018) in parallel to major fMRI analysis toolboxes (e.g., CONN, 

https://sites.google.com/view/conn/; SPM, www.fil.ion.ucl.ac.uk/spm/; FSL, https//.fsl.fmrib.ox.ac.uk), there is 

currently no gold standard on how to definitely deal with the largely heterogeneous noise. Moreover, it has been 

shown that the choice and the ordering of preprocessing steps may impact network topological graph measures 

(e.g., Braun et al., 2012;  Andellini et al., 2015; Aurich et al., 2015; Gargouri et al., 2018). Due to this complexity, 

careful considerations should be given on how to preprocess the data for most adequate use with respect to the 

research hypothesis. 

 

To guide the user, we recommend two recent studies (Ciric et al., 2017; Parkes et al., 2018) that highlight and 

evaluate various motion correction strategies and pipelines for rs-fMRI data, as well as a review (Andellini et al., 

2015) highlighting the impact of various preprocessing steps on graph measures. Specific thoughts may be given 

on whether to regress out the global mean signal (GSR) or not. Regression against the global mean signal has been 

shown to shift correlation distributions from a largely positive mean towards a mean of zero by artificially 

introducing negative correlations. This is a fundamental argument against application of GSR (Murphy et al., 

2009; Weissenbacher et al., 2009, as many graph theoretic measures cannot deal with negative edge weights, so 

these edges may need to be discarded for subsequent network analyses (Rubinov and Sporns, 2010). On the other 

hand, and in favor of GSR, the global signal is highly associated with motion and respiratory artefacts (Power et 

al., 2017). Furthermore, it has been argued that GSR may also remove a true shared covariation in neuronal firing 

(i.e., a true global neuronal signal), thereby revealing the true connectivity of neuronal populations that would 

have otherwise been masked by the dominant global signal (Fox et al., 2009; Schölvinck et al., 2010; Keller et al., 

2013; Kruschwitz et al., 2015).  

 

Of fundamental importance for reliable assumptions about the underlying data are also choices of network 

properties such as nodes and links. As nodes and links define a graph (the basis for network topological metrics), 

the neurobiological interpretation is constrained by this choice. While network nodes can range from the voxel-

level to a broader macro-scale, it is important that nodes should have intrinsic consistency, extrinsic 

differentiation, and be spatially constrained (Fornito, Zalesky & Bullmore, 2016). Studies that compared strategies 

of node selection (i.e., parcellation scale) found whole-brain network topological measures to be robust over 

different scales but highlighted that node specific parameters can vary with the size of the parcellation scale 
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(Fornito et al., 2010; Hayasaka and Laurienti, 2010). Despite appropriate correction of confounds such as 

physiological noise (with or without GSR), thoughts should also be given in how to define network links. These 

can range from decisions about the frequency range that will be considered after band-pass filtering (where wider 

ranges have been shown to result in more reliable graph metrics; e.g., Braun et al., 2012; Andellini et al., 2015) 

to the choice of the estimation of a measure of connectivity between nodes and definition of a significance 

threshold for selection of substantially contributing links (e.g. Zalesky et al., 2010). While most studies use 

Pearson correlation to estimate connectivity between nodes, partial correlation may be preferable for some 

network metrics (Rubinov and Sporns, 2010; Kruschwitz et al., 2018). It is also noteworthy that Smith et al. (2011) 

found methods based on covariance to be quite sensitive to the underlying network, as well as several Bayesian 

net methods. 
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