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LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF
RADEMACHER MATRICES

ALICE GUIONNET AND JONATHAN HUSSON

Abstract. In this article, we consider random Wigner matrices, that is symmetric
matrices such that the subdiagonal entries of Xn are independent, centered, and with
variance one except on the diagonal where the entries have variance two. We prove
that, under some suitable hypotheses on the laws of the entries, the law of the largest
eigenvalue satisfies a large deviation principle with the same rate function as in the
Gaussian case. The crucial assumption is that the Laplace transform of the entries must
be bounded above by the Laplace transform of a centered Gaussian variable with same
variance. This is satisfied by the Rademacher law and the uniform law on [−

√
3,
√

3].
We extend our result to complex entries Wigner matrices and Wishart matrices.

1. Introduction

Very few large deviation principles could be proved so far in random matrix theory.
Indeed, the natural quantities of interest such as the spectrum and the eigenvectors are
complicated functions of the entries. Hence, even if one considers the simplest model of
Wigner matrices which are self-adjoint with independent identically distributed entries
above the diagonal, the probability that the empirical measure of the eigenvalues or the
largest eigenvalue deviates towards an unlikely value is very difficult to estimate. A well
known case where probabilities of large deviations can be estimated is the case where
the entries are Gaussian, centered and well chosen covariances, the so-called Gaussian
ensembles. In this case, the joint law of the eigenvalues has an explicit form, independent
of the eigenvectors, displaying a strong Coulomb gas interaction. This formula could be
used to prove a large deviations principle for the empirical measure in [8] and for the largest
eigenvalue [7] (see also [19] for further discussions of the Wishart case, and [12]). More
recently, in a breakthrough paper, C.Bordenave and P. Caputo [11] tackled the case of
matrices with heavy tails, that is Wigner matrices with entries with stretched exponential
tails, going to zero at infinity more slowly than a Gaussian tail. The driving idea to
approach this question is to show that large deviations are in this case created by a few
large entries, so that the empirical measure deviates towards the free convolution of the
semi-circle law and the limiting spectral measure of the matrix created by these few large
entries. This idea could be also used to grasp the large deviations of the largest eigenvalue
by F.Augeri [2]. In the Wishart case, [13] considered the large deviations for the largest
eigenvalue of very thin Wishart matrices W = GG∗, in the regime where the matrix G is
L×M with Lmuch smaller thanM . Hence large deviations for bounded entries, or simply
entries with sub-Gaussian tails, remained mysterious in the case of Wigner matrices or
Wishart matrices with L of orderM . In this article we analyze the large deviations of the
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largest eigenvalue of Wigner matrices with Rademacher or uniformly distributed random
variables. More precisely our result holds for any independent identically distributed
entries with distribution with Laplace transform bounded above by the Laplace transform
of the Gaussian law with the same variance. We then prove a large deviation principle
with the same rate function than in the Gaussian case: large deviations are universal in
this class of measures. We show that this result generalizes to complex entries Wigner
matrices as well as to Wishart matrices. We are considering the case of general sub-
Gaussian entries in a companion paper with F. Augeri. We show in particular that the
rate function is different from the rate function of the Gaussian case, at least for deviations
towards very large values.

1.1. Statement of the results. We consider a family of independent real random vari-
ables (a(1)

i,j )0≤i≤j≤N , such that the variables a(1)
i,j are distributed according to the laws µNi,j.

We moreover assume that the µNi,j are centered :

µNi,j(x) =
∫
xdµNi,j(x) = 0

and with covariance:

µNi,j(x2) =
∫
x2dµNi,j(x) = 1,∀1 ≤ i < j ≤ N, µNi,i(x2) = 2, ∀1 ≤ i ≤ N .

We say that a probability measure µ has a sharp sub-Gaussian Laplace transform iff

∀t ∈ R, Tµ(t) =
∫

exp{tx}dµ(x) ≤ exp
{t2µ(x2)

2
}
. (1)

The terminology “sharp” comes from the fact that for t small, we must have

Tµ(t) ≥ exp{t
2µ(x2)

2 (1 + o(t))} .

Then we assume that

Assumption 1.1 (A0). We assume that the µNi,j satisfy a sharp Gaussian Laplace trans-
form in the sense that

• (µNi,j)i≤j have a sharp sub-Gaussian Laplace transform,
• The µNi,j have a uniform lower bounded Laplace transform: For any δ > 0 there
exists ε(δ) > 0 such that for any |t| ≤ ε(δ), any 1 ≤ i ≤ j ≤ N , any N ∈ N,

TµNi,j(t) ≥ exp{
(1− δ)t2µNi,j(x2)

2 } .

Moreover, we assume that the TµNi,j are uniformly C3 in a neighborhood of the origin: for
ε > 0 small enough sup|t|≤ε supi,j,N |∂3

t lnTµNi,j(t)| is finite.

Observe that the µNi,j have a uniform lower bounded Laplace transform as soon as they
do not depend on N and there are finitely many different of them.
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Remark 1.1. We could assume a weaker upper bound on the Laplace transform for the
diagonal entries such as the existence of A finite such that∫

etxdµNi,i(x) ≤ exp{t2 + A|t|}, ∀1 ≤ i ≤ N,

see the proof of Theorem 1.17.

Example 1.2. (1) Clearly a centered Gaussian variable has a sharp sub-Gaussian
Laplace transform.

(2) The Rademacher law B = 1
2(δ−1 + δ1) satisfies a sharp sub-Gaussian Laplace

transform since for all real number t
TB(t) = cosh(t) ≤ et

2/2 .

(3) U , the uniform law on the interval [−
√

3,
√

3], satisfies a sharp sub-Gaussian
Laplace transform since we have∫

x2dU(x) = 1 ,

and
TU(t) = 1

t
√

3
sinh(t

√
3) =

∑
n≥0

t2n3n
(2n+ 1)! .

Since for all n ≥ 0, 3n
(2n+1)! ≤

1
2nn! , it follows that TU(t) ≤ e

t2
2 .

(4) More generally if µ is a symmetric measure on R (i.e. such as µ(−A) = µ(A) for
any Borel subset A of R) such that∫

x2dµ(x) = 1,
∫
x2ndµ(x) ≤ (2n)(2n− 1) · · · (n+ 1)

2n ∀n ≥ 2

then µ satisfies a sharp sub-Gaussian Laplace transform.
(5) If X, Y are two independent variables with distribution µ and µ′, two probability

measures which have a sharp sub-Gaussian Laplace transform, for any a ∈ [0, 1],
the distribution of

√
aX +

√
1− aY has a sharp sub-Gaussian Laplace transform.

(6) If µNi,j = µ for all i, j, then they satisfy a uniform lower bound on the Laplace
transform. Also, if all the µN,j are symmetric, the lower bound is automatically
satisfied as the Laplace transform is lower bounded by e 1

2 t
2.

Note that many measures do not have a sharp sub-Gaussian Laplace transform, e.g. the
sparse Gaussian law obtained by multiplying a Gaussian variable by a Bernoulli variable,
or the well chosen sum of Rademacher laws. We will also need that the empirical measure
of the eigenvalues concentrates in a stronger scale than N , see Lemma 1.11. To this end
we will also make the following classical assumptions to use standard concentration of
measure tools.

Assumption 1.2. There exists a compact set K such that the support of all µNi,j is included
in K for all i, j ∈ {1, . . . , N}and all integer number N , or all µNi,j satisfy a log-Sobolev
inequality with the same constant c independent of N .

Remark 1.3. All the examples of Example 1.2 satisfy Assumption 1.2, except possibly
for sums of Gaussian variables and bounded entries.
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We then construct for all N ∈ N, a real Wigner matrix N ×N X
(1)
N by setting :

X
(1)
N (i, j) =

{ a
(1)
i,j√
N

when i ≤ j,
a

(1)
j,i√
N

when i > j .

We denote λmin(X(1)
N ) = λ1 ≤ λ2 · · · ≤ λN = λmax(X(1)

N ) the eigenvalues of X(1)
N . It

is well known [21] that under our hypotheses the empirical distribution of the eigenval-
ues µ̂N

X
(1)
N

= 1
N

∑N
i=1 δλi converges weakly towards the semi-circle distribution σ: for all

bounded continuous function f

lim
N→∞

∫
f(x)dµ̂N

X
(1)
N

(x) =
∫
f(x)dσ(x) = 1

2π

∫ 2

−2
f(x)
√

4− x2dx a.s.

It is also well known that the eigenvalues stick to the bulk since we assumed the entries
have sub-Gaussian moments [14, 1] :

lim
N→∞

λmin(X(1)
N ) = −2 lim

N→∞
λmax(X(1)

N ) = 2, a.s

Our main result is a large deviation principle from this convergence.

Theorem 1.4. Suppose Assumptions 1.1 and 1.2 hold. Then, the law of the largest
eigenvalue λmax(X(1)

N ) of X(1)
N satisfies a large deviation principle with speed N and good

rate function I(1) which is infinite on (−∞, 2) and otherwise given by

I(1)(ρ) = 1
2

∫ ρ

2

√
x2 − 4dx .

In other words, for any closed subset F of R,

lim sup
N→∞

1
N

lnP
(
λmax(X(1)

N ) ∈ F
)
≤ − inf

F
I(1) ,

whereas for any open subset O of R

lim inf
N→∞

1
N

lnP
(
λmax(X(1)

N ) ∈ O
)
≥ − inf

O
I(1) .

The same result holds for the opposite of the smallest eigenvalue −λmin(X(1)
N ).

Therefore, the large deviations principles are the same as in the case of Gaussian entries
as soon as the entries have a sharp sub-Gaussian Laplace transforms and are bounded,
for instance for Rademacher variables or uniformly distributed variables. Hereafter we
show how this result generalizes to other settings. First, this result extends to the case of
Wigner matrices with complex entries as follows. We now consider a family of independent
random variables (a(2)

i,j )1≤i≤j≤N , such that the variables a(2)
i,j are distributed according to

a law µNi,j when i ≤ j, which are centered probability measures on C (and on R if i = j).
We write a(2)

i,j = xi,j + iyi,j where xi,j = <(a(2)
i,j ) and yi,j = =(a(2)

i,j ). We suppose that for
all i ∈ [1, N ], yi,i = 0. In this context, for a probability measure on C, we will consider
its Laplace transform to be the function

Tµ(z) :=
∫

exp{<(az̄)}dµ(a) .
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We assume that
Assumption 1.3 (A0c). For all i < j

∀t ∈ C, TµNi,j(t) ≤ exp(|t|2/4)
and for all i

∀t ∈ R, TµNi,i(t) ≤ exp(t2/2) .
We assume that for all δ > 0 there exists ε(δ) > 0 so that for all complex number t with

modulus bounded by ε(δ)

TµNi,j(t) ≥ exp{|t|
2
2

4 (1− δ)}, i < j, TµNi,i(t) ≥ exp{(1− δ)t2
2 } .

Moreover, for ε > 0 small enough sup|t|≤ε supi,j,N |∂3
t lnTµNi,j(t)| is finite.

Observe that the above hypothesis implies that for all i < j, 2E[x2
i,j] = 2E[y2

i,j] =
E[x2

i,i] = 1 and E[xi,jyi,j] = 0. Examples of distributions satisfying Assumption 1.3 are
given by taking (xi,j, yi,j) centered independent variables with law satisfying a sharp sub-
Gaussian Laplace transform. Hereafter, we extend naturally Assumption 1.2 by assuming
that the compact K is a compact subset of C or log-Sobolev inequality holds in the
complex setting.

We then construct for all N ∈ N, X(2)
N a complex Wigner matrix N ×N by letting :

X
(2)
N (i, j) =

{ a
(2)
i,j√
N

when i ≤ j

a
(2)
j,i√
N

when i > j

Again, it is well known that the spectral measure of X(2)
N converges towards the semi-circle

distribution σ and that the eigenvalues stick to the bulk [1].
Theorem 1.5. Assume that Assumptions 1.3 and 1.2 hold. Then, the law of the largest
eigenvalue λmax(X(2)

N ) of X(2)
N satisfies a large deviation principle with speed N and good

rate function I(2) which is infinite on (−∞, 2) and otherwise given by

I(2)(ρ) = 2I(1)(ρ) =
∫ ρ

2

√
x2 − 4dx .

We finally generalize our result to the case of Wishart matrices. We let L,M be two
integers with N = L + M . Let G(β)

L,M be an L × M matrix with independent entries
(a(β)
i,j ) 1≤i≤L

1≤j≤M
with laws µL,Mi,j on the real line if β = 1 and on the complex plane if β = 2.

The µL,Mi,j satisfy a sharp sub-Gaussian Laplace transform (with real or complex values) for
all i, j ∈ [1, L]× [1,M ], and its complementary uniform lower bound (Assumption 1.1, or
Assumption 1.3), are centered and have covariance one. We set W (β)

L,M = 1
L
G

(β)
L,M(G(β)

L,M)∗.
WhenM/L converges towards α, the spectral distribution of W (β)

M,L converges towards the
Pastur-Marchenko law [18]: for any bounded continuous function f

lim
N→∞

∫
f(x)dµ̂L

W
(β)
L,M

(x) =
∫
f(x)dπα(x) a.s
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where if α ≥ 1 and aα = (1−
√
α)2, bα = (1 +

√
α)2,

πα(dx) =

√
(bα − x)(x− aα)

2πx 1[aα,bα]dx .

When α < 1, the limiting spectral measure has aditionnally a Dirac mass at the origin
with mass 1 − α. We hereafter concentrates on the case M ≥ L up to replace W (β)

L,M by
(G(β)

L,M)∗G(β)
L,M/M . Again, the extreme eigenvalues were shown to stick to the bulk [5]. We

prove a large deviation principle from this convergence:

Theorem 1.6. Assume that the µNi,j satisfy Assumption 1.2. Assume they satisfy a sharp
Gaussian Laplace transform 1.1 when β = 1 or 1.3 when β = 2, and a uniform lower
bounded Laplace transform 1.1 when β = 1 or 1.3 when β = 2. Assume that there exists
α ≥ 1 and κ > 0 so that M

L
− α = o(N−κ). Then, the law of the largest eigenvalue

λmax(W (β)
L,M) of W (β)

L,M satisfies a large deviation principle with speed N and good rate
function J (β) which is infinite on (−∞, bα) and otherwise given by

J (β)(x) = β

4(1 + α)

∫ x

bα

√
(y − bα)(y − aα)

y
dy .

where β = 1 in the case of real entries, and β = 2 in the case of complex entries.

This problem can be seen as a generalization of the previous cases since if we consider
the N ×N matrix

X
(wβ)
N =

 0 1√
N
G

(β)
L,M

1√
N

(G(β)
L,M)∗ 0


the spectrum of the N × N matrix X(wβ)

N is given by L eigenvalues
√

L
N
λ, L eigenvalues

−
√

L
N
λ, where λ are the eigenvalues of W (β)

L,M , and M − L vanishing eigenvalues. Hence,
the largest eigenvalue of W (β)

L,M is the square of the largest eigenvalue of X(wβ)
N multiplied

by N/L. It is therefore equivalent to show a large deviation principle for the largest
eigenvalue of X(wβ)

N with speed N and rate function
I(wβ)(x) = J (β)((1 + α)x2) .

This amounts to consider a Wigner matrix with some entries set to zero. We denote a(wβ)
i,j

the entries of
√
NX

(wβ)
N :

a
(wβ)
i,j = 0, if i, j ≤ L or i, j ≥ L+ 1,

a
(wβ)
i,j = a

(β)
i−L,j, i ≥ L+ 1, j ≤ L,

a
(wβ)
i,j = a

(β)
j−L,i, j ≥ L+ 1, i ≤ N.

Again, we denote by µNi,j the law of the i, jth entry of this matrix. Hereafter, we denote
by σw the limiting spectral distribution of X(wβ)

N given for any test function f by∫
f(x)dσw(x) = 1

1 + α

(∫
f(
√

x

1 + α
)dπα(x) +

∫
f(−

√
x

1 + α
)dπα(x)

)
+ α− 1
α + 1f(0) .
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Therefore, we shall prove Theorem 1.6 by showing that

Theorem 1.7. Assume that the µNi,j satisfy Assumption 1.2. Assume they satisfy a sharp
Gaussian Laplace transform 1.1 when β = 1 or 1.3 when β = 2, and a uniform lower
bounded Laplace transform 1.1 when β = 1 or 1.3 when β = 2. Assume that there exists
α ≥ 1 and κ > 0 so that M

L
− α = o(N−κ). Then, the law of the largest eigenvalue

λmax(X(wβ)
N ) of X(wβ)

N satisfies a large deviation principle with speed N and good rate
function I(wβ) which is infinite on (−∞, b̃α), if b̃α =

√
(1 + α)−1bα and otherwise given by

I(wβ)(x) = β

1 + α

∫ x

b̃α

1
y

√
(1 + α)2(y2 − 1)2 − 4αdy .

where β = 1 in the case of real entries, and two in the case of complex entries.

Acknowledgments: Alice Guionnet wishes to thank A. Dembo for long discussions
about large deviations for the largest eigenvalue for sub-Gaussian matrices in Abu Dhabi
in 2011. The idea to tilt measures by the spherical integral came out magically from a
discussion with M. Potters in UCLA in 2017 and we wish to thank him for this beautiful
inspiration. We also benifited from many discussions with M. Maida with whom one of the
author is working on a companion paper on unitarily invariant ensembles, as well as with
Fanny Augeri with whom we are working on a follow up paper tackling the general sub-
Gaussian case. Finally, we are very grateful for stimulating discussions with O. Zeitouni
and N. Cook.

This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université
de Lyon, within the program "Investissements d’Avenir" (ANR-11-IDEX- 0007) operated
by the French National Research Agency (ANR).

1.2. Scheme of the proof. The idea of the proof is reminiscent of Cramer’s approach
to large deviations: we appropriately tilt measures to make the desired deviations likely.
The point is to realize that it is enough to shift the measure in a random direction and
use estimates on spherical intergrals obtained by one of the author and M. Maida [15].
To be more precise, we shall follow the usual scheme to prove first exponential tightness:

Lemma 1.8. For β = 1, 2, w1, w2, assume that the distribution of the entries a(β)
i,j satisfy

Assumption 1.2 for β = 1, w1 and Assumption 1.3 for β = 2, w2. Then:

lim
K→+∞

lim sup
N→∞

1
N

lnP[λmax(X(β)
N ) > K] = −∞

Similar results hold for λmin(X(β)
N ).

This result is proved in Section 2. Therefore it is enough to prove a weak large deviation
principle.

In the following we summarize the assumptions on the distribution of the entries as
follows :

Assumption 1.4. Either the µNi,j are uniformly compactly supported in the sense that
there exists a compact set K such that the support of all µNi,j is included in K, or the
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µNi,j satisfy a uniform log-Sobolev inequality in the sense that there exists a constant c
independent of N such that for all smooth function f∫

f 2 ln f 2

µNi,j(f 2)dµ
N
i,j ≤ cµNi,j(‖∇f‖2

2) .

When β = 1, w1 µ
N
i,j satisfy Assumption 1.1, when β = 2, w2, they satisfy Assumption 1.3.

In the case of Wishart matrices, β = w1 or w2, we assume that there exists α > 1 and
κ > 0 so that |M

L
− α| ≤ N−κ for N large enough.

We shall first prove that we have a weak large deviation upper bound:

Theorem 1.9. Assume that Assumption 1.4 holds. Let β = 1, 2, w1, w2. Then, for any
real number x,

lim sup
δ→0

lim sup
N→∞

1
N

lnP
(∣∣∣λmax(X(β)

N )− x
∣∣∣ ≤ δ

)
≤ −Iβ(x)

We shall then obtain the large deviation lower bound.

Theorem 1.10. Assume that Assumption 1.4 holds. Let β = 1, 2, w1, w2. Then, for any
real number x,

lim inf
δ→0

lim inf
N→∞

1
N

lnP
(∣∣∣λmax(X(β)

N )− x
∣∣∣ < δ

)
≥ −Iβ(x)

To prove Theorem 1.9, we first show that the rate function is infinite below the right
edge of the support of the limiting spectral distribution. To this end, we use that the
spectral measure µ̂N converges towards its limit which much larger probability. We denote
this limit σβ: σ1 = σ2 = σ and σw1 = σw2 = σw. We let d denote the Dudley distance:

d(µ, ν) = sup
‖f‖L≤1

∣∣∣∣∫ f(x)dµ(x)−
∫
f(x)dν(x)

∣∣∣∣ ,
where ‖f‖L = supx 6=y

∣∣∣f(x)−f(y)
x−y

∣∣∣+ supx |f(x)| .

Lemma 1.11. Assume that the µNi,j are uniformly compactly supported or satisfy a uniform
log-Sobolev inequality, as well as, in the case w1, w2, that there exists κ > 0 such that
|M
N
− α| ≤ N−κ. Then, for β = 1, 2, w1, w2, there exists κ′ ∈ (0, 1

10 ∧ κ) such that

lim sup
N→∞

1
N

lnP
(
d(µ̂N

X
(β)
N

, σβ) > N−κ
′
)

= −∞ .

The proof of this lemma is given in the appendix. As a consequence, we deduce that
the extreme eigenvalues can not deviate towards a point inside the support of the limiting
spectral measure with probability greater than e−N1+κ and therefore

Corollary 1.12. Under the assumption of Lemma 1.11, For β = 1, 2 let x be a real
number in (−∞, 2) or, for β = w1, w2, take x ∈ (−∞, b̃α). Then, for δ > 0 small enough,

lim sup
N→∞

1
N

lnP
(
|λmax(X(β)

N )− x| ≤ δ
)

= −∞ .
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Indeed, as soon δ > 0 is small enough so that x+δ is smaller than 2−δ for β = 1, 2 (resp
bα−δ for β = w1, w2), d(µ̂N , σβ) is bounded below by some κ(δ) > 0 on |λmax(X(β)

N )−x| ≤
δ. Hence, Lemma 1.11 implies the Corollary.

In order to prove the weak large deviation bounds for the remaining x’s, we shall tilt
the measure by using spherical integrals:

IN(X, θ) = Ee[eθN〈e,Xe〉]
where the expectation holds over e which follows the uniform measure on the sphere SN−1

with radius one. The asymptotics of

JN(X, θ) = 1
N

ln IN(X, θ)

were studied in [15] where it was proved that

Theorem 1.13. [15, Theorem 6]
If (EN)N∈N is a sequence of N ×N real symmetric matrices when β = 1 and complex

Gaussian matrices when β = 2 such that :
• The sequence of empirical measures µ̂NEN weakly converges to a compactly supported
measure µ,
• There are two reals λmin(E), λmax(E) such that limN→∞ λmin(EN) = λmin(E) and

limN→∞ λmax(EN) = λmax(E),
and θ ≥ 0, then :

lim
N→∞

JN(EN , θ) = J(µ, θ, λmax(E))

The limit J is defined as follows. For a compactly supported probability measure we
define its Stieltjes transform Gµ by

Gµ(z) :=
∫
R

1
z − t

dµ(t)

We assume hereafter that µ is supported on a compact [a, b]. Then Gµ is a bijection
from R \ [a, b] to ]Gµ(a), Gµ(b)[\{0} where Gµ(a), Gµ(b) are taken as the limits of Gµ(t)
when t→ a− and t→ b+. We denote by Kµ its inverse and let Rµ(z) := Kµ(z)− 1/z be
its R-transform as defined by Voiculescu in [20] (defined on ]Gµ(a), Gµ(b)[). In the sequel,
for any compactly supported probability measure µ, we denote by r(µ) the right edge of
the support of µ. In order to define the rate function, we now introduce, for any θ ≥ 0,
and λ ≥ r(µ),

J(µ, θ, λ) := θv(θ, µ, λ)− β

2

∫
log

(
1 + 2

β
θv(θ, µ, λ)− 2

β
θy

)
dµ(y),

with

v(θ, µ, λ) :=
{
Rµ( 2

β
θ), if 0 ≤ 2θ

β
≤ Hmax(µ, λ) := limz↓λ

∫ 1
z−ydµ(y),

λ− β
2θ , if 2θ

β
> Hmax(µ, λ),

We shall later use that spherical integrals are continuous. We recall here Proposition 2.1
from [17] and Theorem 6.1 from [15]. We denote by ‖A‖ the operator norm of the matrix
A given by ‖A‖ = sup‖u‖2=1 ‖Au‖2 where ‖u‖2 =

√∑ |ui|2.
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Proposition 1.14. For every θ > 0, every κ ∈]0, 1/2[, everyM > 0, there exist a function
gκ : R+ → R+ going to 0 at 0 such that for any δ > 0 and N large enough, with BN and
B′N such that d(µ̂NBN , µ̂

N
B′N

) < N−κ, |λmax(BN) − λmax(BN)| < δ and supN ||BN || ≤ M ,
supN ||B′N || ≤M :

|JN(BN , θ)− JN(B′N , θ)| < gκ(δ) .

From Theorem 1.13 and Proposition 1.14, we deduce that :

Corollary 1.15. For every θ > 0, every κ ∈]0, 1/2[, every M > 0, for any δ > 0 and
µ a probability measure supported in [−M,M ], if we denote by BN the set of symmetric
matrices BN such that d(µBN , µ) < N−κ, |λmax(BN)− ρ| < δ, and supN ||BN || ≤ M , for
N large enough, we have :

lim sup
N→∞

sup
BN∈BN

|JN(BN , θ)− J(µ, θ, ρ)| ≤ 2gκ(δ)

where gκ is the function in Proposition 1.14.

By Lemma 1.8 and Lemma 1.11, it is enough to study the probability of deviations on
the set where JN is continuous:

Corollary 1.16. Suppose Assumption 1.2 holds. For δ > 0, take a real number x and
set for M large (larger than x+ δ in particular), AMx,δ to be the set of N ×N self-adjoint
matrices given by

AMx,δ = {X : |λmax(X)− x| < δ} ∩ {X : d(µ̂NX , σβ) < N−κ
′} ∩ {X : ‖X‖ ≤M} ,

where κ′ is chosen as in Lemma 1.11 . Let x be a real number, δ > 0 and κ′ as in Lemma
1.11. Then, for any L > 0, for M large enough

P
(∣∣∣λmax(X(β)

N )− x
∣∣∣ < δ

)
= P

(
X

(β)
N ∈ AMx,δ

)
+O(e−NL) .

We are now in position to get an upper bound for P
(
X

(β)
N ∈ AMx,δ

)
. In fact, by the

continuity of spherical integrals of Corollary 1.15, for any θ ≥ 0,

P
(
X

(β)
N ∈ AMx,δ

)
= E

IN(X(β)
N , θ)

IN(X(β)
N , θ)

1AM
x,δ


≤ E[IN(X(β)

N , θ)] exp{−N inf
X∈AM

x,δ

JN(X, θ)}

≤ E[IN(X(β)
N , θ)] exp{N(2gκ(δ)− J(σβ, θ, x))} (2)

where we used that x→ J(σβ, θ, x) is continuous and took N large enough. It is therefore
central to derive the asymptotics of

FN(θ, β) = 1
N

lnE[IN(X(β)
N , θ)]

and we shall prove in section 3 that

Theorem 1.17. Suppose Assumption 1.4 holds. For β = 1, 2, w1, w2 and θ ≥ 0,
lim
N→∞

FN(θ, β) = F (θ, β)
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with F (θ, β) = θ2/β if β = 1, 2 and when β = wi, i = 1, 2:

F (θ, wi) = sup
x∈[0,1]

{2θ2

i
x(1− x) + i

2(1 + α) ln(1− x) + iα

2(1 + α) ln x} − iCα ,

where Cα = 1
2(1+α) ln( 1

1+α) + α
2(1+α) ln α

1+α

We therefore deduce from (2), Corollaries 1.16 and 1.15 , and Theorem 1.17, by first
letting N going to infinity, then δ to zero and finally M to infinity, that

lim sup
δ→0

lim sup
N→∞

1
N

lnP
(∣∣∣λmax(X(β)

N )− x
∣∣∣ < δ

)
≤ F (θ, β)− J(σβ, θ, x) .

We next optimize over θ to derive the upper bound:

lim sup
δ→0

lim sup
N→∞

1
N

lnP
(∣∣∣λmax(X(β)

N )− x
∣∣∣ < δ

)
≤ − sup

θ≥0
{J(σβ, θ, x)− F (θ, β)} . (3)

To complete the proof of Theorem 1.9, we show in section 4 that, with the notations of
Theorems 1.6,1.5, and 1.7,

Proposition 1.18. For β = 1, 2, w1, w2,

Iβ(x) = sup
θ≥0
{J(σβ, θ, x)− F (θ, β)} .

To prove the complementary lower bound, we shall prove that

Lemma 1.19. For β = 1, 2, for any x > 2 and for β = w1, w2 for any x > b̃α, there
exists θ = θx ≥ 0 such that for any δ > 0 and M large enough,

lim inf
N→∞

1
N

ln
E[1

X
(β)
N ∈A

M
x,δ

IN(X(β)
N , θ)]

E[IN(X(β)
N , θ)]

≥ 0 .

This lemma is proved by showing that the matrix whose law has been tilted by the
spherical integral is approximately a rank one perturbation of a Wigner matrix, from
which we can use the techniques developped to study the famous BBP transition [6]. The
conclusion follows since then

P
(
X

(β)
N ∈ AMx,δ

)
≥

E[1Xδ
N∈A

M
x,δ
IN(X(β)

N , θx)]

E[IN(X(β)
N , θx)]

E[IN(X(β)
N , θx)] exp{−N sup

X∈AM
x,δ

JN(X, θx)}

≥ exp{N(gκ(δ) + F (θx, β)− J(σβ, θx, x) + o(δ))}
≥ exp{−NIβ(x)−No(δ)}

where we finally used Theorem 1.17 and Lemma 1.19.
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2. Exponential tightness

In this section we prove Lemma 1.8. We will use a standard net argument that we
recall for completness. For N ∈ N, let RN be a 1/2-net of the sphere (i.e. a subset of the
sphere SN−1 such as for all u ∈ SN−1 there is v ∈ RN such that ||u− v||2 ≤ 1/2. Here the
sphere is inside RN for β = 1, w1 and CN for β = 2, w2). We know that we can take RN

with cardinality smaller than 3βN . We notice that for M > 0

P[||X(β)
N || ≥ 4K] ≤ 9βN sup

u,v∈RN
P[〈X(β)

N u, v〉 ≥ K] (4)

Indeed, if we denote, for v ∈ SN−1, uv to be an element of RN such that ‖uv − v‖2 ≤ 1/2,

‖X(β)
N ‖ = sup

v∈SN−1
‖X(β)

N v‖2 ≤ sup
v∈SN−1

(‖X(β)
N uv‖2 + 1

2‖X
(β)
N ‖)

so that
‖X(β)

N ‖ ≤ 2 sup
u∈RN

‖X(β)
N u‖2 (5)

Similarly, taking v = X
(β)
N u

‖X(β)
N u‖2

, we find

‖X(β)
N u‖2 = 〈v,X(β)

N u〉 ≤ 〈uv, X(β)
N u〉+ ‖v − uv‖2‖X(β)

N v‖2

from which we deduce that
‖XN

β ‖ ≤ 4 sup
u,v∈RN

〈X(β)
N u, v〉

and (4) follows. We next bound the probability of deviations of 〈X(β)
N v, u〉 by using

Tchebychev’s inequality. For θ ≥ 0 we indeed have

P[〈X(β)
N u, v〉 ≥ K] ≤ exp{−θNK}E[exp{Nθ〈X(β)

N u, v〉}]

≤ exp{−θNK}E[exp

√N
2

∑
i<j

<(a(β)
i,j uiv̄j) +

∑
i

ai,iuivi

]

≤ exp{−θNK} exp
θ2N

β′
(2
∑
i<j

|ui|2|vj|2 +
∑
i

|ui|2|vi|2)
 (6)

where we used that the entries have a sharp sub-Gaussian Laplace transform. In the case
of Wishart matrices, we bounded above some vanishing contributions by a non-negative
term. When β = wi, β′ = i, otherwise β′ = β. We can now complete the upper bound:

P[〈X(β)
N u, v〉 ≥ K] ≤ exp

(
θ2N

β′
||u||22||v||22 + 〈u, v〉2

2 − θNK
)

≤ exp
(
N

(
1
β′
−K

))
where we took θ = 1. We conclude that :
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P[〈X(β)
N u, v〉 ≥ K] ≤ exp (N(1−K))

This complete the proof of the Lemma with (4).

3. Proof of Theorem 1.17

We consider in this section a random unitary vector e taken uniformly on the sphere
SN−1 and independent of X(β)

N . We define FN by setting, for θ > 0 :

FN(θ, β) = 1
N

lnE
X

(β)
N

Ee[exp(Nθ〈e,X(β)
N e〉)]

where we take both the expectation Ee over e and the expectation E
X

(β)
N

over X(β)
N . In this

section we derive the asymptotics of FN(θ, β). F (θ, β) is as in Theorem 1.17. We prove a
refinment of Theorem 1.17, which shows that under our assumption of sharp sub-Gaussian
tails, the random vector e stays delocalized under the tilted measure.

Proposition 3.1. Suppose Assumption 1.1 holds if β = 1, w1 and Assumption 1.3 holds
if β = 2, w2. Denote by V ε

N = {e ∈ SN−1 : ∀i, |ei| ≤ N−1/4−ε}. Then, for ε ∈ (0, 1
4),

F (θ, β) = lim
N→+∞

FN(θ, β) = lim
N→∞

1
N

lnEe[1e∈V εNEX(β)
N

[exp(Nθ〈e,X(β)
N e〉)]]

We first consider the case of Wigner matrices and then the case of Wishart matrices:
in both cases the proof shows that the above delocalization holds (i.e we can restrict
ourselves to vectors e in V ε

N) and we shall not mention it in the following statements.

3.1. Wigner matrices. In this section we prove Theorem 1.17 in the case of Wigner
matrices, namely:

Lemma 3.2. Suppose Assumption 1.1 holds if β = 1 and Assumption 1.3 holds if β = 2.
Then for any θ ≥ 0

lim
N→+∞

FN(θ, β) = F (θ, β) = θ2

β
.

Proof. By denoting Lµ = lnTµ, we have :

E
X

(β)
N

[exp(Nθ〈e,X(β)
N e〉)] = E

X
(β)
N

[exp{
√
Nθ(2

∑
i<j

<(a(β)
i,j ej ēi) +

∑
i

a
(β)
i,i |ei|2)}]

= exp{
∑
i<j

LµNi,j(2θēiej
√
N) +

∑
i

LµNi,i(θ|ei|
2
√
N)}

where we used the independence of the (a(β)
i,j )i≤j. Using that the entries have a sharp sub-

Gaussian Laplace transform (using on the diagonal the weaker bound LµNi,i(t) ≤
1
β
t2+A|t|)

and ∑ e2
i = 1, we deduce that:
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E
X

(β)
N

[exp(Nθ〈e,X(β)
N e〉)] ≤ Ee[exp{2Nθ2

β

∑
i<j

|ei|2|ej|2 + Nθ2

β

∑
i

|ei|4 + A
√
Nθ

∑
i

e2
i }]

≤ exp(N θ2

β
+ A
√
Nθ)

So that we have proved the upper bound that

lim sup
N→∞

FN(θ, β) ≤ lim sup
N→∞

sup
e∈SN−1

1
N

lnE
X

(β)
N

[exp(Nθ〈e,X(β)
N e〉)] ≤ θ2

β
(7)

We next prove the corresponding lower bound. The idea is that the expectation over the
vector e concentrates on delocalized eigenvectors with entries so that

√
Neiēj is going to

zero for all i, j. As a consequence we will be able to use the uniform lower bound on the
Laplace transform to lower bound FN(θ, β).

Let V ε
N = {e ∈ SN−1 : ∀i, |ei| ≤ N−1/4−ε} be the subset of the sphere SN−1 with entries

smaller than N−1/4−ε for some ε ∈ (0, 1
4). We have that :

E[exp(Nθ〈e,XN
β e〉)] ≥ Ee[1e∈V εN

∏
i<j

exp{LµNi,j (2
√
Nθēiej)}

∏
i

exp{LµNi,i(
√
Nθ|ei|2)}]

For e ∈ V ε
N , 2
√
Nθ|eiej| ≤ 2θN−ε so that :

lim
N→+∞

sup
e∈V εN
|2
√
Nθeiej| = 0

By the uniform lower bound on the Laplace transform of Assumptions 1.1 or 1.3, we
deduce that for any δ > 0

E[exp(Nθ〈e,XN
β e〉)] ≥ Pe[V ε

N ]eN
θ2
β

(1−δ) . (8)
We shall use that

Lemma 3.3. For any ε ∈ (0, 1/4) we have

lim
N→∞

Pe[e ∈ V ε
N ] = 1

.

As a consequence, we deduce from (8) that for any δ > 0 and N large enough

lim inf
N→∞

FN(θ, β) ≥ (1− δ)θ
2

β

So that together with (7) we have proved the announced limit

lim
N→∞

FN(θ, β) = θ2

β

which completes the proof of Lemma 3.2.
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Finally we prove Lemma 3.3. To this end we use the well known representation of the
vector e as a renormalized (real or complex) Gaussian vector:

e = g

‖g‖2

where g = (g1, ..., gN) is a Gaussian vector of covariance matrix IN . By the law of large
numbers, we have the following almost sure limit :

lim
N→∞

||g||2√
N

= 1

We also have by the union bound

P[∃i ∈ [1, N ], |gi| > N1/4−ε/2] ≤ NP[|g1| > N1/4−ε/2] ≤ N exp{−1
4N

1/2−2ε}

from which the result follows.
�

3.2. Wishart matrices. In this subsection we prove Theorem 1.17 in the case of Wishart
matrices, namely:

Lemma 3.4. Let β = w1 or w2. Suppose Assumption 1.4 holds. Then for any θ ≥ 0, for
i = 1, 2

lim
N→∞

FN(θ, wi) = F (θ, wi) = sup
x∈[0,1]

{2θ2

i
x(1−x)+ i

2(1 + α) ln(x)+ iα

2(1 + α) ln(1−x)}−iCα ,

where Cα = 1
2(1+α) ln( 1

1+α)+ α
2(1+α) ln α

1+α . Moreover, the supremum is achieved at a unique
xθ,α in [0, 1] (as it maximizes a strictly concave function). xθ,α is the almost sure limit of
‖e1‖2

2, the norm of the first L entries of e, under the tilted law

dPθ(e) =
EX [exp{θN〈e,XN

β e〉}]dP(e)
Ee[EX [exp{θN〈e,XN

β e〉}]]
.

Proof. We have, with the same notations than in the previous case :

EXwi
N

[exp(Nθ〈Xwi
N e, e〉)] = exp

 ∑
1≤i≤M,1≤j≤L

LµNi,j(
√
N2θe(1)

i ē
(2)
j )


where e = (e(1), e(2)), that is e(1) is the vector made of the L first entries of e and e(2) the
vector made of the M last entries of e. Using that the µNi,j have a sharp sub-Gaussian
Laplace transform and a uniform lower bounded Laplace transform, we deduce that with
V ε
N = {e ∈ SN−1 : |ei| ≤ N−1/4−ε} we find that for any δ > 0 and N large enough

Ee[1V εN exp{(1− δ)2θ2

i
N‖e(1)‖2

2‖e(2)‖2
2}] ≤ EXwi

N
[IN(θ, wi)] ≤ Ee[exp{2θ2

i
N‖e(1)‖2

2‖e(2)‖2
2}]
(9)
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where ‖e(1)‖2
2 = 1 − ‖e(2)‖2

2 follows a Beta law with parameters (iL/2, iM/2), so its
distribution is given by

BetaiM/2,iL/2(dx) = CM,Lx
iL/2(1− x)iM/21x∈[0,1]dx ,

with CM,L = Γ(iN/2)/Γ(iM/2)Γ(iL/2). Therefore, Laplace method implies that

lim
N→∞

1
N

lnEe[exp{2θ2

i
N‖e(1)‖2

2‖e(2)‖2}] (10)

= sup
x∈[0,1]

{2θ2

i
x(1− x) + iα

2(1 + α) ln(1− x) + i

2(1 + α) ln(x)} − iCα .

(10) thus yields the expected upper bound. To get the lower bound in (9), observe that
conditioning by ‖e(1)‖2, the entries of e(1) and e(2) follow uniform laws on the sphere so
that Lemma 3.3 applies. Hence, V ε

N has probability going to one under this conditionnal
measure and we can remove its indicator function in the lower bound of (9). We then
apply Laplace method under the Beta law to conclude. Finally, we see from the above
that for any set A, any δ > 0

Pθ(‖e(1)‖2
2 ∈ A) ≤ exp{−NF (θ, wi) +Nδ}

∫
A
xiL/2(1− x)iM/2 exp{2θ2

i
Nx(1− x)}dx

from which it follows by Laplace method that the law of ‖e(1)‖2
2 satisfies a large deviation

upper bound with speed N and good rate function which is infinite outside [0, 1] and
otherwise given by

−2θ2

i
x(1− x)− iα

2(1 + α) ln(1− x)− i

2(1 + α) ln x+ F (θ, wi) .

In particular ‖e(1)‖2
2 converges almost surely towards the unique minimizer xθ,α of this

strictly convex function (which vanishes there).
�

4. Identification of the rate function

To complete the proof of the large deviation upper bound of Theorem 1.9, we need to
identify the rate function, that is prove Proposition 1.18. This could a priori be done by
saying that the rate function corresponds to the one that is well known for the Gaussian
case. But for the sake of completness, we verify directly that we have the same result.

4.1. Wigner matrices. We first consider the case of Wigner matrices. Recall that we
found for β = 1, 2

Iβ(x) = max
θ>0

(
J(σ, θ, x)− θ2

β

)
where

J(µ, θ, λ) := θv(θ, µ, λ)− β

2

∫
log

(
1 + 2

β
θv(θ, µ, λ)− 2

β
θy

)
dµ(y),
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with
v(θ, µ, λ) :=

{
Rµ( 2

β
θ), if 0 ≤ 2θ

β
≤ Hmax(µ, λ) := limz↓λ

∫ 1
z−ydµ(y),

λ− β
2θ , if 2θ

β
> Hmax(µ, λ) .

When µ = σ, Rσ(x) = x and Gσ(λ) = 1
2(λ−

√
λ2 − 4).

The critical points of ϕ(θ, x) = J(σ, θ, x)− θ2

β
for fixed x satisfy

2θ
β

= ∂θJ(σ, θ, x) .

• For 2θ
β
≤ Gσ(x), ϕ(θ) vanishes uniformly as J(σ, θ, x) = .β2

∫ 2
β
θ

0 Rσ(u)du = θ2

β
.

• For 2θ
β
> Gσ(x), the maximum is achieved at a solution of

2θx
β

= x− β

2θx
which gives

2θx
β

= 1
2(x+

√
x2 − 4) = 1

Gσ(x) .

Hence, Iβ(x) = ϕ(θx, x). We can compute its derivative and since θx is a critical point of
ϕ, we find

∂xIβ(x) = ∂xϕ(θx, x) = θx −
β

2Gσ(x) = β

2
√
x2 − 4

which proves the claim since Iβ(2) = 0.

4.2. Wishart matrices. Let us now consider Wishart matrices and compute
Iwβ(x) = max

θ>0
(J(σw, θ, x)− F (θ, wβ)) .

As in the previous proof we try to compute

∂xIwβ(x) = θx −
β

2Gσw(x)

where θx is the argmax of ϕ(θ, x) = J(σw, θ, x)− F (θ, wβ). Note that the latter exists as
ϕ is continuous in θ, going to −∞ at infinity. To identify θx we remark that when it is
larger than β

2Gσw(x), it must satisfy, as a critical point of ϕ,

x = ∂θF (θ, wβ) + β

2θ =: K(θ) .

Our goal is therefore to identify K and in fact its inverse. Now, we claim that θ→F (θ, wβ)
is analytic in a neighborhood of R+∗. We recall that it is given in terms of xθ,α, see Lemma
3.4. xθ,α is a maximizer, and therefore as a critical point it is solution of

ψ(x, θ) = 1
β2 θ

2(1− 2x) + 1
(1 + α)x −

α

(1 + α)(1− x) = 0 .

Clearly x→ψ(x, θ) takes its zeroes away from 0, 1 and is analytic in a complex neighbor-
hood of [ε, 1 − ε] for any ε > 0. Moreover, at θ = ∞, ψ vanishes at x = 1/2 only. But
for <(θ) > δ, the real part of −∂xψ(θ, x) is bounded below uniformly by some c(ε) > 0
uniformly a complex neighborhood Uε of [ε, 1 − ε] provided the imaginary part of θ is
smaller than some κε,δ > 0. Hence, the implicit function theorem implies that θ→xθ,α,
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and so F (., wβ), is analytic in a complex neighborhood of <(θ) ≥ δ. We next show that
for θ small enough,

F (θ, wβ) = β

2

∫ 2
β
θ

0
Rσw(u)du . (11)

It is clearly lower bounded by this value as for any M

F (θ, wβ) ≥ lim inf
N→∞

1
N

lnE
X

(wβ)
N

[1
|λmax(X

(wβ)
N )|≤M

IN(X(wβ)
N , θ)]

so that for 2θ
β
≤ Gσw(M),[15, Theorem 1.6] gives the lower bound. The upper bound is

obtained similarly by using the exponential tightness which permits to restrict oneself to
{|λmax| ≤M}. Therefore, we conclude that K is analytic in <(θ) > δ and equals Kσw(2θ

β
)

for small θ. We want to find the inverse of K. We thus look for an analytic extension of
Kσw . But in fact Kσw satisfies an algebraic equation. Indeed, observe that

Gσw(x) = 2xGπα((1 + α)x2) + α− 1
(1 + α)x

where it is well known that Gπα , the Stieltjes transform of the Wishart matries, is solution
of

(2z)2Gπα(z)2 − 4z(z + 1− α)Gπα(z) + 4z − 8α = 0 .

We deduce that at least for small x, Kσw is solution of

((1+α)Kσw(x)x+1−α)2−2(Kσw(x)+1−α)((1+α)xKσw(x)+1−α)+4(1+α)Kσw(x)2−8α = 0 .

As a consequence, K is also solution of this equation for all x, by analyticity. Now, we
are looking for the inverse of K and so we deduce that θx is solution of the equation

( 2
β

(1 + α)xθx + 1− α)2 − 2(x+ 1− α)( 2
β

(1 + α)xθx + 1− α) + 4(1 + α)x2 − 8α = 0 .

For 2θx
β
≤ Gσw(x), the solution is

2
β
θx = 2α

1 + α

x2 + 1− α−
√

(x2 − 1− α)2 − 4α
2x2 + 1− α

1 + α

1
x

= Gσw(x) .

but when 2θx
β
> Gσw(x) we have to take the other solution of the quadratic equation

2
β
θx = 2α

1 + α

x2 + 1− α +
√

(x2 − 1− α)2 − 4α
2x2 + 1− α

1 + α

1
x
.

As a result, we then have

∂xIwβ(x) = θx −
β

2Gσw(x) = βα

1 + α

√
(x2 − 1− α)2 − 4α

x2 ,

which completes the proof.



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF RADEMACHER MATRICES 19

5. Large deviation lower bounds

Recall that we need to prove Lemma 1.19, that is find for any x > 2 (or b̃α for Wishart
matrices) a θ = θx ≥ 0 such that for any δ > 0 and M large enough,

lim inf
N→∞

1
N

ln
E[1

X
(β)
N ∈A

M
x,δ

IN(X(β)
N , θ)]

E[IN(X(β)
N , θ)]

≥ 0 ,

where we recall that
AMx,δ = {X : |λmax(X)− x| < δ} ∩ {d(µ̂NX , σβ) < N−κ

′} ∩ {‖X‖ ≤M} .

For a vector e of the sphere SN−1 and X a random symmetric matrix, we denote by
P(e,θ)
N the probability measure defined by :

dP(e,θ)
N (X) = exp(Nθ〈Xe, e〉)

EX [exp(Nθ〈Xe, e〉)]dPN(X)

where PN is the law of X(β)
N . We have

E[1
X

(β)
N ∈A

M
x,δ

IN(X(β)
N , θ)] = Ee[P(e,θ)

N (AMx,δ)EX [exp(Nθ〈Xe, e〉)]]

≥ Ee[1e∈V εNP
(e,θ)
N (AMx,δ)EX [exp(Nθ〈Xe, e〉)]] (12)

where we recall that V ε
N = {e ∈ SN−1 : |ei| ≤ N−1/4−ε}. The main point to prove the

lower bound will be to show that P(e,θ)
N (AMx,δ) is close to one for delocalized vectors e ∈ V ε

N

and then proceed as before to show that V ε
N has probability close to one under the tilted

measure. More precisely, we will show that for ε ∈ (1
8 ,

1
4), we can find θ so that for any

x > 2 (resp x > b̃α) and δ > 0 we can find θx ≥ 0 so that for M large enough,

lim
N→∞

inf
e∈V εN

P(e,θx)
N (AMx,δ) = 1 . (13)

This gives the desired estimate since we then deduce from (12) that for N large enough
so that the above is greater than 1/2

E[1
X

(β)
N ∈A

M
x,δ

IN(X(β)
N , θ)] ≥ 1

2Ee[1e∈V
ε
N
E
X

(β)
N

[exp(Nθ〈X(β)
N e, e〉)]]

so that the desired estimate follows from Proposition 3.1. To prove (13), the first point
is to show that

Lemma 5.1. Take ε ∈ (0, 1
4). There exists κ > 0 , for ε > 0, for any θ,

• for K large enough:

lim
N→∞

sup
e∈V εN

P(e,θ)
N

(
λmax(X(β)

N ) ≥ K
)

= 0

•
lim sup
N→∞

sup
e∈V εN

P(e,θ)
N

(
d(µ̂N

X
(β)
N

, σβ) > N−κ
′
)

= 0 .
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Proof. We hereafter fix a vector e on the sphere. The proof of the exponential tightness
is exactly the same as for Lemma 1.8. Indeed, by Jensen’s inequality, we have

EX [exp(Nθ〈X(β)
N e, e〉)] ≥ exp{NθEX [〈X(β)

N e, e〉]} = 1
Moreover, by Tchebychev’s inequality, for any u, v, e ∈ SN−1, we have∫
1〈X(β)

N u,v〉≥K exp(Nθ〈X(β)
N e, e〉)dPN ≤ exp{−NK}EX [exp(Nθ〈X(β)

N e, e〉+N〈X(β)
N u, v〉)]

≤ exp{−NK} exp{Nθ2∑
i,j

|eiēj + uiv̄j|2}

≤ exp{−NK + 4θ2N}
from which we deduce after taking u, v on a δ-net as in Lemma 1.8 that

P(e,θ)
N

(
λmax(X(β)

N ) ≥ K
)
≤ 9βN exp{−1

4NK + 4θ2N}

which proves the first point. The second is a direct consequence of Lemma 1.11 and
the fact that the log density of P(e,θ)

N with respect to PN is bounded by θN(|λmax(X)| +
|λmin(E)|) which is bounded by θKN with overwhelming probability by the previous
point (recall that λmin(X) satisfies the same bounds than λmax(X)).

�

Hence, the main point of the proof is to show that

Lemma 5.2. Pick ε ∈]1
8 ,

1
4 [. For any x > 2 if β = 1, 2 and x > b̃α if β = w1, w2, there

exists θx such that for every η > 0,

lim
N→∞

sup
e∈V εN

P(e,θx)
N [|λmax − x| ≥ η] = 0

Again, we first consider the simpler Wigner matrix case and then the case of Wishart
matrices.

5.1. Proof of Lemma 5.2 for Wigner matrices. For e ∈ V ε
N fixed, let X(e),N be a

matrix with law P(e,θ)
N . We have :

X(e),N = E[X(e),N ] + (X(e),N − E[X(e),N ])
where E[X] denotes the matrix with entries given by the expectation of the entries of the
matrix X. We first show that E[X(e),N ] is approximately a rank one matrix.

Lemma 5.3. For ε ∈]1
8 ,

1
4 [, there exists κ(ε) > 0 so that for e ∈ V ε

N :

E[X(e),N ] = 2θe e∗ + ∆(e),N

where the spectral radius of ∆(e),N is bounded by N−κ(ε) uniformly on e ∈ V ε
N .

Proof of the lemma. We can express the density of P(e,θ)
N as the following product :

dP(e,θ)
N

dPXN
(X) =

∏
i≤j

exp(21i6=jθ
√
N<(eiējai,j)− LµNi,j(2

1i6=jθ
√
Neiēj))
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where the ai,j are defined as in the introduction, basically a rescaling of the entries by
multiplication by

√
N .

So since we took our ai,j independent (for i ≤ j), the entries X(e),N
i,j remain independent

and their mean is given in function of the Taylor expansion of L as follows :

(E[X(e),N)])i,j =
L′
µNi,j

(2
√
Nθeiēj)
√
N

= 2θ
β
eiēj + δi,j(2

√
Nθeiēj)Nθ2|ei|2|ej|2√

N

if i 6= j, and if i = j

(E[X(e),N ])i,i =
L′
µNi,i

(
√
Nθ|ei|2)
√
N

= 2θ
β
eiēi + δi,i(2

√
Nθ|ei|2)Nθ2|ei|4√

N

where we used that by centering and variance one, L′
µNi,j

(0) = 0, HessLµNi,j(0) = 1
β
Id for

all i 6= j,N , L′′
µNi,i

(0) = 2
β
for all i, N , and where

|δi,j(t)| ≤ 4 sup
|u|<t

max
i,j,N
{|L(3)

µNi,j
(u)|} .

Hence, we have

∆(e),N
i,j = δi,j(2

√
Nθeiēj)

√
Nθ2|ei|2|ej|2, 1 ≤ i, j ≤ N .

In order to bound the spectral radius of this remainder term, we use the following lemma

Lemma 5.4. Let A be an Hermitian matrix and B a real symmetric matrix such that :

∀i, j, |Ai,j| ≤ Bi,j

Then the spectral radius of A is smaller than the spectral radius of B.

Proof. Indeed, if we take u on the sphere such that ||Au||2 = ||A||, then, by denoting A′
the matrix (|Ai,j|) and u′ the vector (|ui|), we have by the triangular inequality

||A|| = ||Au||2 ≤ ||A′u′||2 ≤ ||Bu′||2 ≤ ||B|| .

�

Therefore, if we choose C so that C ≥ supN,i,j δi,j(2
√
Nθeiēj)θ2 and set |e|2 to be the

vector with entries (|ei|2)1≤i≤N , we have

||∆(e),N || ≤ C
√
N |||e|2(|e|2)∗||

Since |||e|2(|e|2)∗|| = |||e|2||22 = ∑
i e

4
i ≤ N−4ε, we deduce that if we take ε′ ∈]1/8, 1/4[ we

have with κ(ε) = 1/2− 4ε :

||∆(e),N || = N−κ(ε) .

�
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Remark 5.5. F. Augeri noticed that a maybe more elegant proof of this point would be
to use Latala’s estimate:

E[‖Y ‖] ≤ C sup
j

(
E
∑
i

|Yi,j|2
) 1

2

.

Now we denote :

X(e),N := X(e),N − E[X(e),N ]
The entries of X(e),N are independent, centered of variance ∂z∂z̄LµNi,j(θeiēj

√
N)/N . Re-

call that ∂z∂z̄LµNi,j(0) = 1 and that the third derivative of the Laplace transform of the
entries are uniformly bounded so that

∂z∂z̄LµNi,j(θeiēj
√
N) = 1 + δi,j(

√
N |eiej|) = 1 +O(N−2ε)

uniformly on V ε
N . We can then consider X̃(e),N defined by : :

X̃
(e),N
i,j =

X
(e),N
i,j√

∂z∂z̄LµNi,j(θeiēj
√
N)

Set Y (e),N = X
(e),N − X̃(e),N . So, we have

(Y (e),N)i,j = X
(e),N
i,j

1− 1√
∂z∂z̄LµNi,j(θeiēj

√
N)

 .

We next show that for all δ > 0 :
lim

N→+∞
sup
e∈V εN

P[||Y (e),N || > δ] = 0 (14)

Indeed, we have the following lemma which is a variant of [1, Theorem 2.1.22 ] :

Lemma 5.6. Consider for all N ∈ N a random Hermitian matrix AN with independent
subdiagonal entries which are centered and for all k ∈ N :

rNk = max
i,j

N−k/2E[|ANi,j|k]

Suppose that there exists N0 ∈ N, C > 0 such that for N ≥ N0 :

rN2 ≤ 1, rNk ≤ kCk

Then for all δ > 0, P[λmax(AN) > 2 + δ] goes to zero as N goes to infinity.

The proof of this lemma is strictly identical to Theorem 2.1.22 in [1] as we only need
to estimate large moments of the matrix, which only requires upper bounds on moments
of the entries (and not equality as assumed in [1]) as soon as the entries are centered. We
apply this lemma to the matrices Y (e),N/δ to derive (14): note that the hypothesis on the
upper bound on moments is a clear consequence of our bounds on Laplace transform.
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Hence, since
X(e),N = X̃(e),N + 2θ

β
ee∗ + ∆(e),N + Y (e),N ,

we conclude by combining (14) and Lemma 5.3 that for ε ∈]1/4, 1/8[ and all δ > 0

lim
N→∞

sup
e∈V εN

P(e,θ)
N [||X(e),N − (X̃(e),N + 2θ

β
ee∗)|| > δ] = 0 (15)

since all estimates were clearly uniform on e ∈ V ε
N .

And so, to conclude we need only to identify the limit of λmax(X̃(e),N+ 2θ
β
ee∗). It is given

by the well known BBP transition. We collect below the main elements of the argument
for completness. To identify this limit, we easily see as in [9] that the eigenvalues of
X̃(e),N + 2θ

β
ee∗ satisfy

0 = det(z − X̃(e),N − 2θ
β
ee∗) = det(z − X̃(e),N) det(1− 2θ

β
(z − X̃(e),N)−1ee∗)

and therefore z is an eigenvalue away from the spectrum of X̃(e),N iff

〈e, (z − X̃(e),N)−1e〉 = β

2θ .

But it was shown in Theorem 2.15 of [10] that for all z > 2, all v ∈ SN−1, 〈v, (z −
X̃(e),N)−1v〉 converges almost surely towards Gσ(z) and therefore we conclude that the
largest eigenvalue λmax(X̃(e),N + 2θ

β
ee∗), must converge towards the solution ρθ to

Gσ(ρθ) = β

2θ
as soon as it is strictly greater than 2. We find a unique solution to this equation: it is
given by

ρθ = 2θ
β

+ β

2θ .

Reciprocally, for any x > 2, we can find θx = β
2 (x+

√
x2 − 4) so that x = ρθx . Hence, we

have proved that for any sequence of vectors e ∈ V ε
N we have the desired estimate for any

η > 0
lim
N→∞

sup
e∈V εN

P(e,θx)
N [|λmax − x| ≥ η] = 0

which also entails the convergence of the supremum over V ε
N and thus the Lemma.

5.2. Proof of Lemma 5.2 for Wishart matrices. We next prove Lemma 5.2 for
Wishart matrices and fix e = (e(1), e(2)) ∈ V ε

N . We decompose as in the previous proof
X(e),N = X̃(e),N + E[X(e),N ] + Y (e),N ,

where the entries of X̃(e),N are centered and with covariance 1/N and Y (e),N goes to zero
in norm. We then find by the same argument that

E[X(e),N ] = 2θ
i

(
0 e(1)(e(2))∗

e(2)(e(1))∗ 0

)
+ ∆(e),N
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where ‖∆(e),N‖ ≤ N−κ(ε) and e(1) (resp. e(2)) is the vector made of the first L (resp. M
last) coordinates of e. Letting

S(e) =
(
e(1) 0
0 e(2)

)
and T (e) =

(
0 (e(2))∗

(e(1))∗ 0

)
we notice that (

0 e(1)(e(2))∗
e(2)(e(1))∗ 0

)
= S(e)T (e) .

Therefore, we need to find z > b̃α such that

0 = det(z− X̃N,(e)− 2θ
i
S(e)T (e)) = det(z− X̃N,(e)) det(1− 2θ

i
T (e)(z− X̃N,(e))−1S(e)) (16)

By writing R
X̃N,(e)(z) = (z − X̃N,(e))−1 by blocks with X̃N,(e) with upper right L ×M

block G̃N,(e), we get :

R
X̃N,(e)(z) =

(
R1,1(z) R1,2(z)
R2,1(z) R2,2(z)

)
=
 zR

G̃N,(e)(G̃N,(e))∗(z
2) G̃N,(e)R(G̃N,(e))∗G̃N,(e)(z2)

R(G̃N,(e))∗G̃N,(e)(z2)(G̃N,(e))∗ zR(G̃N,(e))∗G̃N,(e)(z2)


where R1,1 is L× L, R1,2 L×M , R2,2 M ×M , we get the simpler equation

det
(
I − 2θ

i

(
〈e(2), R2,1(z)e(1)〉 〈e(2), R2,2(z)e(2)〉
〈e(1), R1,1(z)e(1)〉 〈e(1), R1,2(z)e(2)〉

))
= 0

Therefore, we need to find z such that

|1− 2θ
i
〈e(2), R2,1(z)e(1)〉|2 − 4θ2

i2
〈e(2), R2,2(z)e(2)〉〈e(1), R1,1(z)e(1)〉 = 0 (17)

We are going to prove that

Lemma 5.7. For any δ, ε > 0

lim sup
N→∞

sup
e∈V εN

P(e,θ)
N

(
sup

z≥b̃α+ε
|〈e(1), R1,1(z)e(1)〉 − z(1 + α)||e(1)||22GMP (α)((1 + α)z2)| > δ

)
= 0

lim sup
N→∞

sup
e∈V εN

P(e,θ)
N

(
sup

=z≥b̃α+ε
|〈e(2), R2,2(z)e(2)〉 − z(1 + α)||e(2)||22GMP (1/α)((1 + α)z2)| > δ

)
= 0

lim sup
N→∞

sup
e∈V εN

P(e,θ)
N

(
sup

=z≥b̃α+ε
|〈e(2), R2,1(z)e(1)〉| > δ

)
= 0

where GMP (α) is the Stieltjes transform of a Pastur Marchenko law with parameter α.

We first derive Lemma 5.2 assuming that Lemma 5.7 holds. We have seen in Lemma
3.4 that ‖e(1)‖2 converges towards xθ,α almost surely. Therefore, we arrive to the limiting
equation

(1 + α)2z2GMP (α)((1 + α)z2)GMP (1/α)((1 + α)z2) = i2

4θ2xθ,α(1− xθ,α)
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Now, we claim that ϕ(θ) = θ2xθ,α(1−xθ,α) is continuous, increasing, going from 0 to +∞.
As xθ,α is a complicated solution of θ ( solution of a degree three polynomial equation),
we use the following asymptotic characterization which easily follows from the previous
large deviation considerations, see Lemma 3.4:

4θ
i
xθ,α(1− xθ,α) = ∂θF (θ, wi) ,

where we use that the derivatives of xθ,α vanishes as it is a critical point of the maximum.
We moreover notice that G(θ) = F (

√
θ, wi) is convex in θ (as a supremum of convex

functions). Hence,

ϕ(θ) = i

4θ∂θF (θ, wi) = i

2θ
2G′(θ2)

It follows that ϕ is smooth as F is and moreover
ϕ′(θ) = i(θG′(θ2) + θ3G′′(θ)) .

But since ϕ is non negative, G′ is non negative and so ϕ′ is non negative for all θ ≥ 0.
The fact that ϕ goes to infinity at infinity is clear as xθ,α then goes to 1/2. Moreover,
for z > b̃α, z 7→ zGMP (α)((1 + α)z2) and z 7→ zGMP (1/α)((1 + α)z2) are positive and
decreasing, and therefore so are their product. Hence, there exist a θα > 0 so that for
every θ ≥ θα , the equation above has a unique solution on [b̃α,+∞[. Moreover, if we
denote ρθ this solution, θ 7→ ρθ is a bijection from [θα,+∞[ onto [b̃α,+∞[.

Proof of Lemma 5.7. We recall that G = GL,M is a L×M matrix with centered entries
with covariance one and sub-Gaussian tails, e = (e(1), e(2)) a unit vector and

R1,1(z) = (z −GG∗)−1, R22(z) = (z −G∗G)−1, R1,2(z) = G(z −G∗G)−1.

The first two points of the Lemma are direct consequences of [10, Theorem 2.5]. It
remains to see that 〈e(2), R2,1(z)e(1)〉 goes to 0 as N goes to infinity. Because R2,1(z) =
G(z − G∗G)−1 is not the resolvent of the Wishart matrix, but its multiplication by G,
we can not apply directly [10, Theorem 2.5]. We will give an elementary proof of this
result,based on classical moment computations. Indeed, for ε > 0, on the set where
{‖G∗G‖ ≤ bα + ε}, for z > bα + 2ε we can expand

〈e(2), R2,1(z)e(1)〉 = −
∑ 〈e(1), G(G∗G)ke(2)〉

z2k+1

= −
K∑
k=1

〈e(1), G(G∗G)ke(2)〉
z2k+1 +O

(
1
ε

(
bα + ε

bα + 2ε

)K+1 )
and hence it is enough to get the convergence in probability of K moments with K ≥
2ε−1 ln ε−1 :

lim
N→∞

〈e(1), G(G∗G)ke(2)〉 = 0, k ≤ K .

To this end we first prove that
lim
N→∞

E[〈e(1), G(G∗G)ke(2)〉] = 0 (18)
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and then
lim
N→∞

V ar(〈e(1), G(G∗G)ke(2)〉) = 0 . (19)

We first prove (18). It is clearly true for k = 0 by centering of the entries and so we
consider k ≥ 1. Let’s call W2k+1 the set of words (v1, ..., v2k+2) of length 2k + 1 so that
v2j ∈ {1, ..., L} and v2j+1 ∈ {1, ...,M}. We use the following notation :

Ev = E[av1,v2av2,v3 ...av2k+1,v2k+2 ]
We have

E[〈e(1), G(G∗G)ke(2)〉] = 1
Nk+1/2

∑
v∈W2k+1

e(1)
v1 Eve

(2)
v2k+2

Given a word v, we can construct a bipartite graphGv whose vertices are the {v1, v3, ...}∪
{L + v2, L + v4, ...} of whose edges (occasionally multiple) are the (L + v2i, v2i−1) and
(L+ v2i, v2i+1). We denote V (1)(v) the number of vertices in Gv lying in {1, ..., L}, V 2(v)
the number of vertices in Gv lying in {L+ 1, ..., L+M} and V (v) = V (1)(v) + V 2(v) and
A(v) the number of edges of Gv. If e is an edge of Gv, we denote nv(e) the multiplicity of
this edge.

Let’s recall that here the ai,j are independant but not identically distributed. Never-
theless their variance are 1 and their moments are bounded uniformly i.e. for every k
there exists Ck < +∞ such that :

sup
N,i,j

E[|ai,j|k] ≤ Ck

For every word v of length k, we can define Cv = ∏
j≤k C

l(v,j)
j where l(v, j) is the number

of edge of multiplicity j in Gv. we then have

|Ev| ≤ Cv

We say that two words v, w are equivalent if there exists a bijection φ : {1, ..., L} →
{1, ...,M} and a bijection ψ : {1, ...,M} → {1, ...,M} such that v2j = φ(w2j) and v2j+1 =
ψ(w2j+1). If two words v and w are equivalent then Cv = Cw.

Let T2k+1 be a the quotient set of words of length 2k+1 for this equivalency relationship.
We have

E[〈e(1), G(G∗G)ke(2)〉] = 1
Nk+1/2

2k+2∑
j=2

∑
t∈T2k+1,V (v)=j

∑
v|v∼t

e(1)
v1 Eve

(2)
v2k+2

Let’s notice that if Gv has an edge of multiplicity 1, then Ev = 0 (since the ai,j are
independant and centered). So for Ev to be non zero we need that A(v) ≤ (2k + 1)/2 so
A(v) ≤ k. Since Gv is connected V (v) ≤ A(v) + 1 ≤ k + 1. If v ∈ W2k+1, there exists
Nv := (L− 1)...(L− V (1)(v) + 1)(M − 1)...(M − V 2(v) + 1) ≤ NV (v)−2 equivalent words
w1 provided we fix v1 and v2k+2 so we have the following bound :
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E[〈e(1), G(G∗G)ke(2)〉] ≤ 1
Nk+1/2

k+1∑
j=2

∑
t∈T2k+1,V (t)=j

CtNt

∑
1≤v1≤L,1≤v2k+2≤M

|e(1)
v1 e

(2)
v2k+2
|

By using the Cauchy Schwartz inequality, we have that :
∑

1≤i≤L,1≤j≤M
|e(1)
i e

(2)
j | ≤ N‖e(1)||2 × ||e(2)||2 ≤ N

which yields

E[〈e(1), G(G∗G)ke(2)〉] ≤ 1
Nk−1/2

k+1∑
j=2

∑
t∈T2k+1,V (t)=j

CtN
j−2

The leading order term here is in N−1/2 for k ≥ 1 and so

lim
N→∞

sup
‖e‖2=1

|E[〈e(1), G(G∗G)ke(2)〉]| = 0 .

We proceed similarly for the covariance (19):

Var(〈e(1), G(G∗G)ke(2)〉) = 1
N2k+1

∑
v∈W2k+1,w∈W2k+1

e(1)
v1 e

(1)
w1Tv,we

(2)
v2k+2

e(2)
w2k+2

Where Tv,w = Ev,w −EvEw and Ev,w = E[av1,v2av2,v3 ...avk,vk+1aw1,w2aw2,w3 ...awk,wk+1 ] We
extend naturally the previous definitions to couples of words. Let us now do the same
analysis than before with couples of words. Let’s take T̃2k+1 the quotient set for the
equivalency relationship for couples of words. Let (v, w) ∈ T̃2k+1

First, if Gv,w is not connected, since it is the union of two connected graphs Gv and
Gw, we have that Gv and Gw don’t have any edges in common and so, by independence
of the entries Tv,w = 0. So we can assume that Gv,w is connected.

Then several cases arise :
First, if v1 6= w1 and v2k+2 6= w2k+2, then if one edge of Gv,w is of multiplicity 1, then

Tv,w = 0. So we can assume that all edges are of multiplicity at least 2. We deduce
that A(v, w) ≤ 2k + 1 and V (v, w) ≤ 2k + 2. Let Nv,w be the number of couple of words
equivalent to (v, w) provided (v1, w1, v2k+2, w2k+2) are fixed, we have Nv,w ≤ N2k−2. Hence

∑
(u,t)∼(v,w)

e(1)
u1 e

(1)
t1 Tv,we

(2)
u2k+2

e
(2)
t2k+2 ≤ N2k(Cv,w − CvCw)

Then, if v1 = w1 and v2k+2 6= w2k+2 or if v1 6= w1 and v2k+2 = w2k+2, the same
reasoning concerning the edges holds. So, we have V (v, w) ≤ 2k + 2 and if Nv,w is the
number of couple of words equivalent to (v, w) provided (v1, w1, v2k+2, w2k+2) are fixed,
we have Nv,w ≤ N2k−1. If we are in the case v1 = w1 :

∑
(u,t)∼(v,w)

e(1)
u1 e

(1)
t1 Tv,we

(2)
u2k+2

e
(2)
t2k+2 ≤ N2k||e(1)||2(Cv,w − CvCw)

And lastly, v1 = w1 and v2k+2 = w2k+2 we have again Nv,w ≤ N2k and
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∑
(u,t)∼(v,w)

e(1)
u1 e

(1)
t1 Tv,we

(2)
u2k+2

e
(2)
t2k+2 ≤ N2k||e(1)||2||e(2)||2(Cv,w − CvCw)

So we have

Var(〈e(1), G(G∗G)ke(2)〉) = O
( 1
N

)
�

6. Appendix: Proof of Lemma 1.11

In this section, we want to prove that the assumptions 1.1 and 1.3 are verified if µi,j
are supported inside a common compact K or satisfy a log-Sobolev inequality with a
uniformly bounded constant c for the matrices X(1)

N , X
(2)
N , X

(w1)
N , X

(w2)
N .

Lemma 6.1. There exists κ ∈ (0, 1
10) such that

lim
N→∞

1
N

lnP[d(µ
X

(β)
N

, σβ) > N−κ] = −∞
for β = 1, 2, w1, w2, where σβ is the semi-circle law when β = 1, 2 and the Pastur-
Marchenko law with index α if β = w (in the latter case we assume M/N −α = o(N−κ)).

For this, we will use two concentration results respectively from [16] and [3].

Theorem 6.2. By [16, Theorem 1.4)] (for the compact case) and [16, Corollary 1.4 b)]
(for the logarithmic Sobolev case), we have for β = 1, 2, w1, w2, and for N large enough

lim sup
N→∞

1
N7/6 lnP[d(µ

X
(β)
N

,E[µ
X

(β)
N

]) > N−1/6] < 0

where d is the Dudley distance.

We therefore only need to show that

Theorem 6.3. ( [3, Theorem 4.1]) If we let for every N :

F
X

(1)
N

(x) = µ
X

(1)
N

(]−∞, x])

Fσ1(x) = σ1(]−∞, x])
we have that

sup
x∈R
|Fσ1(x)− E[F

X
(1)
N

(x)]| = O(N−1/4) .

In order to conclude, we need only to use Lemma 1.8 to see that F
X

(1)
N

(−M) and
1− F

X
(1)
N

(M) decay exponentially fast in N for some fixed M so that

d(E[µ
X

(1)
N

], σ1) ≤ 4e−N‖f‖∞ + 2M‖f‖L sup
x∈R
|F (x)− E[F

X
(1)
N

(x)]| = o(N−1/6) .

The same results hold in the complex case. For Wishart matrices, we rely on [4, Theorem
w.1 and w.2]. Recall that WN = GL,M(GL,M)∗.
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Theorem 6.4. ( [3, Theorem 4.1]) Assume that M/N ∈ (1, ε−1) for some fixed ε and
M/N converges towards α. Then

sup
x∈R
|Fπα(x)− E[FWN

(x)]| = O(N−1/10) .

We can as well use Lemma 1.8 to conclude that 1− FWN
(M) goes to zero like e−N for

M large enough. Finally, we conclude by noticing that since∫
f(x)dE[µ̂Xw

N
](x) = N

N +M

∫
(f(
√
λ) + f(−

√
λ))dµ̂WN

(λ) + M −N
N

f(0),

we have∣∣∣∣∫ f(x)d(E[µ̂Xw
N

]− σw)(x)
∣∣∣∣ ≤ ‖f‖∞(|M

N
− α|+ e−N) +

∫ M

0
|∂λf(

√
λ)||Fπα(λ)− E[FWN

(λ)]|dλ

≤ ‖f‖L(N−κ + e−N + 2MN−
1

10 )
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