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Abbreviations: Cav1 = voltage-dependent calcium channels 
Background: T lymphocytes express not only cell membrane
ORAI calcium release–activated calcium modulator 1 but also
voltage-gated calcium channel (Cav) 1 channels. In excitable
cells these channels are composed of the ion-forming pore a1
and auxiliary subunits (b and a2d) needed for proper
trafficking and activation of the channel. Previously, we
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disclosed the role of Cav1.2 a1 in mouse and human TH2 but not
TH1 cell functions and showed that knocking down Cav1 a1
prevents experimental asthma.

Objective: We investigated the role of b and a2d auxiliary
subunits on Cav1 a1 function in TH2 lymphocytes and on the
development of acute allergic airway inflammation.
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Abbreviations used

BAL: Bronchoalveolar lavage

[Ca21]i: Intracellular Ca21 concentration

Cav: Voltage-gated calcium channel

CavbAS: Cavb antisense

CavbS: Cavb scrambled

CRTH2: Chemoattractant receptor–homologous molecule expressed

on TH2 cells

ER: Endoplasmic reticulum

HPRT: Hypoxanthine-guanine phosphoribosyltransferase

ORAI1: ORAI calcium release–activated calcium modulator 1

OVA: Ovalbumin

TCR: T-cell receptor
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Methods: We used Cavb antisense oligonucleotides to knock
down Cavb and gabapentin, a drug that binds to and inhibits
a2d1 and a2d2, to test their effects on TH2 functions and their
capacity to reduce allergic airway inflammation.

Results: Mouse and human TH2 cells express mainly Cavb1, b3,
and a2d2 subunits. Cavb antisense reduces T-cell receptor–
driven calcium responses and cytokine production by mouse
and human TH2 cells with no effect on TH1 cells. Cavb is mainly
involved in restraining Cav1.2 a1 degradation through the
proteasome because a proteasome inhibitor partially restores
the a1 protein level. Gabapentin impairs the T-cell receptor–
driven calcium response and cytokine production associated
with the loss of a2d2 protein in TH2 cells.

Conclusions: These results stress the role of Cavb and a2d2
auxiliary subunits in the stability and activation of Cav1.2
channels in TH2 lymphocytes both in vitro and in vivo, as
demonstrated by the beneficial effect of Cavb
antisense and gabapentin in allergic airway inflammation. (J
Allergy Clin Immunol 2017;nnn:nnn-nnn.)

Key words: Asthma, TH2, voltage-gated calcium channel 1, calcium,
cytokines

Allergic diseases, including rhinitis, atopic dermatitis, asthma,
and food allergies, are induced by TH2 lymphocytes. TH2-type
responses are characterized by production of IL-4, IL-5, and
IL-13, which contribute to mucus production, eosinophilia, and
high levels of antigen-specific IgE. At present, treatments for
allergic asthma are often symptomatic, even if in some cases
specific allergenic immunotherapy and treatments targeting the cy-
tokines (or their receptors) involved in type 2 inflammation can be
beneficial.1,2 The main immunosuppressants (eg, cyclosporine and
tacrolimus) have also been proposed for use in patients with severe
asthma resistant to glucocorticoids. However, because they
decrease the activity of T cells and therefore the overall immune
response by acting on calcium signaling, they have adverse effects.

Calcium is a secondmessenger that plays specific and key roles
in various cellular functions, such as activation, differentiation,
proliferation, and death. The role of store-operated Ca21 entry
is well described, implicating the sensing of T-cell receptor
(TCR)–driven endoplasmic reticulum (ER) Ca21 depletion by
stromal interaction molecule 1, its oligomerization, and its
localization in the vicinity of calcium release–activated calcium
modulator 1 (ORAI1) channels at the plasma membrane,
permitting sustained Ca21 entry.3

In addition to these channels, the role of voltage-gated calcium
channel (Cav) 1 channels (defined as voltage activated in excitable
cells) in T lymphocytes is now accepted.4-11

In excitable cells, Cav1 channels are composed of the
ion-forming pore a1 and auxiliary b and a2d subunits, with each
subunit being encoded by 4 genes. Cav1.1 to Cav1.4 a1 form the
ion pore and support the biophysical and pharmacologic properties
of the channel,12-14 whereas auxiliary b and a2d subunits increase
Cav currents by enhancing the number of channels at the cell
membrane and favoring channel opening.15-19 Cavb would act by
facilitating the correct folding of a1 and promoting its exit from
the ER,20 whereas Cava2d increases insertion of the channel into
the cell membrane by favoring the trafficking of the channel
from the post-Golgi apparatus and decreasing its turnover.21-23

While Cavb2 deletion24 inhibited thymocyte development,
Cavb3 and Cavb4 were found to be important for calcium influx,
nuclear factor of activated T cells (NFAT) nuclear translocation,
and cytokine production by peripheral CD41 T lymphocytes.
Previously, we reported that Cav1.2 was expressed and functional
in human and mouse TH2 cells.7,9,25 In contrast, TH1 and TH17
lymphocytes in both species lacked Cav1.2 expression.

Here we address whether Cav auxiliary subunits are required
for channel functions in TH2 lymphocytes. We show that
Cavb1, Cavb3, and a2d2 subunits are expressed in mouse and
human TH2 cells. Knocking down Cavb promoted degradation
of Cav1.2 a1, which was at least partly rescued by adding
MG132, a proteasome inhibitor, whereas gabapentin, an inhibitor
of a2d1/2 subunits, decreased a2d2 protein levels in TH2
lymphocytes. In both cases, it was associated with a decreased
TCR-dependent intracellular Ca21 concentration ([Ca21]i)
increase and TH2 cytokine production. In accordance with our
in vitro results, targeting either Cavb or a2d in vivowas beneficial
in a model of acute allergic airway inflammation.

METHODS
More details are provided in the Methods section in this article’s Online

Repository at www.jacionline.org.
Mice and model of acute airway allergic

inflammation
Eight- to 12-week-old female BALB/c mice were obtained from Janvier

(Le Genest St Isle, France), and TCR ovalbumin (OVA) transgenic DO11.10

mice were maintained in our pathogen-free animal facility. The INSERM

U1043 Institutional Review Board for animal experimentation approved

protocols. BALB/c mice immunized intraperitoneally with OVA (100 mg) in

alum (2 mg) were 15 days later administered intranasal OVA (50mg/d) in PBS

for 5 days, as previously described,7 with or without Cavb scrambled (CavbS)

or Cavb antisense (CavbAS) oligonucleotides (200 mg/d) or gabapentin

(400 mg/L in drinking water) that was renewed every other day.26 For TH2

transfer experiments, BALB/c mice (Janvier) were transferred intravenously

with 3 3 106 D011.10 TH2 cells transfected with CavbS or CavbAS and

given intranasal OVA (50 mg/d) for 5 days. Twenty-four hours after the final

OVA administration, serum, bronchoalveolar lavage (BAL) fluid, lungs, and

draining lymph nodes were collected and processed, as described in the

Methods section in this article’s Online Repository.
Cell culture
Mouse TH1 and TH2 cells were generated by weekly stimulation of

DO11.10 CD41 T cells with antigen-presenting cells and the 323-339

OVA peptide plus appropriate differentiation cocktails: IL-12 (5 ng/mL) and

anti–IL-4 antibody (11B11, 10 mg/mL) for TH1 and IL-4 (5 ng/mL) and

http://www.jacionline.org
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FIG 1. CavbAS diminishes cytokine production in mouse and human TH2 but not in TH1 cells. A and B,

OVA-specific DO11.10 TH2 and TH1 cells were tested for Cavb at the transcript (n 5 4; Fig 1, A) or protein

level (Fig 1, B). C-F, Mouse DO11.10 TH2 (Fig 1, C), mouse TH1 (Fig 1, D), human CRTH21 (Fig 1, E), or

human TH1 (Fig 1, F) cells were transfected with CavbS or CavbAS for 72 hours, then stimulated for 24 hours

with anti-CD3/C28 antibodies, and cytokine production was measured. Each pair represents a

separate experiment in Fig 1, C and D, and a donor in Fig 1, E and F. *P < .02, **P < .01, ***P < .005, and

****P < .001.
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anti–IFN-g antibody (XMG1.2, 10 mg/mL) for TH2. PBMCs were obtained

from Etablissement Français du Sang, and all human participants

provided written informed consent. Human memory chemoattractant

receptor–homologous molecule expressed on TH2 cells (CRTH2)1 CD41

T and human TH1 cells were obtained and expanded, as previously reported.
9

Cells were transfected with 8 mmol/L oligodeoxynucleotides (Eurogentec,

Angers, France) by using TurboFect transfection reagent (Fermentas,

Waltham, Mass) and collected 3 days after transfection.
Single-cell calcium imaging
Single-cell calcium imaging was done, as previously described,7,9 in cells

loaded with Fura-2 AM before and after stimulation with biotinylated

anti-CD3 cross-linked with streptavidin or anti-CD3/CD28–coated beads

(1 bead per cell) for mouse or human T cells, respectively.
Confocal microscopy
Cells were stained with anti-CD2 rat IgG antibody (Abcam, Cambridge,

United Kingdom) or anti-a2d2 rabbit antibody (Alomone Labs, Jerusalem,

Israel) fixed, permeabilized and the Cav channel subunit staining was

performed by using anti-Cav1.2 mouse IgG2b (NeuroMab, Davis, Calif),

anti-Cavb1 (Alomone Labs), or anti-Cavb3 rabbit IgG (Santa Cruz Labs,

Santa Cruz, Calif).
Real-time quantitative PCR
RNAwas extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany).

Reverse transcription was performed with SuperScript III Reverse

Transcriptase (Invitrogen, Carlsbad, Calif), and mRNA transcripts were

measured by using real-time quantitative PCR with a LightCycler 480

Instrument (Roche, Mannheim, Germany).
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FIG 3. Knocking down Cavb subunits decreases Cav1 a1 expression in mouse and human TH2 cells. Cells

were transfected with CavbS or CavbAS for 72 hours. A, Amount of Cav1.2 a1 transcripts in mouse

D011.10 TH2 cells. B-E, Staining with anti-CD2 (green) and anti-Cav1.2 a1 (red) mAbs in mouse D011.10

TH2 cells (Fig 3,B and C) and human CRTH21 cells (Fig 3,D and E). The Cav1.2 cell amount over all the Z-stack

sections is quantified in Fig 3, C and E. One representative experiment of 3 is shown. ****P < .001.
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Immunoblotting
TH2 lymphocytes or brain cells were lysed in RIPA buffer containing

protease inhibitors (Roche), and 30 mg per lane for T-cell extracts and

10 mg per lane for brain lysate were submitted to immunoblotting.
ELISA
For in vitro cytokine assays, 5 3 104 TH1 and TH2 cells were seeded onto

plates coated with anti-CD3 antibodies (3mg/mL) and stimulated with soluble

anti-CD28 antibodies (1 mg/mL). Supernatants were collected 24 hours later.

For in vivo IgE assays, sera were isolated from blood collected into the mouse

retro-orbital sinus. Cytokine and immunoglobulin levels were quantified by

using the sandwich ELISA method.
Statistical analysis
Groups were compared by using the paired or unpaired t test as neededwith

GraphPad Prism software (GraphPad Software, La Jolla, Calif).
FIG 2. Knocking down Cavb subunits reduces the TCR-

without any effect on TH1 cells. Mouse DO11.10 TH2 (A-C

TH1 (J-L) cells were transfected with CavbAS or CavbS a

340- and 380-nm excitation wavelengths was record

stimulation; ionomycin (iono) was added at the end of

expressed as the mean of at least 30 cells, and bars r

the time of stimulation and the time at which ionomy

time of response (delay between stimulation and the tim

plus 1 SD recorded before stimulation) is shown in Fig 2

6 is shown. ****P < .001.
RESULTS

Knocking down Cavb subunits decreases cytokine

production induced by TCR engagement in mouse

and human TH2 cells
Murine TH2 cells expressed principally Cavb1 and Cavb3

transcripts (Fig 1, A), as did human TH2 cells.9 The proteins
Cavb1 and Cavb3 were detected by Western blotting with the
same apparent molecular weights as the control neuronal forms
(Fig 1, B) and by immunofluorescence (see Fig E1, A and B, in
this article’s Online Repository at www.jacionline.org). Although
TH1 cells did not express Cava1 subunits, they did express Cavb1
and Cavb3 at both the transcriptional (Fig 1, A) and protein levels,
with lower amounts compared with those in TH2 cells (see Fig E1,
A and B).

To investigate whether b subunits were important for TH2
functions, we used antisense oligonucleotides targeting the
driven [Ca]i increase in mouse and human TH2 cells

), human CRTH21 (D-F), mouse TH1 (G-I), or human

nd loaded with Fura-2 AM. The fluorescence ratio at

ed at the single-cell level before and after TCR

the experiment. Results in Fig 2, A, D, G, and J are

epresent SEMs. The area under the curve between

cin is added is shown in Fig 2, B, E, H, and K. The

e showing an increase in ratio over the mean ratio

, C, F, I, and L. One representative experiment of 4 to

http://www.jacionline.org
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and ****P < .001.
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4 Cavb subunits in mice and human subjects.27 Transfection of
mouse TH2 cells with CavbAS decreased the amount of Cavb1
and Cavb3 subunits by Western blotting (see Fig E1, C and D)
and by immunofluorescence (see Fig E1, E and F), with
no effect on expression of ORAI1, a calcium channel important
for T-cell function (see Fig E1, C and D). CavbAS
decreased IL-4, IL-5, and IL-13 production by 50% to 70% in
mouse TH2 cells compared with CavbS-transfected TH2 cells
(Fig 1, C) without any effect on IFN-g production by TH1 cells
(Fig 1, D).

Humanmemory TH2 cells were selected based on expression of
the cell membrane marker CRTH2 and were expanded with
anti-CD3/anti-CD28–coated beads in the presence of IL-4 and
IL-2. Transfection of human TH2 lymphocytes with CavbAS
reduced the amount of Cavb subunits at the mRNA level (see
Fig E1,G) associated with significant diminution of TH2 cytokine
production (Fig 1, E) without any effect on IFN-g production by
human TH1 cells (Fig 1, F).
Knocking down Cavb subunits diminishes TCR-

driven calcium response in mouse and human TH2

cells
To show that Cavb subunits play a role in Ca21 signaling of TH2

cells, we analyzed the TCR-driven [Ca21]i increase at the single-
cell level. Mouse TH2 cells transfected with CavbAS displayed a
decreased and delayed calcium response compared with cells
transfected with CavbS (Fig 2, A). Indeed, CavbAS-transfected
TH2 cells presented a significantly reduced area under the curve
compared with control TH2 cells (Fig 2, B). A significant number
of CavbAS-transfected TH2 cells (21% 6 5%) did not show any
increase in [Ca21]i levels after TCR stimulation, whereas most
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control TH2 cells (98% 6 2%) did (P < .005). Moreover, among
responsive cells, CavbAS-transfected TH2 cells had a delayed
calcium response compared with control cells (Fig 2, C).
However, ionomycin application at the end of the experiment
induced a similar [Ca21]i increase in TH2 cells, irrespective of
whether they were transfected with CavbS or CavbAS
(Fig 2, A), indicating that CavbAS did not affect loading with
the Fura-2 probe.

CavbAS had the same effect on the TCR-driven [Ca21]i
increase of human TH2 lymphocytes with a delayed and reduced
[Ca21]i increase (Fig 2, D-F). Conversely, transfection of mouse
(see Fig 2,G-I) or human (Fig 2, J-L) TH1 cells with CavbAS had
no effect on the shape and the amplitude of the calcium response
induced by TCR stimulation, which is in agreement with the
lack of an effect of CavbAS on IFN-g synthesis by TH1 cells
(Fig 1, D and F).
An inhibitor of the proteasome protects the Cav1.2

a1 subunit from degradation in the absence of Cavb
but does not restore cytokine production

One possible role of Cavb subunits could be to prevent Cav1.2
degradation by the proteasome.28 In agreement with this
hypothesis, we showed that transfection of TH2 cells with
CavbAS did not affect levels of Cav1.2 a1 transcripts (Fig 3, A)
but strongly reduced the amount of Cav1.2 a1 protein in mouse
(Fig 3,B andC) and human (Fig 3,D andE) cells. The proteasome
inhibitor MG132 had no effect on amounts of Cavb1 (Fig 4, A)
and Cavb3 (Fig 4, B) proteins, but it partially restored Cav1.2
a1 protein expression in murine TH2 cells (Fig 4, C). Analysis
of colocalization of Cav1.2 a1 with CD2 used as a cell membrane
marker shows that CavbAS decreases the amount of protein
localized at the cell membrane, which was partially restored by
MG132 (see Fig E2 in this article’s Online Repository at
www.jacionline.org). However, MG132 treatment did not allow
restoration of cytokine production by TH2 cells transfected with
CavbAS (Fig 4, D), suggesting that the Cavb subunit could
also contribute to regulate channel function, as previously
reported.29-31
Intranasal delivery of CavbAS alleviates

TH2-dependent airway inflammation
With the goal to investigate the role of Cavb in vivo, we

evaluated whether CavbASmodified the course of allergic airway
inflammation. Immunization with OVA in alum followed by
inhalation of OVA (Fig 5, A) triggered TH2-dependent airway
inflammation marked by predominant eosinophil infiltration

http://www.jacionline.org
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(Fig 5, B). CavbAS administration decreased strongly the content
of inflammatory cells in BAL fluid, including eosinophils and
lymphocytes, compared with that seen in control mice treated
or not with CavbS (Fig 5,B). Consistently, histologic examination
of lung tissues showed that CavbAS administration inhibited
inflammatory infiltrates (Fig 5, C, and see Fig E3, A, in this
article’s Online Repository at www.jacionline.org). This
protection was associated with defective TH2 responses, as shown
by the dramatic reduction in serum IgE concentration (Fig 5, D)
and the reduced synthesis of IL-4, IL-5, and IL-13 by
OVA-stimulated T cells from lung draining lymph node cells
(Fig 5, E). In accordance with the effects of CavbAS on
airway inflammation, mice displayed reduced airway
hyperresponsiveness (see Fig E4 in this article’s Online
Repository at www.jacionline.org). Interestingly, CD41 T cells
infiltrating the lungs in CavbAS-treated mice expressed reduced
amounts of Cav1.2 a1 proteins compared with CD41 T cells
from mice treated with CavbS (see Fig E3, B-D), suggesting
that Cavb was required for the maintenance of Cav1.2 a1 protein
expression in lung-infiltrating CD41 T cells, as shown for TH2
cells in vitro.

To investigate whether Cavb expression in TH2 cells was
necessary and sufficient to control allergic asthma, we transferred
OVA-specific TCR transgenic DO11.10 TH2 cells transfected
with CavbAS or CavbS in mice that were then challenged
with intranasal OVA (Fig 6, A). CavbAS- and CavbS-transfected
TH2 cells localized equally well in the lungs (Fig 6, B). However,
CavbAS-transfected TH2 cells had reduced ability to promote the
TH2 response on airway challenge, as shown by the reduction in
lung inflammation (Fig 6, C and D, and see Fig E3, E), the lower
serum IgE concentration (Fig 6, E), and the impaired TH2
cytokine production after recall of antigen-specific draining
lymph node T cells with OVA (Fig 6, F). This was not associated
with a shift toward a TH1 response, as shown by the similar IFN-g
production by OVA-stimulated draining lymph node cells from
both groups (Fig 6, F).
Gabapentin, an inhibitor of Cava2d, impairs TH2

function and reduces allergic airway inflammation
Mouse TH2 cells expressed mainly Cav a2d2 (Fig 7, A), as did

human TH2 cells.
9 Blotting and probing TH2 cell or brain lysates

with anti-a2d2 antibodies showed similar bands of
around 140 kDa (Fig 7, B). To investigate the role of a2d in
Cav1-dependent TH2 function, we used gabapentin, a ligand
binding to Cav a2d1 and a2d2 but not to the other a2d subunits.

32

Chronic in vitro treatment with this drug is known to inhibit Cav
currents. Accordingly, treatment of TH2 cells with gabapentin for
72 hours decreased and delayed the TCR-driven calcium response
(Fig 7, C), as shown by quantification of the area under the curve
and time of response, respectively (Fig 7, D and E). This
decrease in calcium signaling was associated with reduced TH2
cytokine production (Fig 7, F). However, gabapentin had no
effect on calcium response and IFN-g production in TH1
lymphocytes (see Fig E5 in this article’s Online Repository at
www.jacionline.org).

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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Because gabapentin was reported to induce loss of the Cav2
complex at the cell membrane,33,34 we tested its effect on
Cav1.2 protein expression in TH2 cells. The amount of a2d2
protein was strongly reduced in gabapentin-treated TH2 cells
(Fig 7, G, and see Fig E6 in this article’s Online Repository at
www.jacionline.org), with no effect on Cav1.2 expression
(Fig 7, H, and see Fig E6). Moreover, Bafilomycin A1, an
inhibitor of the vacuolar H1 ATPase that inhibited acidification
and protein degradation in lysosomes, partially restored
the amount of a2d2 in gabapentin-treated TH2 lymphocytes
(Fig 7,G, and see Fig E6), demonstrating that gabapentin targeted
a2d2 in lysosomes for its degradation.

We then examined the effect of gabapentin administration on
the development of allergic airway inflammation (Fig 8, A).
Administration of gabapentin during OVA challenge partially
reduced airway inflammation, as shown by the reduction in the
number of inflammatory cells, including eosinophils in BAL fluid
(Fig 8, B) and histologic examination of lung sections (Fig 8, C
and D). Expression of TH2 cytokines and mucins 5ac and 5b,
which are the major components of mucus in the lungs,35 was
decreased in the lungs of gabapentin-treated mice (Fig 8, E),
supporting a beneficial effect of gabapentin on TH2-mediated
inflammation.
DISCUSSION
Previously, we reported that knocking down Cav1.2 and Cav1.3

a1 subunits in TH2 cells impaired their functions and protected
against asthma.7 These subunits are voltage-gated calcium
ion-forming pores in excitable cells. However, we and other
groups showed that they are not voltage gated in lymphocytes.
We then investigated whether auxiliary subunits, such as Cavb
and Cava2d, are required for TH2 cell functions and can be
targeted beneficially in acute allergic airway inflammation. Our
results now show that (1) knocking down Cavb expression with
CavbAS designed to target the 4 b-subunits reduces the
TCR-driven [Ca21]i increase and TH2 cytokine production by
mouse and human TH2 cells while sparing TH1 cell responses;
(2) this is associated with the loss of Cav1.2 a1 protein,
which can be partially overcome by a proteasome inhibitor;
(3) intranasal delivery of CavbAS strongly diminishes
TH2-mediated immunopathology in a model of acute allergic
airway inflammation; and (4) the Cava2d1/2 inhibitor gabapentin
impairs calcium signaling and reduces OVA-induced asthma.

Although Cavb3 can regulate calcium signaling independently
of a1 by limiting inositol 1, 4, 5-triphosphate generation in
pancreatic cells,36 this is unlikely in TH2 cells because knocking
down Cavb decreases and not enhances [Ca21]i level. In addition,

http://www.jacionline.org
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CavbAS does not affect the calcium signal in TH1 cells that
express Cavb3 but no Cav1 a1 subunits. Moreover, our results
favor a role of Cavb related to its interaction with Cav1 a1, as
supported by the loss of expression of Cav1.2 a1 in TH2 cells
transfected with CavbAS. In TH2 cells, Cavb prevents the
degradation of Cav1.2 a1, which is consistent with findings
showing that b1b or b2a might be required for Cav1.2 or
Cav2.1 a1 protein expression.28,37 Surprisingly, transfection of
ventricular myocytes with the same CavbASwe used in our study
resulted in Cav1 a1 sequestration without increased cardiac
Cav1.2 a1 degradation.38 This apparent discrepancy could be
related to differences in Cavb subunit equipment and/or
regulation in these cell types. Along this line, it has been shown
that the absence of Cavb4 resulted in decreased expression of
Cav1.1 but not Cav1.2 a1 protein in CD41 T cells.6

Two mechanisms have been proposed to explain how Cavb can
protect the a1 subunit from degradation. First, interaction of b2
with Cav1.2 a1 might limit degradation of the channel in
lysosomes.39 Second, interaction of b1 or b2 with Cav1.2 or
Cav2.2 a1 prevents a1 being addressed to and degraded by the
proteasome.28,37 This second mechanism is in agreement with
our data in TH2 cells. Indeed, we show that knocking down
Cavb diminished the total amount of endogenous Cav1.2 a1,
which was partially restored on proteasome inhibition in TH2
cells. Whether b subunits are also required for the export of a1
subunits to reach the cell surface is controversial.23,28,40

Knocking down Cavb resulted in lower expression of Cav1.2 a1
at the cell membrane, which was restored in part by the
proteasome inhibitor, indicating that Cavb was not absolutely
required for the channel to exit from the ER or that the remaining
Cavb subunits were sufficient to promote trafficking of the
channel at the cell membrane. The absence of Cavb, even in the
presence of proteasome inhibitor, did not allow restoration of
cytokine production by TH2 cells, which could be due to the
incomplete restoration of Cav1.2 a1 and/or a role of Cavb on
function of the channel at the cell membrane.

Mouse TH2 cells express predominantly both b1 and b3
subunits, as do human TH2 cells.9 It was reported previously
that the b1 variant preferentially interacts with Cav1.1 a1,
allowing interaction of Cav1 with ER-localized type 1 ryanodine
receptors41 and leading to calcium depletion in the ER. It would
be interesting to investigate the respective roles of Cavb1 and
Cavb3 in Cav1.2 function. Interestingly, Cavb can interact with
G proteins, scaffolding proteins,42 and especially AHNAK,which
might be required for plasma membrane localization of the
channel, as described for Cav1.1 a1 channels in T cells.43

We found predominantly a2d2 at the mRNA level in TH2 cells.
We also detected the protein by using Western blotting with the
same apparent weight as in neurons and by means of
immunofluorescence. Nerve injury can be responsible for chronic
pain caused by a2d1 overexpression in injured sensory
neurons.44,45 Gabapentin is beneficial because this drug, which
binds to a2d1 and a2d1 but not the other a2d isoforms,34

might decrease expression of Cav2 channels at the cell
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membrane,33,34,46 leading to a reduction in Cav calcium currents.
However, the authors did not report an effect of gabapentin on the
total amount ofa2d and Cava1 subunits. Unexpectedly, TH2 cells
treated with gabapentin show reduced total amounts of a2d2,
which are restored by an inhibitor of the vacuolar H1 ATPAse.
This suggests that gabapentin favors a2d2 degradation in an
acidic compartment, such as lysosomes. Along this line,
gabapentin was shown to prevent recycling of a2d2 from
Rab11-positive recycling endosomes to the plasma membrane.47

We show here that gabapentin neither affects the total amount of
Cav1.2 protein nor its localization at the plasmamembrane in TH2
cells. However, the calcium response was decreased on TCR
activation, suggesting that a2d2 can contribute to the function
of Cav1.2 a1, as described for a2d1.48 Altogether, our results
obtained with gabapentin and knockdown of Cavb in the presence
of MG132 indicate that the level of Cav1.2 a1 is not the only
parameter limiting the calcium response and suggest that both
auxiliary subunits are required in addition to Cav1.2 a1 for TH2
functions.

Altogether, these data stress the role of auxiliary subunits (Cavb
and a2d) in Cav1.2 channel function in TH2 cells and show that the
auxiliary subunits of Cav1 channels represent potential new thera-
peutic targets in allergy. Consistently, CavbAS has a marked effect
on TH2 functions, airway inflammation, and hyperreactivity. CD41

T cells infiltrating the lungs express the Cav1.2a1 channel, and this
expression is diminished in mice during CavbAS treatment, sug-
gesting that CavbAS acts in a similar way in vitro and in vivo.
Chronic administration of gabapentin decreased TH2 functions
and inflammation. Because CavbASand gabapentin act in different
ways to decrease Ca21 signaling and TH2 function, it is tempting to
propose a combination of drugs targeting Cavb and Cava2d. In that
respect, gabapentin is already used for the treatment of chronic
cough,49 a symptom that is currently found in asthmatic patients.
Interestingly, peptides stapling the Cav a1 domain interacting
with Cavb subunits and shown to inhibit Cav functions have been
recently described50 and could be tested for their efficacy in allergic
diseases.
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Clinical implications: The demonstration that auxiliary
subunits are involved in calcium signaling through Cav1
channels and the function of mouse and human TH2
lymphocytes supports their potential beneficial effect on allergic
asthma.
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METHODS

Oligonucleotide sequences
The sequences for CavbS (59-gaagtaggtcttggtggtgg-39) and CavbAS

(59-accagccttccgatccaccagtcatt-3’; Eurogentec) were chosen from Bichet

et al.E1 CavbAS has 92% complementarity to mouse or human b1 and b3

mRNA.

Model of acute allergic airway inflammation
BAL fluid was collected, and the content in inflammatory cells was

determined, as previously described.E2 Lung tissue was fixed in 10% buffered

formalin for 24 hours and then placed in 70% ethanol before embedding in

paraffin. Sections (4mm)were stained with hematoxylin and eosin. Histologic

disease scores of 0 to 3 were attributed based on the severity of peribronchial,

perivascular, and interstitial immune cell infiltration and thickening of

peribronchial epithelium, resulting in a maximum score of 12. Lung draining

lymph nodes were harvested, and 2 3 105 cells were stimulated with OVA

(100 mg/mL) for 3 days. Cytokine concentrations were measured in

supernatants by means of ELISA. In some experiments CD41 T cells were

purified from the lungs, stained with anti-Cav1.2 antibodies, and analyzed

by using confocal microscopy.

Airway hyperresponsiveness
Anesthetized and ventilated mice were connected through an endotracheal

cannula to a whole-body plethysmograph for ventilation (Emka Technologies,

Paris, France). After initiating mechanical ventilation, the mouse was

paralyzed with an intraperitoneal injection of 0.1 mL of a 10 mg/mL solution

of rocuronium bromide. The animal was ventilated at a respiratory rate of

150 breaths/min and a tidal volume of 10 mL/kg against a positive

end-expiratory pressure of 3 cm of H2O. Then mice were exposed to

increasing doses of methacholine aerosol generated through a nebulizer

containing 0 to 20 mg/mL methacholine in PBS. Dynamic lung resistance

was measured with iox software (Emka Technologies).

Cell culture
Cells were cultured in complete medium (RPMI 1640 supplemented with

10% FCS [Lonza, Allendale, NJ], 1% pyruvate, 1% nonessential amino acids,

2 mmol/L glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin, and

50 mmol/L b-mercaptoethanol).

Single-cell calcium imaging
Cells were loaded with Fura-2 AM, as previously described,E2,E3 in culture

medium containing 5% heat-inactivated FBS for 30 minutes at 378C.
Cells were then washed, plated, and excited in 10-second intervals by using

340- and 380-nm excitation filters. Emission was recorded with 510/540-nm

bandpass filters by using a CCD camera before and after stimulation with

biotinylated anti-CD3 cross-linked with streptavidin- or anti-CD3/CD28–

coated beads (1 bead per cell) for mouse or human T cells, respectively.

Fluorescence ratio images at wavelengths of 340 and 380 nm were then

calculated with Metafluor software. The curve represents the mean 1 SEM

of fluorescence ratio of 40 to 60 cells. Each experiment was repeated 3 or 4

times. For each cell, we calculated the area under the curve between TCR

stimulation and ionomycin application with the GraphPad Prism software.

The time of response was defined as the delay for which the fluorescence ratio

becomes superior to the mean basal value 1 1 SD.

Confocal microscopy
Cells were seeded onto glass slides coated with poly-L-lysine

(Sigma-Aldrich, St Louis, Mo) and then fixated with 4% paraformaldehyde.

Stainingwas performedwith anti-CD2 rat IgG antibody (Abcam) or anti-a2d2

rabbit antibody (Alomone Labs) and revealed with the appropriate secondary

antibodies (Molecular Probes, Eugene, Ore). Cells were then permeabilized

with PBS containing 0.1% saponin and 0.5% BSA. Cav channel subunit

staining was performed with anti-Cav1.2 mouse IgG2b (NeuroMab),

anti-Cavb1 (Alomone Labs), or anti-Cavb3 rabbit IgG (Santa Cruz Labs)

overnight and revealed with the appropriate secondary antibodies (Molecular

Probes). Slides were analyzed by using an LSM 710 confocal microscope

(Zeiss, Oberkochen, Germany). Staining with control isotypes was constantly

negative. The total fluorescence intensity of each cell was determined on the

sum of overall Z sections with ImageJ software (National Institutes of Health,

Bethesda, Md). For membrane Cav1.2 staining, a membrane surface was

created by using CD2 staining, and this surface was duplicated on Cav1.2

staining to measure the intensity of Cav1.2 at the membrane with the Imaris

software (8.4.1; Bitplane) module called Surface. Each measurement was

done for each cell individually.

Real-time quantitative PCR
TH1 and TH2 cells were lysed, and RNA was extracted with the RNeasy

Mini Kit (Qiagen). Reverse transcription was performed with the SuperScript

III Reverse Transcriptase (Invitrogen). Transcripts were measured by using

real-time quantitative PCR with a LightCycler 480 Instrument (Roche) and

the LightCycler 480 SYBR Green I Master (Roche). We used the following

primers: Cavb1, 59-gcagagcgccaggcctta-39 and 59-tgatggccactccctgtaca-39;
Cavb2, 59-cgaacagagagccaagcaa-39 and 59-gggcactatgtcacccaaa-39; Cavb3,
59-tgtggcatttgctgtgagga-39 and 59-ccgatccaccagtcattgc-39; Cavb4, 59-gagcga
gaacagcaagcag-39 and 59-tcaaaggagatggctgtgc-39; Cava2d1, 39 acgccaactggtt
gaaattg 59 and 39 cttgcaaaatcttccctcca 59; Cava2d2, 39 atttccagaaagcccatcg
59 and 39 gtcttggatcccctctcca 59; Cava2d3, 39 cattttggtggacgtcagtg 59 and

39 ttccgttcagacaaggttcc 59; Cava2d4, 39 ggaaagtcgaggctgttgag 59 and 39
ctccacgtagttgcccttgt 59; and hypoxanthine-guanine phosphoribosyltransferase
(HPRT), 59-ctggtgaaaaggacctctcg-39 and 59-tgaagtactcattatagtcaagggca-39.
Primers for Il4, Il5, Il13, Muc5ac, and Muc5b were purchased from Qiagen.

Quantification of target gene expression was calculated by normalizing values

relative to expression of the housekeeping gene HPRT. Amounts of mRNA

were expressed as arbitrary units relative to HPRT as follows:

�
22½Ct interest gene2Ct HPRT�

�
31023:

Immunoblotting
TH2 lymphocytes or brain cells were lysed in RIPA buffer containing

protease inhibitors (Roche). Lysates (30 mg/lane for T-cell extracts and

10 mg/lane for brain lysates) were submitted to 10% SDS electrophoresis,

transferred to Hybond-C Extra nitrocellulose membranes (Amersham,

Piscataway, NJ), and then blotted with anti-Cavb1 (Alomone Labs), anti-

Cavb3 (Santa Cruz Biotechnology, Santa Cruz, Calif), or anti-a2d2 (Alomone

Labs) primary antibodies. We then stained blots with horseradish peroxidase–

coupled secondary antibodies (Cell Signaling Technology, Danvers, Mass)

before detection and visualization with the ECL Prime (Amersham) using a

ChemiDoc XRS System (Bio-Rad Laboratories, Hercules, Calif). The speci-

ficity of anti-Cavb1 and b3 antibodies was verified on human embryonic kid-

ney cells transfected with the corresponding plasmids using Western blotting.

ELISA
Supernatants or sera were incubated into 96-well plates coated with

anti–IL-4, anti–IL-5, anti–IL-13 (eBioscience, San Diego, Calif), anti–IFN-g,

or anti-IgE (Serotec). Bound cytokines and IgE were then labeled with

biotinylated anti–IL-4 (eBioscience), anti–IL-5 (eBioscience), anti–IL-13

(eBioscience), anti–IFN-g (eBioscience), or anti-IgE (BD PharMingen,

San Jose, Calif). Biotinylated antibodies were revealed by means of

incubation with alkaline phosphatase–conjugated streptavidin (Jackson

ImmunoResearch, West Grove, Pa) and subsequent addition of the alkaline

phosphatase substrate pNPP disodium salt hexahydrate (Sigma-Aldrich).

Absorbance was measured at 405 to 650 nm by using an EMax Microplate

Reader (Molecular Devices, Sunnyvale, Calif). Cytokine and immunoglobulin

concentrations were calculated from standard curves generated by means of

titration of recombinant mouse cytokines and purified IgE. Human cytokine

ELISAs were performed, as previously described.E3
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FIG E1. CavbAS targets Cavb1 and Cavb3 subunits in mouse and human TH2 cells. A, OVA-specific DO11.10

TH2 and TH1 cells were stained with anti-Cavb1 and anti-Cavb3 antibodies. B, Expression of Cavb per cell.

One experiment of 3 was depicted, and each point represents 1 cell. C, Cell lysates were prepared from

mouse TH2 cells transfected with CavbS or CavbAS after 3 days of transfection. One representative blot is

shown. D, Protein bands were quantified by using Image Lab software. The ratio between the protein of

interest and b-actin was calculated. Results are expressed as the relative protein level to CavbS and shown

as separate paired experiments. E and F, TH2 cells transfected with CavbS or CavbAS were stained with

anti-Cavb1 and anti-Cavb3 antibodies. Expression of Cavb per cell is shown in Fig E1, F. One experiment

of 3 is depicted, and each point represents 1 cell. G, CRTH21 cells transfected with CavbS or CavbAS

were analyzed for Cavb1 and Cavb3 transcript expression. Results are shown as separate paired

experiments. **P < .01, ***P < .005, and ****P < .0001.
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FIG E2. The proteasome inhibitor MG132 partially restores total Cav1.2 a1 levels and its expression at the

cell membrane. A, Mouse DO11.10 TH2 cells were transfected with control (CavbS) or antisense CavbAS

oligonucleotides for 48 hours before addition of MG132 (0.5 mmol/L) or vehicle for an additional 24 hours.

Cells were then recovered and labeled with anti-Cav1.2 a1 mAb. Dotted lines indicate cells. B, TH2 cells

treated as in Fig E2, A, were labeled with both anti-CD2 and anti-Cav1.2 a1 mAbs, and colocalization

determined with Imaris software is shown. Results are expressed as means of at least 50 cells, and bars

represent SEMs. ****P < .001.
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FIG E3. CavbAS alleviates type 2 airway inflammation. A, BALB/c mice were immunized with OVA in alum

and challenged 15 days later with intranasal OVA only (control), OVA plus CavbS, or OVA plus CavbAS every

day for 5 days. Representative hematoxylin and eosin–stained sections are shown, and arrows indicate

inflammatory infiltrates. B-D, CD41 T cells were purified from lung tissue and stained with anti-Cav1.2 a1

mAb. Optical sections are shown in Fig E3, B. Quantification was done by collecting data from all the Z-stack

sections of each cell. Examples are given in Fig E3, C, where each point corresponds to a cell from 1

representative CavbS- or CavbAS-treated mouse. Fig E3, D, summarized results obtained from different

mice. Each bar represents the mean plus 1 SD of at least 30 cells from 1 mouse. *P < .05 and

****P < .001. E, Representative hematoxylin and eosin–stained lung sections from mice injected with TH2

cells transfected with CavbS or CavbAS and given intranasal OVA.
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FIG E4. CavbAS decreased airway hyperreactivity in a mouse model of

allergic airway inflammation. BALB/c mice were immunized with OVA in

alum (OVA) or PBS (CTL) and challenged 15 days later with intranasal

OVA only, OVA plus CavbS or OVA plus CavbAS every day for 5 days.

Dynamic lung resistance was measured with iox software (Emka

Technology). All data are expressed as means 1 SEMs of 10 mice per

group. **P < .01.
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FIG E5. TH1 cell functions are not affected by gabapentin (gaba) treatment. TH1 cells were preincubated with

gabapentin (1 mmol/L) for 72 hours before loading with the calcium probe Fura-2 AM (A-C) or stimulated in

the presence or not of gabapentin for an additional 24 hours with anti-CD3/anti-CD28 antibodies (D). Fig E5,

A, Fluorescence ratio at 340- and 380-nm excitation wavelengths was recorded at the single-cell level

before and after TCR stimulation. Results are expressed as the mean of at least 50 cells, and bars represent

SEMs. Fig E5, B and C, Area under the curve and time of response for each cell, respectively, defined as in

Fig 3. Data are representative of 2 experiments. Fig E5, D, Cytokine content.
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FIG E6. Gabapentin (gaba) reduces protein levels of the a2d2 auxiliary subunit in TH2 cells. TH2 cells were

incubated with gabapentin (1 mmol/L) for 96 hours with or without bafilomycin (bafilo; 0.5 mmol/L) for the

last 24 hours. Cells were stained with anti-a2d2 or anti-Cav1.2 a1 antibodies. Immunofluorescence was

summed over all the Z-stack sections. One representative experiment of 2 is shown. Awhite line surrounds

each cell.
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