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Operational Modal Analysis in Frequency Domain using Gaussian Mixture Models

Operational Modal Analysis is widely gaining popularity as a means to perform system identification of a structure. Instead of using a detailed experimental setup Operational Modal Analysis relies on measurement of ambient displacements to identify the system. Due to the random nature of ambient excitations and their output responses, various statistical methods have been developed throughout the literature both in the time-domain and the frequency-domain. The most popular of these algorithms rely on the assumption that the structure can be modelled as a multi degree of freedom second order differential system. In this paper we drop the second order differential assumption and treat the identification problem as a curve-fitting problem, by fitting a Gaussian Mixture Model in the frequency domain. We further derive equivalent models for the covariance-driven and the data-driven algorithms. Moreover, we introduce a model comparison criterion to automatically choose the optimum number of Gaussian's. Later the algorithm is used to predict modal frequencies on a simulated problem.

INTRODUCTION

Modal analysis has been widely used as a means of identifying dynamic properties such as modal frequencies, damping ratios and mode shapes of a structural system. Traditionally, the system is subjected to artificial input excitations and output deformations (displacements, velocities or accelerations) are measured. These later help in identifying the modal parameters of the system, this process is called Experimental Modal Analysis (EMA). In the last few decades several algorithms primarily using the assumption of second order differential, Multi Degree Of Freedom (MDOF) system (equation 1) have been developed to find modal parameters in EMA [START_REF] Guillaume | A poly-reference implementation of the least-squares complex frequencydomain estimator[END_REF] [START_REF] Richardson | Parameter estimation from frequency response measurements using rational fraction polynomials[END_REF] .

[M ]{ẍ(t)} + [C]{ ẋ(t)} + [K]{x(t)} = {f (t)}

(1)

Here, [M ], [C] and [K] denote the mass, damping and stiffness matrices respectively. While, {x(t)} and {f (t)} denote the displacement and force vectors at the time t.

Since the last decade Operational Modal Analysis (OMA) has gained considerable interest in the community. OMA identifies the modal parameters only from the output measurements while assuming ambient excitations as random noise. OMA is cheaper because it does not require expensive experimental setup and and can be used in real time operational use cases such as health monitoring [START_REF] Peeters | Industrial relevance of Operational Modal Analysis-civil, aerospace and automotive case histories[END_REF] [4] [START_REF] Rainieri | Automated Operational Modal Analysis as structural health monitoring tool: theoretical and applicative aspects[END_REF] . Several algorithms in OMA can be seen as extensions of EMA algorithms based on the similar assumption of second order MDOF system.

In this paper we approach the problem of finding modal parameters as a problem of curve fitting. We drop the assumption of second order differential MDOF system and use a Gaussian Mixture Model (GMM) [6] [7] to fit the spectral density. Moreover we introduce a criteria called Bayesian Information criteria (BIC) which performs a trade-off on the accuracy of the fit and complexity of the model to estimate the modal order [START_REF] Blumer | Occams razor[END_REF] [9] [START_REF] Roeder | Practical Bayesian density estimation using mixtures of normals[END_REF] .

The remaining paper proceeds as follows, section 2 gives an overview of the traditional operational modal analysis. Sec- 

OPERATIONAL MODAL ANALYSIS

As stated earlier the operational modal analysis is an output dependent modal identification technique. The only thing required is the measurement from the accelerometers placed on the structure. Figure 1(a) shows an example of ambient measurements x(t) on a structure. In almost all OMA algorithms the measurement x(t) is assumed to be generated from a random force excitation.

The following subsections describe the various time-domain subsection 2.1 and frequency-domain algorithms subsection 2.2 for performing OMA.

Time-domain OMA

In the time-domain a general auto-regression moving average (ARMA) model can be applied to the measurement x(t) [START_REF] Ljung | System identification, Signal Analysis and Prediction[END_REF] .

Here, the modal parameters can be computed from the coefficients of polynomials in ARMA models [START_REF] Andersen | Identification of civil engineering structures using vector ARMA models[END_REF] .

If we assume that a second order differential (equation 1) completely describes the system dynamics. Then Natural Excitation Technique [START_REF] James | THE NATURAL EXCI-TATION TECHNIQUE (NEXT) FOR MODAL PARANI-ETER EXTRACTION FROM[END_REF] proves that the auto-correlation function k(τ ) in equation 2 can be written as sum of decaying sinusoid's as described by equation 3. The auto-correlation describes the similarity between measurement as a function of time lag τ between them figure 1(b).

k(τ ) = x(t)x(t -τ )dt (2) 
Here, k(τ ) denotes the auto-correlation for random vector x(t) as a function of time lag τ .

k(τ ) = Aiexp(-λiτ )sin(Biτ ) (3) 
Here, λi and Ai denotes the modal frequency and mode shapes for the i th mode. The above coefficients are found by minimizing the least square error between the measured k(τ ) from equation 2 and the predicted k(τ ) from equation 3. This process is very similar to the Least Square Complex Exponential (LSCE) [START_REF] Spitznogle | Representation and Analysis of Time-Limited Signals Using a Complex Exponential Algorithm[END_REF] [15] [START_REF] Guillaume | A poly-reference implementation of the least-squares complex frequencydomain estimator[END_REF] algorithm developed for time-domain EMA.

Frequency-domain OMA

If we assume the measurement x(t) to be a stationary random process, then according to bochner's theorem [START_REF] Bochner | Lectures on Fourier Integrals[END_REF] the spectral density or power spectrum S(s) can be represented as equation 4.

S(s) = k(τ )exp(-2πis T τ )dτ (4) 
Here, S(s) is the power spectrum for the measurement x(t), where s lies in the frequency-damping plane. Figure 1(c) shows the power spectrum calculated for the measurement x(t) shown in figure 1(a).

Initially the Peak Picking technique (PP) [START_REF] Gade | Frequency domain techniques for operational modal analysis[END_REF] was used in the frequency-domain to identify modal frequencies and shapes.

The PP technique is a very easy way to identify modes but Measurement; eg. figure 1 

x(t) k(τ ) = x(t)x(t -τ )dt S(s) = k(τ )exp(-2πis T τ )dτ Assumption: Second Order Differential k(τ ) = Aiexp(-λiτ )sin(Biτ ) S(jω) = a k (jω) k b l (jω) l
Assumption: Gaussian Mixture Model

x(t) = GP (0, covSM ) k(τ ) = wicos(2πµiτ )exp{-2π 2 σ 2 i τ 2 } S(s) = wi 1 √ 2πσ 2 i exp{ 1 2σ 2 i (s -µi) 2 } TABLE 1:
Comparison of fitting functions becomes inefficient for complex structures [START_REF] Zhang | An overview of major developments and issues in modal identification[END_REF] . This gave rise to the Frequency Domain Decomposition (FDD) [START_REF] Brincker | Modal identification from ambient responses using frequency domain decomposition[END_REF] where modal frequency are denoted as the eigenvalues of spectral density matrix equation 5.

S(jω) = U ΣU H (5) 
Here, modal frequencies and mode shapes can be derived from Σ and U respectively using FDD [START_REF] Brincker | Modal identification from ambient responses using frequency domain decomposition[END_REF] or Enhanced-FDD [START_REF] Brincker | Damping estimation by frequency domain decomposition[END_REF] .

Majority of frequency-domain algorithms in EMA fit a Rational Fractional Polynomial (RFP) [START_REF] Richardson | Parameter estimation from frequency response measurements using rational fraction polynomials[END_REF] in the frequency domain for modal identification [21] [22] . The Rational Fractional Polynomial equation 6 form can be derived if we assume the system to be second order differential equation 1.

S(jω) = a k (jω) k b l (jω) l (6) 
Here, the poles of the polynomial denote the modal frequencies, while other modal parameters can be derived from the coefficients a k and b l . The coefficients of the polynomial can be found by minimizing the least squared error. RFP based algorithms face problems since as the number of modes increase the matrix becomes ill-conditioned which gives rise to stability issues in prediction of modal parameters. In the next section we will drop the assumption of second order differential system and treat the modal identification as a purely curve-fitting problem.

GAUSSIAN MIXTURE MODELS (GMM)

Two of the above mentioned OMA algorithms "Natural Excitation Technique" in the time domain and "Rational Fractional Polynomial" in the frequency domain, have a core assumption of second order differential system. This assumption fails for non-linear systems and for cases where modal frequencies are very close. In the following section we propose to use Gaussian Mixture Models to fit the power spectrum curve.

Scale location mixtures of Gaussian's can approximate a curve to arbitrary precision with enough components [START_REF] Plataniotis | Advanced Signal Processing Handbook Theory and Implementation for Radar[END_REF] . Due to the above property GMM's are widely used in machine learning tasks such as speech recognition [START_REF] Stuttle | A Gaussian mixture model spectral representation for speech recognition[END_REF] , financial modelling [START_REF] Xu | On convergence properties of the EM algorithm for Gaussian mixtures[END_REF] , handwriting recognition [START_REF] Bishop | Pattern recognition[END_REF] and many more.

Due to the formulation of GMM, the mean, standard deviation and weight information of the gaussian's can be used to derive the modal frequency, damping and mode shape of the system respectively. For a positive half power spectrum the GMM will be equivalent to equation 7.

S(s)

= Q i wi 1 2πσ 2 i exp{ 1 2σ 2 i (s -µi) 2 } (7) 
Here, µi, σi and wi are the mean, standard deviation and weight respectively of the i th gaussian. While, Q denotes the number of gaussians used in the GMM. The mean, standard deviation and weight can be found by minimizing the least square error between measured power spectrum and predicted power spectrum S(s). The method to estimate Q will be explained in more detail in subsection 3.1.

The GMM model in the frequency-domain can be transformed to perform covariance-driven modal identification using the equation 4. If we assume x(t) to be a stationary random process then using to equation 7 and equation 4 we can get equation 8 in the time domain [START_REF] Wilson | Gaussian Process Kernels for Pattern Discovery and Extrapolation Supplementary Material[END_REF] .

k(τ ) = Q i wicos(2πµiτ )exp{-2π 2 σ 2 i τ 2 } (8)
Here, µi, σi and wi are the mean, standard deviation and weight respectively of the i th gaussian. While, Q denotes the number of gaussians used in the GMM, τ is the time lag between two measurement instances. The parameters can be found by minimizing the least squared error.

Moreover, if we assume that x(t) is a zero-mean gaussian process, then we can transform GMM in frequency-domain to time-domain. The equation 7 and equation 8 are equivalent to fitting a zero-mean gaussian process with a spectral mixture covariance function [START_REF] Wilson | Gaussian Process Kernels for Pattern Discovery and Extrapolation[END_REF] .

x(t) = GP (0, covSM (t, t )) (9) 
Here, GP denotes a gaussian process [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF] , while covSM represents a spectral mixture covariance function which resembles equation 8 [START_REF] Wilson | Gaussian Process Kernels for Pattern Discovery and Extrapolation[END_REF] .

We would like to emphasize that keeping the computational complexities aside, fitting a spectral mixture gaussian process in time-domain equation 7, fitting equation 8 for covariancedriven modal identification and fitting a GMM equation 7 in the frequency-domain are equivalent. In fact the initial idea of this paper was to fit a Gaussian Process (GP) in the data domain, but GP's are computationally heavy and we achieved a good accuracy by fitting the GMM in frequency domain. Refer to table 1 for a more comprehensive view at various fitting functions.

Bayesian Information Criteria (BIC)

While the modal parameters can be chosen by minimizing the least square error, how to choose the number of modes is a recurring question in several OMA algorithms. This problem is partially resolved by using stabilization diagrams or mode identification functions [START_REF] Allemang | A unified matrix polynomial approach to modal identification[END_REF] [30] [START_REF] Shih | Complex mode indication function and its applications to spatial domain parameter estimation[END_REF] . But in practical situations engineering judgement is required to estimate the optimal modal order.

Here, we use the Bayesian Information Criteria (BIC) [START_REF] Findley | Counterexamples to parsimony and BIC[END_REF] which penalises more complex models to estimate the parameter Q in equation 7. It has been shown earlier that the BIC when applied to GMM's does not underestimate the true number of components [START_REF] Leroux | Consistent estimation of a mixing distribution[END_REF] .

BIC(Q) = n ln(M LE) + k ln(n) (10) 
Here, n denotes the number of data-points to fit, M LE denotes the maximum likelihood estimation of the fit and k denote the number of free parameters to fit. The BIC performs a trade-off between the data-fit term n ln(M LE) and the complexity penalty term k ln(n), basically penalizing for over-fitting. Lowest value of BIC is preferred.

RESULTS

In this section we conduct experiments, applying our approach on a simple 3 degree of freedom system with close by modes. As stated earlier in section 3 we fit a Gaussian Mixture Model (GMM) on the spectral density. Later we will compare the Bayesian Information Criteria to find the optimal value of number of gaussians for the measurement.

The toolbox used for this paper is Matlab's Curve Fitting Toolbox [START_REF] Mathworks | Curve fitting toolbox 1: user's guide[END_REF] . All experiments were performed on an Intel quadcore processor with 4Gb RAM. Using the curve fitting toolbox the fitting can be performed by a few lines of code. When compared to other frequency-domain techniques like RFP which suffer from ill-conditioned matrices, the GMM technique is highly stable and finds the coefficient's in seconds.

Figure 2(a) shows the stabilization diagram with increasing number of gaussians Q. We can observe that as the number of Q increases the algorithm starts finding better and better modes. We can also observe that there are three modes which start stabilizing from Q = 5. The, figure 2(b) shows the BIC criterion with increasing number of gaussian's Q. We can see that that the BIC is minimum for Q = 6 and hence if we add anymore gaussian's for our dataset we will be performing over-fitting.

Figure 2(c) shows the 6 constituent gaussians which represent the Q = 6 case. The three principal peaks represent the modal frequencies of the system, these correspond to the stabilized frequencies from figure 2(a). The remaining three peaks are there to compensate for the spectral density not explained by the three principal peaks.

In the current setting of the GMM model we only propose a quick and easy way to identify the most important frequencies of a structural system. Neither the mode shapes nor the damping ratios are estimated in the current format. As can be observed from figure 2(c) the mode shapes are not only dependent on the principal gaussian's but also on the neighbouring gaussian's. Since some part of the spectral density is defined by non-stabilized gaussian's, in future we would like to derive a method to estimate mode-shape and damping ratio such that the contributions of neighbouring gaussian's are also taken into account.

CONCLUSION

In this paper we have proposed to identify model frequencies of a system by curve-fitting a mixture of gaussians in the frequency domain. While the common assumption that the structure can be modelled as a MDOF second order differential system causes stability issues in presence of non-linear systems. The GMM model is mathematically stable, gives results in seconds and can fit a function upto arbitrary accuracy. Moreover we introduce the BIC to identify the optimum num- (b) The BIC criterion with increasing number of gaussian's Q. We can see that that the BIC is minimum for Q = 6 and hence if we add anymore gaussian's for our dataset we will be performing over-fitting (c) Distribution of gaussians for Q = 6.

We can see that the three modal frequencies have majority of the participation in representing the spectral density. Without doubt this is very nascent stage of application of GMM for system identification and there remains problems such as identification of mode-shape and damping ratio in this algorithm. We wish to tackle these problems in the future. We also wish to apply the algorithm on a real world dataset and compare with respect to other time domain and frequency domain techniques.
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