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Abstract. In Gaussian Processes a multi-output kernel is a covariance
function over correlated outputs. Using a prior known relation between
outputs, joint auto- and cross-covariance functions can be constructed.
Realizations from these joint-covariance functions give outputs that are
consistent with the prior relation. One issue with gaussian process regres-
sion is efficient inference when scaling upto large datasets. In this paper
we use approximate inference techniques upon multi-output kernels en-
forcing relationships between outputs. Results of the proposed method-
ology for theoretical data and real world applications are presented. The
main contribution of this paper is the application and validation of our
methodology on a dataset of real aircraft flight tests, while imposing
knowledge of aircraft physics into the model.

Keywords: Gaussian Process, Kernel Methods, Approximate Inference,
Multi-Output Regression, Flight-test data

1 Introduction

The main difference between the physical sciences and machine learning can be
explained by the difference between deduction and induction. Physical sciences
is deduction: where a very general formula is applied to a particular case. The
basics of newtonian physics when applied to a particular aircraft geometry give
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us inertial loads. The basics of aerodynamics when applied to particular set of
aircraft geometry and aircraft states give out aerodynamic pressures. Physical
sciences take global rules and apply them to local configurations, whereas ma-
chine learning is induction [9]. It looks at local features and data, tries to find
similarity measures between them and gives a global formula for the environ-
ment. For this reason machine learning algorithms perform better in presence of
more and more data.

Unfortunately, gathering highly accurate data for physical systems is a costly
exercise. Highly accurate CFD simulations may run for weeks and flight test
campaigns cost millions of dollars. In this regard there is a dichotomy between
these two fields of science, where machine learning needs more data for good
performance but procuring data from physical systems is a costly exercise. In
this work we consider using prior information of relationships between several
outputs thereby effectively increasing the number of data-points.

We use multiple-output Gaussian Process (GP) regression [12] to encode
the physical laws of the system and effectively increase the amount of train-
ing data points. Inference on multiple output data is also known as co-kriging
[14], multi-kriging [3] or Gradient Enhanced Kriging. Using a general framework
[7] to calculate covariance functions between multiple-outputs, we extend the
framework of gradient enhanced kriging to integral enhanced kriging, quadratic
enhanced kriging or any functional relationship between inputs.

Let us start by defining a P dimensional input space and a D dimensional
output space. Such that {(xji , y

j
i )} for j ∈ [1;ni] are the training datasets for

the ith output. Here ni is the number of measurement points for the ith out-
put, while xji ∈ RP and yji ∈ R. We next define xi = {x1i ;x2i ; . . . ;x

ni
i } and

yi = {y1i ; y2i ; . . . ; yni
i } as the full matrices containing all the training points

for the ith output such that xi ∈ Rni×P and yi ∈ Rni . Henceforth we define
the joint output vector Y = [y1; y2; y3; . . . ; yD] such that all the output values
are stacked one after the other. Similarly, we define the joint input matrix as
X = [x1, x2, x3, . . . , xD]. If Σni = N for i ∈ [1, D]. Hence N represents the
total number of training points for all the outputs combined. Then Y ∈ RN and
X ∈ RN×P .

For simplicity take the case of an explicit relationship between two outputs y1
and y2. Suppose we measure two outputs with some error, while the true physical
process is defined by latent variables f1 and f2. Then the relation between the
output function, measurement error and true physical process can be written as
follows.

y1 = f1 + εn1

y2 = f2 + εn2 (1)

Where, εn1 and εn2 are measurement error sampled from a white noise gaus-
sian N (0, σn1) and N (0, σn2) respectively. While the physics based relation can
be expressed as follows.

f1 = g (f2, x1) (2)



Approximate inference in related multi-output Gaussian Process Regression 3

Here g is an operator defining the relation between f1 and an independent
latent output f2.

While a joint model developed using correlated covariance functions gives
better predictions, it incurs a huge cost on memory occupied and computational
time. The main contribution of this paper is to apply approximate inference
on these models of large datasets and reduce the heavy computational costs
incurred. For a multi-output GP as defined earlier the covariance matrix is of
size N , needing O

(
N3
)

calculations for inference and O
(
N2
)

for storage. In
this work we compare performance of variational inference [15] and distributed
GP [8] to approximate the inference in a joint-kernel.

The remaining paper proceeds as follows, section 2 provides the theoretical
framework for Gaussian Process regression. Section 3 extends the multi-output
GP regression in presence of correlated covariances. In section 4 various methods
of approximating inference of a multi-output GP are derived. Finally, in section
5 we demonstrate the approach on both theoretical and flight-test data.

2 Gaussian Process Regression

A gaussian process is an infinite dimensional multi-variate gaussian. Such that
any subset of the process is a multi-variate gaussian distribution. A gaussian
process can be fully parametrized by a mean and covariance function Eq. 3.

y(x) = GP (m(x, θ), k(x, x′, θ)) (3)

A random draw from a Gaussian Process gives us a random function around
the mean function m(x, θ) and of the shape as defined by covariance function
k(x, x′, θ). Hence, Gaussian Process gives us a method to define a family of
functions whose shape is defined by its covariance function. A popular choice of
covariance function is a squared exponential function Eq. 4, because it defines a
family of highly smooth (infinitely differentiable) non-linear functions as shown
in Fig. 1(a).

k(x, x′, θ) = θ21exp[−
(x− x′)2

2θ22
] (4)

A covariance function is fully parametrized by its hyperparameters θi’s. For
the case of Squared exponential kernel the hyperparameters are its amplitude θ1
and length scale θ2.

Given a dataset (x, y) regression deals with finding latent function f between
the inputs x and outputs y. While performing polynomial regression we assume
that our function f comes from a family of polynomial functions. Since Gaussian
Processes are such handy tools to define a family of non-linear functions. In a
Gaussian Process Regression (GPR) we start with an initial family of functions
defined by a GP called prior Fig. 1(a).

P(f | x, θ) = GP (y|0,Kxx) (5)
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(a) Prior (b) Marginal Likelihood (c) Posterior

Fig. 1. Gaussian Process Regression

Due to the bayesian setting of GP we can calculate the posterior mean and
variance as shown in Eq. 6 and Eq. 7. This means that we are effectively elim-
inating all the functions in the prior that do not pass through our data points
Fig. 1(c).

m(y∗) = kx∗x(Kxx)−1y (6)

Cov(y∗) = kx∗x∗ − kx∗x (Kxx)−1kxx∗ (7)

We can also improve our predictions by choosing a better prior. This involves
optimizing the Marginal Likelihood (ML) P(y | x, θ) calculated as Eq. 8. The
probability that our dataset (x, y) comes from a family of functions defined by
the prior is called the ML [12]. Hence, when we optimize the ML we are actually
finding the optimal θ or family of functions that describe our data Fig. 1(b).

P(y | x, θ) = GP (y|0,Kxx + σ2I) (8)

3 Multi-output Gaussian Process

Given a dataset for multiple outputs {(xi, yi)} for i ∈ [1;D] we define the
joint output vector Y = [y1; y2; y3; . . . ; yD] such that all the output values
are stacked one after the other. Similarly, we define the joint input matrix as
X = [x1;x2;x3; . . . ;xD]. For the sake of simplicity, suppose we measure two
outputs y1 and y2 with some error, while the true physical process is defined by
latent variables f1 and f2 equation 2. The operator g(.) can be a known physi-
cal equation or a computer code between the outputs, it basically represents a
transformation from one output to another.

3.1 Related Work

Earlier work developing such joint-covariance functions [2] have focused on build-
ing different outputs as a combination of a set of latent functions. GP priors are
placed independently over all the latent functions thereby inducing a correlated
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covariance function. More recently it has been shown that convolution processes
[1] , [3] can be used to develop joint-covariance functions for differential equa-
tions. In a convolution process framework output functions are generated by
convolving several latent functions with a smoothing kernel function. In the cur-
rent paper we assume one output function to be independent and evaluate the
remaining auto- and cross-covariance functions exactly if the physical relation
between them is linear [13] or use approximate joint-covariance for non-linear
physics-based relationships between the outputs [7].

3.2 Multi-output Joint-covariance kernels

A GP prior in such a setting with 2 output variables is expressed in equation 9.[
f1
f2

]
∼ GP

[(
0
0

)
,

(
K11 K12

K21 K22

)]
(9)

K12 and K21 are cross-covariances between the two inputs x1 and x2. K22

is the auto-covariance function of independent output, while K11 is the auto-
covariance of the dependent output variable. The full covariance matrix KXX is
also called the joint-covariance. While, the joint error matrix will be denoted by
Σ;

Σ =

[
σ2
n1 0
0 σ2

n2

]
(10)

Where, εn1 and εn2 are measurement error sampled from a white noise gaus-
sian N (0, σn1) and N (0, σn2).

For a linear operator g(.) the joint-covariance matrix can be derived analyt-
ically [14], due to the affine property of Gaussian’s equation 11.[

f1
f2

]
∼ GP

[(
0
0

)
,

(
g(g(K22, x2), x1) g(K22, x1)

g(K22, x2) K22

)]
(11)

Using the known relation between outputs we have successfully correlated
two GP priors from equation 2. This effectively means that when we randomly
draw a function f2 it will result in a correlated draw of f1 such that the two draws
satisfy the equation 2. We have effectively represented the covariance function
K11 in terms of the hyperparameters of covariance function K22 using the known
relation between outputs.

Without loss of generality we can assume that the independent output f2
belongs to a family of functions defined by a Squared Exponential kernel. The
joint-covariance between f1 and f2, means that a random draw of independent
function f2 will result in a correlated draw of the function f1. The fig: 2(a) shows
random draws coming from a differential relationship between f1 (red) and f2
(blue) such that f1 = ∂f2

∂x . We can see that the top figure is derivative of the
bottom one since fderivative goes to zero where findependent goes to maxima or
minima. Similarly, the fig: 2(b) shows random draws coming from an integral
relationship between f1 (red) and f2 (blue) such that f1 =

∫
f2. We can see that

the top figure is integral of the bottom one since findependent goes to zero where
fintegral goes to maxima or minima.
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(a) Joint draws between f1 red and f2 blue
such that f1 = ∂f2

∂x
.

(b) Joint draws between f1 red and f2
blue such that f1 =

∫
f2.

Fig. 2. Multi-Output Gaussian Process Random Draws

3.3 GP Regression Using Joint-Covariance

We start with defining a zero-mean prior for our observations and make predic-
tions for y1 (x∗) = y∗1 and y2 (x∗) = y∗2. The corresponding prior according to
equation 9 and 10 will be:[

Y (X))
Y (X∗))

]
= GP

[[
0
0

]
,

[
KXX +Σ KXX∗

KX∗X KX∗X∗ +Σ

]]
(12)

The posterior distribution is then given as a normal distribution with expec-
tation and covariance matrix given by [12]

m(y∗) = KX∗X (KXX)
−1
Y (13)

Cov(y∗) = KX∗X∗ −KX∗X (KXX)
−1
KXX∗ (14)

Here, the elements KXX , KX∗X and KX∗X∗ are block covariances derived
from equations 11. Due to the bayesian setting we have basically eliminated all
the functions that do not pass through the points defined by the observed data.

The joint-covariance matrix depends on several hyperparameters θ. They
define a basic shape of the GP prior. To end up with good predictions it is
important to start with a good GP prior. We minimize the negative log-marginal
likelihood to find a set of good hyperparameters. This leads to an optimization
problem where the objective function is given by equation 15

log(P(y | X, θ)) = log[GP (Y |0,KXX +Σ)] (15)

With its gradient given by equation 16

∂

∂θ
log(P(y | X, θ)) =

1

2
Y TK−1XX

∂KXX

∂θ
K−1XXY

− 1

2
tr(K−1XX

∂KXX

∂θ
) (16)
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(a) Joint draws between f1 red and f2
blue such that f1 = ∂f2

∂x
. The posterior

is conditioned such that f1 = 5;x = 0
and f2 = 0;x = 0. The draws from the
posterior follow the relationship between
outputs and also the conditioning.

(b) Joint draws between f1 red and f2
blue such that f1 =

∫
f2. The posterior

is conditioned such that f1 = 0;x = 0
and f1 = 0;x = 1. The draws from the
posterior follow the relationship between
outputs and also the conditioning.

Fig. 3. Multi-Output Gaussian Process Regression Predictions

Here the hyperparameters of the prior are θ =
{
l2, σ

2
2 , σ

2
n1, σ

2
n2

}
. These cor-

respond to the hyperparameters of the independent covariance function K22 and
errors in the measurements σ2

n1 and σ2
n2. Calculating the negative log-marginal

likelihood involves inverting the matrix KXX + Σ. The size of the KXX + Σ
matrix depends on total number of input points N , hence inverting the matrix
becomes intractable for large number of input points.

The fig: 3(a) shows mean and variance for a differential relationship between
independent function f2 (blue) and differential function f1 (red) and such that
f1 = ∂f2

∂x . We have conditioned the two functions such that f1 = 5;x = 0 and
f2 = 0;x = 0. This means that the function f2 passes through 0 and has a
derivative equal to 5 at x = 0. We have not maximized the marginal likelihood
for this case and the hyperparameters of K22 are θ1 = 1; θ2 = 0.2. All the
corresponding draws from the posterior GP also follow the conditioning.

The fig: 3(b) shows mean and variance for a integral relationship between
independent function f2 (blue) and differential function f1 (red) and such that
f1 =

∫
f2.dx. We have conditioned the two functions such that f1 = 0;x = 1

and f1 = 0;x = 0. This means that the function f2 has an integral 0 at the two
points [0, 1] . We have not maximized the marginal likelihood for this case and
the hyperparameters of K22 are θ1 = 1; θ2 = 0.2. All the corresponding draws
from the posterior GP also follow the conditioning. We can observe that the
draws will also have an integral 0 between the range [0, 1].

In the next section we describe how to solve the problem of inverting huge
KXX +Σ matrices using approximate inference techniques.
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(a) Full multi-output covariance ma-
trix for fig: 3(b)

(b) Approximated multi-output covari-
ance matrix for fig: 3(b)

Fig. 4. Variational approximation of covariance matrix for Gaussian Process Regression

4 Approximating Inference

The above GP approach is intractable for large datasets. For a multi-output GP
as defined in section 3.2 the covariance matrix is of size N , where O

(
N3
)

time is

needed for inference and O
(
N2
)

memory for storage. Thus, we need to consider
approximate methods in order to deal with large datasets.

Inverting the covariance matrix takes considerable amount of time and mem-
ory during the process. Hence, almost all techniques to approximate inference
try and approximate the inversion of covariance matrix KXX . If a covariance
matrix is diagonal or block-diagonal in nature then methods such as mixture of
experts are used eg. distributed GP. Whereas if the covariance matrix is more
spread out and has similar terms in its cross diagonals then low-rank approxi-
mations are used eg. variational approximation. The remaining section details
the two methods for approximating covariance matrix which can be later used
to resolve equations 13, 14 and 16.

4.1 Variational Approximation on Multi-output GP

Sparse methods use a small set of m function points as support or inducing
variables. Suppose we use m inducing variables to construct our sparse GP.
The inducing variables are the latent function values evaluated at inputs xM .
Learning xM and the hyperparameters θ is the problem we need to solve in
order to obtain a sparse GP method. An approximation to the true log marginal
likelihood in equation 15 can allow us to infer these quantities.

We try to approximate the joint-posterior distribution p(X|Y ) by introducing
a variational distribution q(X). In the case of varying number of inputs for
different outputs, we place the inducing points over the input space and extend
the derivation of [15] to multi-output case.

q(X) = N (X|µ,A) (17)
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Here µ and A are parameters of the variational distribution. We follow the
derivation provided in [15] and obtain the lower bound of true marginal likeli-
hood.

FV = log(N [Y |0, σ2I +QXX ])− 1

2σ2
Tr(K̃) (18)

whereQXX = KXXM
K−1XMXM

KXMX and K̃ = KXX−KXXM
K−1XMXM

KXMX .
KXX is the joint-covariance matrix derived using equation 11 using the input
vector X defined in section 1. KXMXM

is the joint-covariance function on the
inducing points XM , such that XM = [xM1, xM2, ..., xM2]. We assume that the
inducing points xMi will be same for all the outputs, hence xM1 = xM2 = ... =
xM2 = xM . While KXXM

is the cross-covariance matrix between X and XM .
Note that this bound consists of two parts. The first part is the log of a

GP prior with the only difference that now the covariance matrix has a lower
rank of MD. This form allows the inversion of the covariance matrix to take
place in O

(
N(MD)2

)
time. The second part as discussed above can be seen as

a penalization term that regularizes the estimation of the parameters.
The bound can be maximized with respect to all parameters of the covari-

ance function; both model hyperparameters and variational parameters. The
optimization parameters are the inducing inputs xM , the hyperparameters θ of
the independent covariance matrix K22 and the error while measuring the out-
puts σ. There is a trade-off between quality of the estimate and amount of time
taken for the estimation process. On the one hand the number of inducing points
determine the value of optimized negative log-marginal likelihood and hence the
quality of the estimate. While, on the other hand there is a computational load
of O

(
N(MD)2

)
for inference. We increase the number of inducing points until

the difference between two successive likelihoods is below a predefined quantity.

4.2 Distributed Inference on Multi-output GP

An alternative to sparse approximations is to learn local experts on subset of
data. Traditionally, each subset of data learns a different model from another,
this is done to increase the expressiveness in the model [11]. The final predictions
are then made by combining the predictions of local experts [5].

An alternative way is to tie all the different experts using one single set of
hyperparameters [8]. This is equivalent to assuming one single GP on the whole
dataset such that there is no correlation across experts as seen in figure 5(b).
This tying of experts acts as a regularization and inhibits overfitting. Although
ignoring correlation among experts is a strong assumption, it can be justified if
the experts are chosen randomly and with enough overlap.

If we partition the dataset into M subsets such as D(i) = X(i), y(i), i =
1, . . .M .

log p(y|X, θ) ≈
M∑
k=1

log pk(y(i)|X(i), θ) (19)
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(a) Full multi-output covariance ma-
trix for fig: 3(b)

(b) Distributed multi-output covari-
ance matrix for fig: 3(b) the cross-
diagonal terms (blue) are zero due to
independence between experts

Fig. 5. Distributed approximation of covariance matrix for Gaussian Process Regres-
sion

The above equation 19 describes the formulation for marginal likelihood.
Due to the independence assumption the marginal likelihood can be written
as a sum of individual likelihoods and then can be optimized to find the best-
fit hyperparameters. After learning the hyperparameters we can combine the
predictions of local experts to give mean and variance predictions. The robust
Bayesian Commitee Machine (rBCM) model combines the various experts using
their confidence on the prediction point [8]. In such manner experts which have
high confidence at the prediction points get more weight when compared to
experts with low confidence.

m(Y∗) = (Cov(X∗))
−2
∑

βkσ
−2
k mk(X∗) (20)

(Cov((Y∗))
−2 =

∑
k

βkσ
−2
k + (1−

∑
k

βk)σ−2∗∗ (21)

In the above equations mk(X∗) and σk are the mean and covariance pre-
dictions from expert k at point X∗. σ∗∗ is the auto-covariance of the prior at
prediction points X∗. βk determines the influence of experts on the final predic-
tions [4] and is given as βk = 1

2 (log σ−2∗∗ − log σ−2k ).

5 Experiments

We empirically assess the performance of distributed Gaussian Process and Vari-
ational Inference with respect to the training time and accuracy. We start with
a synthetic dataset where we try to learn the model over derivative relationship
and compare the two inference techniques. We then evaluate the improvement
on real world flight-test dataset.
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The basic toolbox used for this paper is GPML provided with [12], we gen-
erate covariance functions to handle relationships as described in equations 11
using the “Symbolic Math Toolbox” in MATLAB 2014b. Variational inference
is wrapped from gpStuff toolbox [16] and distributed GP is inspired from [8]. All
experiments were performed on an Intel quad-core processor with 4Gb RAM.

5.1 Experiments on Theoretical Data

We consider a derivative relationship between two output functions as described
in equation 2. Such that

g(f, x) =
∂f

∂x

Since the differential relationship g(.) is linear in nature we use the equation
11 to calculate the auto- and cross-covariance functions as shown in table 1.

Table 1. Auto- and cross-covariance functions for a differential relationship.

Initial Covariance K22 σ2exp(−1
2

d2

l2
)

Cross-Covariance K12 σ2 d
l2
exp(−1

2
d2

l2
)

Auto-covariance K11 σ
2 d2−l2

l4
exp(−1

2
d2

l2
)

Data is generated from equations 22, a random function is drawn from GP
to get f2 whose derivative is then calculated to generate f1. y1 and y2 are then
calculated by adding noise according the the equations 22. 10,000 points are
generated for both the outputs y1 and y2. Values of y2 are masked in the region
x ∈ [0, 0.3] the remaining points now constitute our training dataset.

f2 ∼ GP [0,KSE(0.1, 1)]

σn2 ∼ N [0, 0.2]

σn1 ∼ N [0, 2] (22)

KSE(0.1, 1) means squared exponential kernel with length scale 0.1 and vari-
ance as 1.

Figure 6 shows comparison between an independent fit GP and a joint multi-
output GP whose outputs are related through a derivative relationship described
in equation 5.1. For figure 6(a) using variational inference algorithm we optimize
the lower bound of log-marginal likelihood, for independent GP’s on y1 and y2.
For figure 6(b) using variational inference we optimize the same lower bound
but with a joint-covariance approach as described in section 4.1 using y1, y2 and
g(.). We settled on using 100 equidistant inducing points for this exercise [6] and
have only optimized the hyperparameters to learn the model.
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(a) Independent fit for two GP’s mean is
represented by solid black line. 2Σ confi-
dence band is represented by light red for
f1 and light blue for f2.The dashed black
line represents the true latent function
values; noisy data is denoted by blue dots.
Experiment was run on 10,000 points but
only 100 data points are plotted to in-
crease readibility. Inference is performed
using variational inference algorithm and
equidistant 100 inducing points. We can
observe the huge difference between the
real data and the predicted mean values
at zone with no data.

(b) Joint multi-output GP’s for two out-
puts, mean is represented by solid black
line. 2Σ confidence band is represented by
light red for f1 and light blue for f2.The
dashed black line represents the true la-
tent function values; noisy data is de-
noted by blue dots. Experiment was run
on 10,000 points but only 100 data points
are plotted to increase readibility. Infer-
ence is performed using variational infer-
ence algorithm and equidistant 100 induc-
ing points. We can observe the improved
prediction between zone with no data be-
cause information is being shared between
the two outputs.

Fig. 6. Experimental results for differential relationship while using variational approx-
imation

Figure 6(a) shows the independent fit of two GP for the differential rela-
tionship, while figure 6(b) shows the joint GP fit. The GP model with joint-
covariance gives better prediction even in absence of data of y2 for x ∈ [0, 0.3].

For the second experiment we compare the Root Mean Squared Error (RMSE)
and run-times of distributed GP and Variational Inference algorithms while per-
forming approximate inference. We progressively generate from 10e3 to 10e5
data-points according to the equations 22 and 5.1. We separated 75% of the
data as training set and 25% of the data as the test set, the training and test
sets were chosen randomly. The variational inference relationship kernel as de-
scribed in section 4.1 with 100 equidistant inducing points was used. We learn
the optimal values of hyper-parameters for all the sets of training data. The
distributed GP algorithm as described in section 4.2 was used with randomly
chosen 512 points per expert. We learn the optimal values of hyper-parameters
for all the sets of training data. The accuracy is plotted as RMSE values with
respect to the test set. The runtime is defined as time taken to calculate negative
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(a) Comparison of time to calculate nega-
tive log marginal likelihood for a Full GP,
Variational inference and Distributed GP
with increasing number of datapoints. We
observe for datapoints greater that 10e5
the distributed GP algorithm starts out-
performing variational inference

(b) Comparison of RMSE for variational
inference and distributed GP algorithm.
We observe for datapoints greater that
10e4 the distributed GP algorithm starts
outperforming variational inference.

Fig. 7. Comparison of run time and RMSE between distributed GP and Variational
Inference

log marginal likelihood equations 18 and 19. The RMSE values are calculated
for only the dependent output y1 and then plotted in the figure 7(a).

In figure 7(a) the time to calculate negative log-marginal likelihood with in-
creasing number of training points is calculated. As expected the full GP takes
more time when compared to variational inference or distributed GP algorithms.
The Variational inference algorithm has better run-time till 10e4 data-points af-
ter that distributed GP takes lesser time. In figure 7(b) the RMSE error with test
set is compared between the variational inference and distributed GP algorithm.
Here too the variational inference algorithm performs better lesser number of
datapoints but distributed GP starts performing better when we reach more
than 10e4 datapoints.

One thing to note is that we have fixed the number and position of inducing
points while performing this experiment. While a more optimized set of induc-
ing points will have better results, for datasets of the order 10e5 distributed GP
algorithm starts outperforming variational inference. Moreover, upon observing
figure 5(b) we can say that the covariance matrix in a joint GP setting is not
diagonal in nature and hence an approximation technique which can compensate
between low-rank approximation and diagonal approximation should be investi-
gated [10].

5.2 Experiments on Flight Test Data

We perform experiments on flight loads data produced during flight test phase at
Airbus. Loads are measured across the wing span using strain gauges. Shear load
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Tz and bending moment Mx as described in figure 8 are used as two outputs
for this exercise. η or point of action of forces and angle of attack α are the
two inputs. The aircraft is in quasi-equillibrium in all conditions and there are
no dynamic effects observed throughout this dataset. All data is normalized
according to airbus policy.

Fig. 8. Wing Load Diagram

The relation between Tz and Mx can be written as:

Mx(η, α) =

∫ ηedge

η

TZ(x, α)(x− η)dx (23)

.
The equation 23 is applicable for the η axis. Here, ηedge denotes the edge of

the wing span. The forces are measured at 5 points on the wing span and at 8800
points on the α dimension. We compare plots of relationship-imposed multiout-
put GP and independent GP. Then we compare the measures of negative-log
marginal likelihood and RMSE for varying number of inducing points.

Figure 9(a) shows the independent (blue shade) and joint fit (red shade) of
two GP. The top figure shows TZ with the variance of dependent GP plotted
in red and variance of independent GP plotted in blue. Bottom figure shows
plots for MX . Since the number of input points is less than 10e5 we use vari-
ational inference. 100 inducing points in the input space are used to learn and
plot the figure. The variance of red is smaller than that of blue showing the
improvement in confidence when imposing relationships in the GP architecture.
The relationship between TZ and MX gives rise to better confidence during the
loads prediction. This added information is very useful when identifying faulty
sensor data since equation 23 will push data points which do not satisfy the
relationship out of the tight confidence interval.

Figure 9(b) shows improvement in the negative log-marginal likelihood and
RMSE plots upon increasing number of inducing points. 10 sets of experiments
were run on 75% of the data as training set and 25% of the data as the test
set, the training and test sets were chosen randomly. We learn the optimal val-
ues of hyper-parameters and inducing points for all the 10 sets of experiments
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(a) 2σ confidence interval and mean of
the dependent GP are represented in red
shade and solid red line. 2σ confidence in-
terval and mean of the independent GP
are represented in blue shade and solid
blue line. Experiment was run on 8800
data points Noisy data is denoted by cir-
cles only 1 α step is plotted. Confidence
interval improves upon adding the rela-
tionship kernel.

(b) Progression of RMSE and log-
likelihood upon increasing number of in-
ducing points. Top plot shows the value
of mean and variance of negative log-
marginal likelihood. The bottom figure
in blue shows the mean and variance of
root mean squared error. 10 sets of exper-
iments were run on 75% of the data as
training set and 25% of the data as the
test set, the training and test sets were
chosen randomly.

Fig. 9. Experimental results for aircraft flight loads

of training data. Finally, RMSE values are evaluated with respect to the test
set and negative log-marginal likelihood are evaluated for each learned model.
The RMSE and log-likelihood improve upon increasing the number of inducing
points.

6 Conclusions and Future Work

This paper presents approximate inference methods for physics-based multiple
output GP’s. We extend the variational inference and distributed GP inference
techniques to be applied on physics-based multi-output GP’s and reduce the
computational load for inference.

Section 5.1 demonstrates the advantage of using multi-output GP in presence
of prior known relationships on a theoretical dataset. Significant improvement in
prediction can be observed in presence of missing data due to transfer of informa-
tion occuring due to the prior relationship. Then, we compare the difference in
accuracy and run times upon using distributed GP or variational inference to ap-
proximate inference. Although variational inference performs better for datasets
of size less than 10e4, distributed GP becomes significantly advantageous for
datasets greater than 10e5.

Section 5.2 shows real world application of joint kernel on flight loads data.
We demonstrate that adding prior physics-based relationships allows us to create
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a robust, physically consistent and interpretable surrogate model for these loads.
Aircraft flight domain consists of various maneuvers, this is further complicated
by several relationships between outputs. In the future we wish to develop better
strategies to exploit the clustered nature of flight-domain and more than two
relationships.
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