
HAL Id: hal-01828682
https://hal.science/hal-01828682

Submitted on 3 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Variable Structural Optimization: Toward an
Efficient Hybrid Algorithm

Pierre-Jean Barjhoux, Youssef Diouane, Stéphane Grihon, Dimitri
Bettebghor, Joseph Morlier

To cite this version:
Pierre-Jean Barjhoux, Youssef Diouane, Stéphane Grihon, Dimitri Bettebghor, Joseph Morlier. Mixed
Variable Structural Optimization: Toward an Efficient Hybrid Algorithm. 12th World Congress on
Structural and Multidisciplinary Optimisation, Jun 2017, Braunschweig, Germany. pp.1880-1896,
�10.1007/978-3-319-67988-4_140�. �hal-01828682�

https://hal.science/hal-01828682
https://hal.archives-ouvertes.fr

�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/19389

 http://dx.doi.org/10.1007/978-3-319-67988-4_140

Barjhoux, Pierre-Jean and Diouane, Youssef and Grihon, Stéphane and Bettebghor, Dimitri and Morlier, Joseph

Mixed Variable Structural Optimization: Toward an Efficient Hybrid Algorithm. (2017) In: 12th World Congress on

Structural and Multidisciplinary Optimisation, 5 June 2017 - 9 June 2017 (Braunschweig, Germany).

12th World Congress on Structural and Multidisciplinary Optimisation

05th - 09th, June 2017, Braunschweig, Germany

1

Mixed Variable Structural Optimization: toward an Efficient Hybrid Algorithm

Pierre-Jean Barjhoux1, Youssef Diouane2, Stéphane Grihon3, Dimitri Bettebghor4, Joseph Morlier5

1 IRT Saint Exupery, Toulouse, France, pierre-jean.barjhoux@irt-saintexupery.com

2 ISAE-SUPAERO, Toulouse, France, youssef.diouane@isae.fr
3 AIRBUS, Toulouse, France, stephane.grihon@airbus.com
4 ONERA, Châtillon, France, dimitri.bettebghor@onera.fr

5 Université de Toulouse, Institut Clément Ader (ICA), CNRS-ISAE SUPAERO-INSA-Mines Albi-UPS, Toulouse, France,

joseph.morlier@isae.fr

1. Abstract

Designing a structure implies a selection of optimal concept and sizing, with the aim of minimizing the weight

and/or production cost. In general, a structural optimization problem involves both continuous variables (e.g.,

geometrical variables, …) and categorical ones (e.g., materials, stiffener types, …). Such a problem belongs to the

class of mixed-integer nonlinear programming (MINLP) problems. In this paper, we specifically consider a

subclass of structural optimization problems where the categorical variables set is non-ordered. To facilitate

categorical variables handling, design catalogs are introduced as a generalization of the stacking guide used for

composite optimization. From these catalogs, a decomposition of the MINLP problem is proposed, and solved

through a branch and bound method. This methodology is tested on a 10 bars truss optimization inspired from an

aircraft design problem, consistent with the level of complexity faced in the industry.

2. Keywords: mixed optimization, structural optimization, branch and bound, categorical variable, multi-

material.

3. Introduction

In the field of aircraft design, structural optimization involves different kinds of variables. Continuous variables

describe the size of aircraft structural parts: in case of thin-sheet stiffened sizing, they represent panel thicknesses

and stiffening cross-sectional areas. The set of discrete variables encompasses two kinds of variables. First,

variables that are ordered, e.g. a list of cross-sectional areas. Second, technological choices or even computation

assumptions (e.g. material choices, buckling margin policy) are depicted by categorical variables.

Many industrial problem formulations natively involve a mixture of continuous and discrete variables. Mixed-

variable optimization algorithms have been proposed, such as Genetic Algorithms [1], Differential Evolution [2],

Particle Swarm Optimization [3] and Pattern Search [4]. In many cases, discrete variables are considered as ordered

through a continuous relaxation approach, for example in [5][6][7]. In other cases, categorical variables are

handled through a native mixed-variable optimization approach for both categorical and continuous variables

without relaxation [8][9]. Other strategies consist in turning categorical variables into continuous ones, allowing

the use of continuous optimization algorithms. For example, continuous indices containing shape and material

information are built [10], meta-models are constructed through Multiple Kernel Regression [11].

In industry, most structural optimization software solutions mainly handle continuous variables and ignore

ordinal and categorical variables. This is due to the difficulty of managing all variable types simultaneously while

maintaining the optimization performance: discrete variables always introduce a combinatorial behavior leading

to an exponential number of configurations to be explored. For instance, at Airbus, two structural optimization

software were developed to split up the problem. A first one is inspired by classical continuous optimization

approaches using gradients. The second one focuses on discrete and categorical variables in a preliminary phase

of the design process where trade-offs are evaluated [12]. On this basis, major decisions governing the structural

definition are made.

In this article, the work related to mixed variable optimization will be presented in section 4, and an industrial

formulation is proposed in section 5. Then, the formulation of a test case is introduced in section 6. The section 7

is dedicated to the description of the proposed methodology, followed by an analysis of numerical results.

4. Related work

To our knowledge, an open problem is to define an efficient and generic algorithm combining both categorical

and continuous variables for solving multi-concept structural optimization problems. In industry, attempts have

been made to tackle this kind of optimization problems. One can cite the PRESTO approach, developed at Airbus

[13], that is a pure discrete approach to manage both sizing and categorical variables. However, sizing variables

(e.g., thicknesses, areas) are treated as discrete ones. In this setting, a value of a categorical variable points to a

2

choice among catalogs for a single element or group of elements.

In the literature, a catalog for an element can be considered as a guide to a given composite panel [14][15][16].

Composite guide approach has been extended to stiffening profiles as illustrated in Figure 1. On top of stacking

sequences, the profile dimensions can be varied according to the area. For metal, a skin catalog reduces to a list of

thicknesses and a stiffener catalog to a list of profiles.

Figure 1: catalogs principle, where the links between the thickness and stacking sequences, area and detailed

variables, are depicted.

Indeed, for PRESTO, the catalogs allow for mapping detailed variables values with a given couple of thickness

and area values. This means that a choice of thickness is equivalent to a choice of a stacking, and a choice of area

corresponds to a choice of scaled profile (including stacking). Furthermore, a change in stacking sequence

(symmetric, balanced, oriented, iso) leads to a change of catalog choice. Using the same approach, information on

material, stiffening profile or even buckling margin policy choices have been added to catalogs. Indeed, results of

ISAMI, the reference strength analysis package of Airbus used for sizing and airframes certification, have been

stored into the PRESTO database. So in addition to the sizing variables link mentioned above, a catalog contains

a table of Reserve Factors (RF) corresponding to predefined internal forces. This RF aims at measuring the strength

of an element: a RF greater than 1 illustrates that the element does hold the given load.

For PRESTO, the sizing is performed separately for each element by finding, through the catalog database, the

skin and stiffener parameters (i.e.; super-stiffener) that minimize the weight with respect to internal loads (IL).

Considering that the catalog set describes a finite set of choices, this local (spatially speaking, in the structural

model) optimization is straightforward and consists of a simple loop that carries out a numerical sorting to find the

weight minimum feasible super-stiffener as illustrated in Figure 2.

Figure 2: sizing engine of PRESTO

Since the choice of catalog is performed separately for each element, it does not take into account overall

effects of optimal internal forces redistribution, or rigidity constraints. Both sizing and categorical variables are

concerned by this drawback. The main objective of this work consists in improving the existing industrial PRESTO

approach by setting up an efficient and performing methodology that tackles directly both categorical and sizing

variables (as continuous variables) using a new formulation of the problem.

In order to implement a generic approach as far as possible, no distinction is made between material and

stiffening principle selection. To that end, a particular attention has been paid to avoid methods that are focused

Thickness

Stacking

Area

Profile

3

on specific categorical variables (e.g. dedicated to material, stacking sequences). Our methodology relies on

PRESTO catalogs to ensure a unified approach handling all the categorical variables.

5. Industrial problem formulation

Let us name t the thicknesses and A the areas where (𝒕, 𝑨) ∈ ℝ2𝑁, N being the number of elements in the structural

model. The set 𝛤 is an enumerated set which allows to list choices 𝒄, for example the material or the stiffener type

of an element. If 𝑚 is the number of catalogs, we can note 𝛤 = ⟦1,𝑚⟧.
All these variables are vectors for which each component is associated to an element. In our industrial case, a

finite element model involves about N=100 elements leading to 200 continuous variables, and 10 up to 100

categorical choices per element. The categorical variable can take a value among 𝑚𝑁 (number of categorical

choices per element at the power of the number of elements) values of the set 𝛤𝑁. This high combinatory dimension

demonstrates the need for a methodology to solve efficiently such problems.

Within the framework of stiffened panels, as key concept of aeronautics structures, the optimization problem to

solve is:

 min 𝑊(𝒄, 𝒕, 𝑨) (1)
 (𝒕, 𝑨) ∈ ℝ2𝑁
 𝒄 ∈ 𝛤𝑁
 Subjected to: 𝑹𝑭(𝒄, 𝒕, 𝑨, 𝐼𝐿(𝒄, 𝒕, 𝑨)) ≥ 1
 𝐺(𝒄, 𝒕, 𝑨) ≤ 0
 𝑡(𝒄) ≤ 𝒕 ≤ 𝑡(𝒄)

𝛼(𝒄) ≤

𝑨

𝑏𝒕
≤ 𝛼(𝒄)

In this formulation, the constraints on RF ensure the structural strength element per element. 𝐺 represents any

constraint, especially stiffness constraint that depends on all thicknesses and areas through the stiffness matrix

(e.g. displacement). Bounds on sizing variables, in particular on the stiffening ratio 𝛼 (of areas over thicknesses),

prevent over-stiffened stiffeners supporting thin skin, or the reverse (design rule). Note that both continuous

variables (i.e.; thickness 𝒕, area 𝑨) and categorical variables (i.e.; 𝒄, hiding material or stiffening principle choices)

have a significant role in this problem. The categorical variables affect the weight 𝑊, internal loads IL, rigidity

constraints 𝐺 , reserve factors RF, bounds on thicknesses and stiffening ratio. On the other hand, continuous

variables affect the weight, internal loads, reserve factors and rigidity constraints. It is worth noting that a change

in a categorical variable, thickness or area will modify 𝐼𝐿 distribution along the structure. Since the stresses and

then RF require the value of 𝐼𝐿, each component of RF vector depends on the whole structure description. Internal

loads 𝐼𝐿 are computed using a finite element model (FEM).

6. Test case formulation

Before tackling the targeted industrial case that deals with aeronautics box-section structures, a preliminary step

has consisted in the implementation of a test-case that can be handled within short execution-times. This makes

possible the exploration of new algorithms and allows for identifying promising leads.

To that end, the well-known 10 bars truss optimization test-case, introduced as a continuous optimization

problem in [17][18][19], has been adapted to match the needs of the mixed optimization problem.

Figure 3: 10 bars truss structure working in tension/compression, with 6 nodes

4 5 6

𝑥

𝑦

1 2 3

4

The continuous optimization part of the problem remains unchanged, while categorical variables have been

introduced. As described in the whole problem in Eq.(1), a choice of categorical value corresponds to a choice of

material or stiffening principle.

Thus, the problem becomes:

 min 𝑊(𝒄, 𝑨) (2)
 𝑨 ∈ ℝ10
 𝒄 ∈ 𝛤10
 Subjected to: 𝑹𝑭𝒊(𝑐𝑖 , 𝐴𝑖, 𝐼𝐿(𝒄, 𝑨)) ≥ 1, ∀𝑖 ∈ ⟦1, 10⟧

 𝐺(𝒄, 𝑨) ≤ 0
 𝑨(𝒄) ≤ 𝑨 ≤ 𝑨(𝒄)

Many dummy variables are hidden by categorical variables. For the sake of clarity, Table 1 gives the dependencies

between them.

Table 1: variables description and links with the functions of the optimization problem

 𝑐

 Shape Material Cont. variables

 𝜌 𝐸 𝜎𝑎𝑙𝑙𝑜𝑤 𝜈 𝐴 𝑥 IL

Weight  
Constraints (compr/tension)  

Constraints (loc/buckling)      
Constraints       

Internal Loads (IL)  

As in the whole problem in Eq.(1), the ith component of the vector c corresponds to a choice of material and

shape for the ith bar. For each section, and regarding cross-section sizing variables, catalogs establish the link

between areas and detailed variables (geometrical description of the cross sections). The PRESTO approach is

replicated here, except that the sizing variables (areas, detailed variables) are considered as continuous.

Based on the hypothesis that for each bar, the vector of detailed variables 𝒙𝑖 of the 𝑖𝑡ℎ bar varies linearly with

respect to the detailed variables 𝒙0 of the reference profile:

 𝒙𝑖 = 𝜆𝑖 𝒙0, 𝑖 ∈ ⟦1, 10⟧ (3)

The corresponding cross-sectional area can then be written as:

 𝐴𝑖 = 𝜆𝑖
2 𝐴0, 𝑖 ∈ ⟦1, 10⟧ (4)

From (3) and (4) can be deduced an expression of 𝜆𝑖, the scaling ratio of the profiles:

 𝜆𝑖 = √𝐴𝑖 𝐴0⁄ , 𝑖 ∈ ⟦1, 10⟧ (5)

Thus, the simple mathematical function detailed below can be used compute the detailed variables with respect to

areas 𝐴𝑖 coming from the optimizer, and the reference profile described by 𝐴0 and 𝒙0:

 𝒙𝑖(𝐴𝑖) = √𝐴𝑖 𝐴0⁄ 𝒙0, 𝑖 ∈ ⟦1, 10⟧ (6)

5

Figure 4: continuous profile scaling

These detailed variables are indeed useful for the computation of 𝑹𝑭𝒊 components that are related to local

buckling.

Constraints 𝑹𝑭𝒊 are vector-valued functions of dimension 4. Indeed, for each bar 𝑖, two constraints compare the

stress 𝜎𝑖 coming from FEM computation to the allowable stress in tension and compression (material property),

two other constraints compare the stress from FEM to the local and Euler buckling allowable stress. The

expressions of these constraints is as follows:

 𝑹𝑭𝑖(𝑐𝑖, 𝐴𝑖, 𝐼𝐿(𝒄, 𝑨)) =

[

 (𝜎𝑖

𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟
(𝑐𝑖) − 𝜎𝑖(𝒄, 𝑨)

𝜎𝑖
𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟

(𝑐𝑖)
⁄ ≤ 0

(𝜎𝑖(𝒄, 𝑨) − 𝜎𝑖
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑐𝑖))

𝜎𝑖
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑐𝑖)

⁄ ≤ 0

(𝜎𝑖
𝐸𝑢𝑙𝑒𝑟.𝑏𝑢𝑐𝑘𝑙(𝑐𝑖, 𝐴𝑖) − 𝜎𝑖(𝒄, 𝑨))

𝜎𝑖
𝐸𝑢𝑙𝑒𝑟.𝑏𝑢𝑐𝑘𝑙(𝑐𝑖, 𝐴𝑖)

⁄ ≤ 0

(𝜎𝑖
𝐿𝑜𝑐𝑎𝑙.𝑏𝑢𝑐𝑘𝑙(𝑐𝑖, 𝐴𝑖) − 𝜎𝑖(𝒄, 𝑨))

𝜎𝑖
𝐿𝑜𝑐𝑎𝑙.𝑏𝑢𝑐𝑘𝑙(𝑐𝑖, 𝐴𝑖)

⁄ ≤ 0
]

, 𝑖 ∈ ⟦1, 10⟧
(7)

with:

𝜎𝑖

𝐿𝑜𝑐𝑎𝑙.𝑏𝑢𝑐𝑘𝑙(𝑐𝑖, 𝐴𝑖) =
4𝜋2𝐸𝑐𝑖

12(1 − 𝜈𝑐𝑖

2)
 (

𝑥𝑖
(1)

(𝐴𝑖)

𝑥𝑖
(2)

(𝐴𝑖)
)

2

(8)

𝜎𝑖

𝐸𝑢𝑙𝑒𝑟.𝑏𝑢𝑐𝑘𝑙(𝑐𝑖, 𝐴𝑖) =
𝜋2𝐸𝑐𝑖

𝐼𝑐𝑖
(𝒙𝒊(𝐴𝑖))

𝐴𝑖 𝐿
2

(9)

In (7), 𝜎𝑖
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛 and 𝜎𝑖

𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟
 are the allowable values in terms of tension and compression respectively.

They are directly linked to the choice of material, whereas 𝜎𝑖
𝐿𝑜𝑐𝑎𝑙.𝑏𝑢𝑐𝑘𝑙 and 𝜎𝑖

𝐸𝑢𝑙𝑒𝑟.𝑏𝑢𝑐𝑘𝑙 depend on both shape

(through detailed variables 𝑥𝑖
(1)

(𝐴𝑖) , 𝑥𝑖
(2)

(𝐴𝑖) and quadratic moment 𝐼𝑐𝑖
(𝒙𝒊(𝐴𝑖))) and material choices. The

structural constraints computed by FEM are noted 𝜎𝑖. All allowable constraints value are defined as positive.

In this simplified test-case, the catalog is made of two aluminum alloys with different physical properties: one has

a higher young modulus, the other higher allowable values. This is typically the case of a metallic wing, where the

extrados working under compression requires a higher young modulus, whereas the intrados part needs higher

fatigue allowable summarizing other properties than stiffness.

6

7. Methodology

As a first approach it was necessary to build a baseline methodology. For that purpose, we chose the branch and

bound algorithm, whose guiding principle is mainly due to [20], [21]. Many authors improved this method

afterwards, for example in the field of structural optimization [22].

7.1. Generic branch and bound process

Based on an enumerative divide-and-conquer technique, this generic approach searches for the best solution into

the whole space of solutions for a given problem. The algorithm repeatedly splits the original design space into

several design spaces, this is called “branching”. A diagram of the branches can be seen as a “tree”, while the

subspaces and their associated sub-problem are illustrated by “nodes” of this tree. A sub-problem is then generated

for each subspace. For each sub-problem, a lower bound (if the original objective is to get a minimum) of a feasible

solution is computed. This corresponds to the “bound” step. Relying on this evaluation, all active sub-problems

that meet the following two criteria are deleted. First, a design sub-space that does not contain allowable values

has no reason to be further explored. Secondly, the subspace may not contain a solution better than the best known

solution (called upper bound). Since an exploration of this subspace would not lead to the optimal solution, this

part of the design space is discarded.

Here are the main steps of this algorithm:

0. Initialization : let be 𝑃0 the initial problem, 𝑏̅(𝑃) the upper bound of the full problem 𝑃 and equal to the

best known solution of 𝑃 (or +∞ if no best solution known), Q the queue containing active nodes and

equal to {𝑃0}

1. Branch: select the best problem 𝑃𝑖
(𝑗) according to a given strategy among all active nodes from Q, and

delete it from Q. Split the design space of problem 𝑃𝑖
(𝑗) into 𝑚 subspaces. Build all associated sub-

problems 𝑃𝑖
(𝑗) and add them to Q, with a priority following a given strategy.

2. Bound: compute lower bound 𝑏(𝑃𝑖+1
(𝑗)) of 𝑃𝑖+1

(𝑗) through continuous relaxation of 𝑃𝑖+1
(𝑗) noted

𝑃𝑖+1
(𝑗)̂ . If the problem is infeasible, 𝑏(𝑃𝑖+1

(𝑗)) ≔ −∞.

a. If 𝑏(𝑃𝑖+1
(𝑗)) > 𝑏̅(𝑃), 𝑃𝑖+1

(𝑗) node is removed from Q

b. If 𝑃𝑖+1
(𝑗) not feasible, 𝑃𝑖+1

(𝑗) node is removed from Q

c. If 𝑏(𝑃𝑖+1
(𝑗)) ≤ 𝑏̅(𝑃) and 𝑏(𝑃𝑖+1

(𝑗)) is an integral feasible solution of 𝑃, update 𝑏̅(𝑃): 𝑏̅(𝑃) ≔

𝑏(𝑃𝑖+1
(𝑗)). If Q is not empty, go to step 1,

The index 𝑗 of 𝑃𝑖
(𝑗) reminds that at each branching step, we have to manage 𝑚 sub-problems, each of them being

associated with a choice among 𝑚 catalogs (index 𝑗 ∈ ⟦1,𝑚⟧). 𝑃𝑖
(𝑗) is an instance of a problem 𝑃𝑖 where the

catalog 𝑗 has been chosen for the current bar 𝑖 . For simplification purposes, 𝑃𝑖
(𝑗) and 𝑃𝑖 will be used

interchangeably later in this article.

7.2. The developed methodology

In the context of structural optimization, at each level of the tree, the categorical variable corresponding to a bar

is chosen. Thus at level 𝑖 of the tree, 𝑖 − 1 categorical variables have been fixed by the previous 𝑖 categorical

variables associated to the first 𝑖 bars are fixed. The branch and bound process generates, at each branching step,

as many subspaces as the number of available catalog choices (i.e.; 𝑚). This formulation is inspired from the

generalized Benders [23] decomposition, that allows to treat independently complicating variables (in our case,

categorical variables).

The problem formulation in Eq.(2) at a level 𝑖 of the branch and bound tree is the following:

(Problem 𝑃𝑖) min
𝑊(𝒄, 𝑨) = ∑ 𝑊𝑘(𝑐𝑘̿, 𝐴𝑘)

𝑖

𝑘=1

+ ∑ 𝑊𝑘(𝑐𝑘, 𝐴𝑘)
𝑛

𝑘=𝑖+1

(10)

 𝑨 ∈ ℝ10
 𝒄 ∈ ⟦1, 𝑚⟧

10−𝑖

 Subjected to: 𝑹𝑭𝒌(𝑐𝑘̿ , 𝐴𝑘 , 𝐼𝐿(𝒄̿, 𝒄, 𝑨)) ≥ 1, ∀𝑘 ∈ ⟦1, 𝑖⟧

 𝑹𝑭𝒌(𝑐𝑘 , 𝐴𝑘 , 𝐼𝐿(𝒄̿, 𝒄, 𝑨)) ≥ 1, ∀𝑘 ∈ ⟦𝑖 + 1, 10⟧

 𝐺(𝒄̿, 𝒄, 𝑨) ≤ 0
 𝑨(𝒄̿) ≤ 𝑨 ≤ 𝑨(𝒄̿)

 𝑨(𝒄) ≤ 𝑨 ≤ 𝑨(𝒄)

7

All fixed variables from upper levels are noted with double over-bar accent: for example, 𝒄̿ is the 𝑖-dimensional

vector of fixed categorical values. As in the 10 bars truss problem description, 𝑨 is the vector of continuous design

variable describing the areas, invariably of dimension 10 during the branch and bound process: the areas of all the

bars are design variables regardless of the position in the tree. A breakdown of the objective function shows that

two terms are involved. The first one gives the weight of the truss made up of the 𝑖 first bars. It only depends on

the continuous variables: the areas. The second corresponds to the weight of the remaining bars of the truss: from

𝑖 + 1 to 10. This last term depends on two variables: the categorical variables that have not been fixed already,

and the areas corresponding to the same undetermined bars from 𝑖 + 1 to 10. Since the evaluation of internal loads

depends on all the categorical variables and areas, both fixed and undetermined categorical variable computation

are required (𝒄̿ and 𝒄 respectively) in addition to all the areas.

Although branching is performed on categorical variables associated to the 𝑖 first bars, there is still a

dependency to the categorical variables linked to the remaining bars. Even if the categorical variable dimension

of the generated subspaces decreases when branches depth increases, the computation of the associated sub-

problems still requires to handle the categorical variable. Indeed, computation of constraints 𝑹𝑭𝒌, even for 𝑘 ∈

⟦1, 𝑖⟧, requires categorical choices of the whole structure through internal load computation. One major advantage

of the separation and evaluation process is that no exact solution of the sub-problems is required. Actually, only a

lower bound of the optimum has to be provided. Since the convergence speed of the branch and bound algorithm

is directly driven by its accuracy, a specific attention has to be paid to the lower bound computation process.

Now that the formulation of a sub-problem has been described, the computation of a lower bound 𝑏(𝑃𝑖) of

such problem can be detailed. A lower bound of an optimization problem could, for example, be provided by

removing one or several constraints from the problem. In the context of the branch and bound algorithm, it would

consist in adding progressively the constraints, from one level of the tree to another, that can be computed when

one more categorical variable is fixed. This would ensure to get a lower bound of the problem, while avoiding the

complexity linked to categorical variables. However in the case of problem 𝑃𝑖 in Eq.(10), each 𝑹𝑭𝒌 computation

depends on internal loads, and thus to the whole vector of categorical variables (including the undetermined

components). In this paper, two different optimization problems formulation that allow to compute a lower bound

are detailed.

7.2.1. lower bound computation problem #1

The optimization constraints linked to buckling have been removed from the optimization problem, as a first

approach. Indeed, the removal of the buckling 𝑹𝑭𝒌 makes the optimization problem independent from cross-

sectional shape choices. On the other hand, whereas the internal loads computation requires categorical variables,

two properties of the material information are still needed: the Young modulus, and the allowable constraint in

tension and compression. Taking the highest allowable constraint value in Eq.(12) leads to a relaxed problem,

where the resulting optimum weight is a lower bound of the sub-problem. Concerning the objective function, only

density is required through material component of the categorical choices. Also, applying the lowest density of the

available materials to the undetermined bars ensures then to get a lower bound of the truss weight. Finally, the

lower bound process comes to a weight optimization with respect to all areas and the young modulus of the

remaining bars. This optimization problem is the following one:

(Problem 𝑃𝑖̂) min 𝑊(𝑬𝒄, 𝑨) = ∑ 𝑊𝑘(𝜌𝑐𝑘̿̿ ̿, 𝐴𝑘)
𝑖

𝑘=1
+ ∑ 𝑊𝑘(𝜌𝑚𝑖𝑛, 𝐴𝑘)

𝑛

𝑘=𝑖+1
 (11)

 𝑨 ∈ ℝ10
𝑬𝒄 ∈ ℝ10−𝑖

 Subjected to: 𝑹𝑭𝒌(𝐸𝑐𝑘̿̿ ̿, 𝐴𝑘 , 𝐼𝐿(𝑬𝒄̿, 𝑬𝒄, 𝑨)) ≥ 1, ∀𝑘 ∈ ⟦1, 𝑖⟧

 𝑹𝑭𝒌(𝐸𝑐𝑘
, 𝐴𝑘 , 𝐼𝐿(𝑬𝒄̿, 𝑬𝒄, 𝑨)) ≥ 1, ∀𝑘 ∈ ⟦𝑖 + 1, 10⟧

 𝐺(𝑬𝒄̿, 𝑬𝒄, 𝑨) ≤ 0
 𝐴𝑘(𝑐𝑘̿) ≤ 𝐴𝑘 ≤ 𝐴𝑘(𝑐𝑘̿), ∀𝑘 ∈ ⟦1, 𝑖⟧

 𝐴𝑚𝑖𝑛 ≤ 𝐴𝑘 ≤ 𝐴𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅, ∀𝑘 ∈ ⟦𝑖 + 1, 10⟧

 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑐𝑘
≤ 𝐸𝑚𝑎𝑥 , ∀𝑘 ∈ ⟦𝑖 + 1, 10⟧

𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅ are the lowest lower bound and maximum upper bound on area of all catalogs respectively:

𝐴𝑚𝑖𝑛 = min∀𝑘 (𝐴𝑘(𝑐𝑘̿)), 𝐴𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅ = max∀𝑘 (𝐴𝑘(𝑐𝑘̿)). The bounds on Young modulus 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 are defined

similarly: 𝐸𝑚𝑖𝑛 = min∀𝑘 (𝐸𝑐𝑘
(𝑐𝑘̿)), 𝐸𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅ = max∀𝑘 (𝐸𝑐𝑘
(𝑐𝑘̿)). Since the buckling constraints have been removed

8

from the problem 𝑃𝑖 in Eq.(10), the constraints 𝑹𝑭𝒌 are 2 dimensional: only constraints on allowable in tension

and compression are included. Thus, in the context of Eq.(11), Eq.(7) becomes, for all bars that are currently not

defined:

𝑹𝑭𝑘(𝐼𝐿(𝑬𝒄̿, 𝑬𝒄, 𝑨)) =

[

 (𝜎𝑚𝑎𝑥

𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟
− 𝜎𝑘(𝑬𝒄̿, 𝑬𝒄, 𝑨))

𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟⁄ ≤ 0

(𝜎𝑘(𝑬𝒄̿, 𝑬𝒄, 𝑨) − 𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛⁄ ≤ 0

]

,

∀𝑘 ∈ ⟦𝑖 + 1, 10⟧

(12)

where 𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟

 and 𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛 are the highest allowable constraints available into the set of catalogs.

7.2.2. lower bound computation problem #2

In this second approach, the buckling constraints are not removed from the optimization problem: as in 7.2.1 with

the constraints on allowable stresses, the material values and shape are chosen so that the limit stress for buckling

described in (8) and (9) is maximized. Thus, the limit stress for buckling becomes, for all bars that are not defined:

𝜎𝑚𝑎𝑥

𝐿𝑜𝑐𝑎𝑙.𝑏𝑢𝑐𝑘𝑙(𝐴𝑘) =
4𝜋2𝐸𝑚𝑎𝑥

12(1 − 𝜈𝑚𝑎𝑥
2)

 (
𝑥𝑘

(1)
(𝐴𝑘)

𝑥𝑘
(2)

(𝐴𝑘)
)

2

(13)

𝜎𝑚𝑎𝑥

𝐸𝑢𝑙𝑒𝑟.𝑏𝑢𝑐𝑘𝑙(𝐴𝑘) =
𝜋2𝐸𝑚𝑎𝑥𝐼𝑚𝑎𝑥(𝒙𝒌(𝐴𝑘))

𝐴𝑘 𝐿2

(14)

with 𝐼𝑚𝑎𝑥(𝒙𝒌(𝐴𝑘)) the function that returns the highest quadratic moment values, for a given shape (the highest

function plotted in Figure 4 corresponds to a ‘I’ shape).

The expression of 𝑹𝑭𝒌 constraints are then given by:

𝑹𝑭𝑘(𝐼𝐿(𝑬𝒄̿, 𝑬𝒄, 𝑨)) =

[

 (𝜎𝑚𝑎𝑥

𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟
− 𝜎𝑘(𝑬𝒄̿, 𝑬𝒄, 𝑨))

𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑐𝑜𝑚𝑝𝑟

⁄ ≤ 0

(𝜎𝑘(𝑬𝒄̿, 𝑬𝒄, 𝑨) − 𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

𝜎𝑚𝑎𝑥
𝑎𝑙𝑙𝑜𝑤.𝑡𝑒𝑛𝑠𝑖𝑜𝑛⁄ ≤ 0

(𝜎𝑚𝑎𝑥
𝐸𝑢𝑙𝑒𝑟.𝑏𝑢𝑐𝑘𝑙(𝐴𝑘) − 𝜎𝑘(𝑬𝒄̿, 𝑬𝒄, 𝑨))

𝜎𝑚𝑎𝑥
𝐸𝑢𝑙𝑒𝑟.𝑏𝑢𝑐𝑘𝑙(𝐴𝑘)

⁄ ≤ 0

(𝜎𝑚𝑎𝑥
𝐿𝑜𝑐𝑎𝑙.𝑏𝑢𝑐𝑘𝑙(𝐴𝑘) − 𝜎𝑘(𝑬𝒄̿, 𝑬𝒄, 𝑨))

𝜎𝑚𝑎𝑥
𝐿𝑜𝑐𝑎𝑙.𝑏𝑢𝑐𝑘𝑙(𝐴𝑘)

⁄ ≤ 0
]

(15)

The overall formulation of the optimization problem (11) remains unchanged, but there is a better approximation

of the constraints because buckling is now taken into account (15).

7.3. Numerical examples and discussion

As explained previously, the combinatorial complexity is directly linked to the number of available catalogs. This

is why, to start evaluating our methodology, first runs have been launched with only 2 catalogs based on two

different materials and an identical cross-section shape I. The first material named ‘Material 0’ has higher density

and allowable values than the second one ‘Material 1’, which is stiffer. A load of 105 N has been applied

downward on the 4th node of the truss. In order to highlight the changes in optimal structural concepts, several

bounds have been imposed on vertical displacement of the 4th node. The sub-problems 𝑃𝑖̂ are solved using the

Method of Moving Asymptotes (MMA) [24] algorithm available in NLOPT library.

The implemented node selection methodology (or queue data structure) during branching step consists in a mix

of two strategies: depth-first search and best-first search. Indeed, the branching is performed on the node having

the lowest lower bound, with a higher priority assigned to the nodes of the current generation (i.e.; current level in

the tree). The advantage of this method is that the process returns a choice for the whole truss as quickly as possible.

It provides a solution that is possibly better than the best current upper bound. In this case, the upper bound is

updated with this solution, and all the active nodes that have a higher lower bound than this new upper bound can

9

be deleted from the queue. In this way, a number of nodes are not explored further, leading to an improvement of

the whole process convergence.

Table 2 shows the results obtained, with the following convention: a ‘0’ in position k of categorical variable vector

c corresponds to a choice of ‘Material 0’ for the bar k, a ‘1’ corresponds to a choice of ‘Material 1’.

Table 2: optimal weight and categorical values w.r.t. bounds on displacements

cases Bounds on

displacements (mm)
Optimal Weight

W*(kg)
Optimal Categorical

variable c*
Lower bound #1

Combinatory explored (%)
Lower bound #2

Combinatory explored (%)

1 displ < -17. 14.592 0011100111 153% 2.9%

2 displ < -18. 14.053 1011100111 197% 11.3%

3 displ < -19.0 13.722 0001100111 200% 16.2%

4 displ < -19.96 13.633 0001000101 200% 11.1%

5 displ < -25. 13.633 0001000101 200% 11.3%

A comparison of the results with those obtained with a factorial design of experiments shows that for these cases,

the branch and bound approach returns the global solutions w.r.t. displacements bound changes. In addition, it can

be seen that the optimal weight increases with the displacement bound: the more the structure is constrained, the

higher is the weight. We can note that if the whole tree was to be explored, it would require ∑ 2𝑘10
𝑘=1 computations.

This is twice more than the 210 optimizations required to solve the problem using a full combinatorial approach.

The results in Table 2 shows that the first approach is not efficient: all the tree volume (twice the combinatorial

search cost) is explored in cases 3, 4 and 5. This means that the branch and bound needs more optimizations

compared to those required by a full combinatorial approach. This is because our minoring problems 𝑃𝑖̂ in Eq.(11)

are not close enough to the original problem in Eq.(2). However, the results obtained with the second approach

shows that the number of optimizations performed during the branch and bound run is equal to 16.2% of the

optimizations required by a combinatorial approach. This means that despite the fact that the whole design space

has been considered (thanks to branch and bound theory) during the optimization process, a lot of nodes have been

pruned and thus a lot of optimizations were not required to find the optimal solution.

The computation history of case 3 is depicted on Figure 5 and Figure 6. On Figure 5, the lower bound estimation

of the current node is presented in blue, the best upper bound in red. An iteration is defined by a branching and

bounding step. We can note that the upper bound is not updated until the end of the computation: the branching

route obtained by our strategy leads to the first upper bound after 10 optimizations, that appears to be the optimal

solution. In Figure 6 we can follow for example the evolution of the number of pruned nodes (line in yellow)

during the optimization. We can see for example a gap between the iterations 50 and 60: a node placed at the top

of the tree has been deleted because the lower bound was higher than the upper bound. Thus, the remaining nodes

(line in blue) decreases significantly: all the nodes behind the deleted one do not need to be explored.

Figure 5: Lower bound w.r.t. iterations in case 3.

Figure 6: Number of nodes computed, remaining, and

pruned w.r.t iterations in case 3.

10

Figure 7 shows the truss with stress values, optimal areas, and reserve factors at the optimum for the case 3. This

illustrates the trades that are made by the optimizer between the materials and the areas in this case. First, it can

be noted that the solution is non-uniform in terms of categorical variables: each of the two available materials have

been chosen at least once to build the optimal truss. Compared to case 4, the optimal material of bars 5 and 9

changed to the first material (‘Material 0’), with higher density and allowable values.

Figure 7: results of case 3, with c*= ‘0001100111’

The computation case 3 has been launched again, at the exception that two stiffening principles have been added

to the two material choices: one U shape and one I shape. Since a categorical value corresponds to a choice of

material and shape, the combination raises the number of catalogs from 2 to 4: 𝑚 = 4. This means that 410

optimizations could solve the problem, and the total volume of the tree counts ∑ 4𝑘10
𝑘=1 nodes. As it has proven its

efficiency, the second methodology to compute the lower bound. The optimal solution is c*= ‘2220023000’, the

Figure 8 shows the convergence history. 7040 continuous optimizations have been performed to solve this

problem, corresponding to less than 0.7% of the optimizations required by a combinatorial approach. In Figure 8,

the bar diagram shows that a few nodes at level 3, 4 and 5 of the tree have been removed during the computation.

This is very interesting in terms of algorithm efficiency, because the design space associated to these node has

been eliminated, including all depending nodes. It can be seen that most of the deleted nodes are located between

the 6th and 10th level of the tree.

11

Figure 8: Computation history of case 3 with 4 catalogs

The number of explored nodes, exposed in Table 2, demonstrates that the number of optimizations during the

branch and bound process using the first approach exceeds the number of optimizations of a full design of

experiment on categorical variables (because the whole tree counts twice more optimizations than the 210

optimizations of the whole combinatorial problem). Indeed, as explained before, the branch and bound algorithm

efficiency relies on the pruning rate of the tree. Nodes are discarded because either the solution is infeasible, or

the lower bound exceeds the best upper bound. In our cases, independently of the quality of categorical choices,

the optimizer can balance with the areas values. Thus, considering the available material quality and the bounds

of the continuous optimization subspaces, there is no unfeasible solution. The pruning relies on lower bounds and

upper bound comparison too. In this sense, the second approach offers a better approximation of the constraints,

and thus a better lower bound. This allows to significantly decrease the number of optimizations: less than 16.2%

of the number of optimizations required by a combinatorial approach are now performed to find a global solution

of the mixed problem. In the case of 4 catalogs, only 0.7% of the optimizations are required, but it still needs 7040

optimizations. Knowing that an industrial finite element of a pylon counts around 100 elements, with 10 up to 100

choices available per element, this methodology based on the branch and bound approach remains costly.

The efficiency could be improved for example by choosing the branching order of the categorical variables, or

adapting the numerical parameters (initial point, tolerances, …) of the continuous optimization during the branch

and bound process. One promising approach consists in replacing categorical variables by continuous ones

belonging to [0,1], using the work done for multi-material and topology optimization [25]. This would keep the

consistency between all the optimal physical features, and thus increase the lower bound accuracy.

8. Conclusion

Relying on Airbus experience and previous work on this topic, a formulation of a mixed optimization problem that

tackles both continuous and non-ordered categorical variables has been proposed in this article. Specific attention

has been paid to keep this formulation as generic as possible, without exhibiting any physical feature directly. A

toy case involving a simplified physical model, that illustrates the industrial optimization problem complexity, has

been presented. A hybrid approach based on branch and bound generic formulation, and taking advantage of the

generalized Benders decomposition, has been implemented. This method allows a trade-off between categorical

and continuous variables that leads to the global optimum. However, numerical examples have highlighted the

limitations of this approach. The performance in terms of computation time prevents from scaling up the toy

problem for industrial purpose. Several improvements are under investigation, mainly based on a better handling

of categorical variables transformation into continuous ones.

12

9. Acknowledgements

This work is part of the MDA-MDO project of the French Institute of Technology IRT Saint Exupery. We wish

to acknowledge the PIA framework (CGI, ANR) and the project industrial members for their support, financial

backing and/or own knowledge: Airbus, Airbus Group Innovations, SOGETI High Tech, Altran Technologies,

CERFACS. We would like to thank Charlie Vanaret for all his advices, specifically for the branch and bound

formulation.

10. References

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-We. 1989.

[2] R. Storn and K. Price, Differential Evolution – A Simple and Efficient Heuristic for global Optimization

over Continuous Spaces, Journal of Global Optimization, 11(4), 341–359, 1997.

[3] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Scholarpedia, 2(9), 1462, 2001.

[4] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on Optimization, 7, 1–25,

1997.

[5] J. A. Lampinen and I. Zelinka, Mixed Integer-Discrete-Continuous Optimization, by Differential

Evolution, Part 1: the optimization method, Proceedings of MENDEL’99, 5th International Mendel

Conference on Soft Computing, 71–76, 1999.

[6] C.-X. Guo, J.-S. Hu, B. Ye, and Y.-J. Cao, Swarm intelligence for mixed-variable design optimization.,

Journal of Zhejiang University. Science, 5(7), 851–60, 2004.

[7] G. G. Dimopoulos, Mixed-variable engineering optimization based on evolutionary and social metaphors,

Computer Methods in Applied Mechanics and Engineering, 196(4–6), 803–817, 2007.

[8] K. Deb and M. Goyal, A Flexible Optimization Procedure for Mechanical Component Design Based on

Genetic Adaptive Search, Journal of Mechanical Design, 120(2), 162, 1998.

[9] C. Audet and J. E. Dennis, Pattern Search Algorithms for Mixed Variable Programming, SIAM Journal

on Optimization, 11(3), 573–594, 2001.

[10] S. Rakshit and G. K. Ananthasuresh, Simultaneous material selection and geometry design of statically

determinate trusses using continuous optimization, Structural and Multidisciplinary Optimization, 35(1),

55–68, 2008.

[11] M. Herrera, A. Guglielmetti, M. Xiao, and R. Filomeno Coelho, Metamodel-assisted optimization based

on multiple kernel regression for mixed variables, Structural and Multidisciplinary Optimization, 49(6),

979–991, 2014.

[12] S. Grihon, Structure Sizing Optimization Capabilities at AIRBUS, WCSMO12, submitted, 2017.

[13] S. Grihon, PRESTO: A rapid sizing tool for airframe conceptual design studies, LMS European

Aeronautical Conference, 2012.

[14] D. B. Adams, L. T. Watson, Z. Gürdal, and C. M. Anderson-Cook, Genetic algorithm optimization and

blending of composite laminates by locally reducing laminate thickness, Advances in Engineering

Software, 35(1), 35–43, 2004.

[15] A. Carpentier, L. Michel, S. Grihon, and J.-J. Barrau, Optimization methodology of composite panels,

12th European Conference on Composite Materials (ECCM 12), 1–8, 2006.

[16] A. Carpentier, J.-J. Barrau, L. Michel, and S. Grihon, Buckling optimisation of composite panels via lay-

up tables, III European Conference on Computational Mechanics, Springer Netherlands, Dordrecht, 226–

226, 2006.

[17] A. Merval, L’Optimisation Multiniveaux D’une Structure, PhD Thesis, 2008.

[18] A. Merval, M. Samuelides, and S. Grihon, Multilevel optimization with local mass minimization, 2nd

European conference for aerospace sciences - EUCASS 2007, 2007.

[19] M. Samuelides, D. Bettebghor, S. Grihon, A. Merval, and J. Morlier, Modèles réduits en optimisation

multiniveau de structures aéronautiques, 9e Colloque national en calcul des structures, 2009.

[20] A. H. Land and A. G. Doig, An Automatic Method of Solving Discrete Programming Problems,

Econometrica, 28(3), 497, 1960.

[21] R. J. Dakin, A tree-search algorithm for mixed integer programming problems, The Computer Journal,

8(3), 250–255, 1965.

[22] C. H. Tseng, L. W. Wang, and S. F. Ling, Enhancing Branch-and-Bound Method for Structural

Optimization, Journal of Structural Engineering, 121(5), 831–837, 1995.

[23] A. M. Geoffrion, Generalized Benders decomposition, Journal of Optimization Theory and Applications,

10(4), 237–260, 1972.

[24] K. Svanberg, A Class of Globally Convergent Optimization Methods Based on Conservative Convex

Separable Approximations, SIAM Journal on Optimization, 12(2), 555–573, 2002.

[25] J. Stegmann and E. Lund, Discrete material optimization of general composite shell structures,

International Journal for Numerical Methods in Engineering, 62(14), 2009–2027, 2005.

