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Abstract—In this paper we give a fresh look to Coarse Grained
Reconfigurable Arrays (CGRAs) as ultra-low power accelera-
tors for near-sensor processing. We present a general-purpose
Integrated Programmable-Array accelerator (IPA) exploiting a
novel architecture, execution model, and compilation flow for
application mapping that can handle kernels containing complex
control flow, without the significant energy overhead incurred
by state of the art predication approaches. To optimize the per-
formance and energy efficiency, we explore the IPA architecture
with special focus on shared memory access, with the help of the
flexible compilation flow presented in this paper. We achieve a
maximum energy gain of 2×, and performance gain of 1.33× and
1.8× compared with state of the art partial and full predication
techniques, respectively. The proposed accelerator achieves an av-
erage energy efficiency of 1617 MOPS/mW operating at 100MHz,
0.6V in 28nm UTBB FD-SOI technology, over a wide range of
near-sensor processing kernels, leading to an improvement up
to 18×, with an average of 9.23× (as well as a speed-up up to
20.3×, with an average of 9.7×) compared to a core specialized
for ultra-low power near-sensor processing.

Index Terms—CGRA, compilation, control flow, CDFG, ultra-
low power accelerator, computer architecture

I. INTRODUCTION

DUE to the increasing complexity of near-sensor data
analytics algorithms, low power embedded applications

such as Wireless Sensor Networks (WSN), Internet of Things
(IoT), and wearable sensors combine the requirement of high
performance and extreme energy efficiency in a mW power
envelope [2]. While traditional ultra-low power sensor process-
ing circuits rely on hardwired Application Specific Integrated
Circuit (ASIC) architectures [12], near-threshold parallel com-
puting is emerging as a promising solution [47]. Even though
this approach provides maximum flexibility, a dominating
majority of the power consumed during processing is linked
to the typical overheads of instruction processors [16], such
as instruction fetching and decoding, control and data-path
pipeline overheads (up to 40%), load/store overhead (up to
30%). In this work, we make significant step forward in
parallel near-threshold computing toward the goal of achieving
the energy efficiency of application-specific data-paths, by
exploiting the Coarse Grain Reconfigurable Array (CGRA)

architectural template, and revisiting it to fit within an ultra-
low power (mW) power envelope.

CGRAs have been intensely investigated in the past for
applications with power consumption profiles ranging from
mobile (hundreds of mW) [11] to high performance (hun-
dreds of W) [34]. In this paper, we focus on a CGRA
architecture in the mW range (and below). Very few CGRA
architectures have been pushed in this ultra-low power mission
profile [36] [48] [13]. Our CGRA is designed to work as an
accelerator of an ultra-low power PULP processor cluster [47],
sharing L1 memory with the processors. Hence, another major
challenge in this context is achieving efficient L1 memory
sharing [47]. To reduce memory access contention, it is
necessary to have enough banks in the shared memory. On
the other hand, the number of ports into the multi-banked
shared-L1 memory logarithmic interconnect must be tightly
constrained to avoid significant area and power overheads [44].

To cope with the ultra-low power profile and memory
sharing challenges we build upon the Integrate Programmable-
Array accelerator (IPA) concept proposed in [10] involv-
ing a multi-bank Tightly Coupled Data Memory (TCDM)
coupled with a flexible and configurable memory hierarchy
for data storage. As shown in Fig. 1, from an architectural
viewpoint, point-to-point data communication between pro-
cessing elements (PEs) during kernel execution, represents a
key advantage over energy-hungry data sharing over shared
memory that is required when using a traditional processor-
cluster architecture for parallel processing. The IPA cluster
performs a lower number of memory operations on the sample
program presented in the Fig. 1(c), which in turn gives and
energy improvement of 1.3× over the clustered multi-core
architecture, which performs data sharing through the TCDM.
In this comparison, we even ignore the barrier synchronization
overheads in the many-core cluster for the sake of simplicity.

The IPA approach allows to significantly reduce the pressure
on L1 memory, and hence the complexity of the interconnect
between the PEs and the memory banks, since it requires a
smaller number of banks to achieve low contention [47]. On
the other hand, as opposed to clustered multi-core architec-
tures, where data-exchange among cores is managed through
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for(i=0; i<1; i++)

{

A[i] = B[i] * C[i]

}

for(i=0; i<1; i++)

{

sum = sum + A[i];

}
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Figure 1: (a) Cluster of processors; (b) Cluster with IPA
accelerator (c) Sample program running in both clusters; (d)
Energy consumption comparison between the two clusters

shared data structures and OpenMP parallel constructs, in
CGRAs the compiler must take care of data-exchange among
PEs, exploiting as much as possible point-to-point connections
among PEs to minimize accesses to the shared memory.

Another major compiler challenge towards achieving high
energy efficiency in CGRAs is the management of loop-carried
data dependencies and control dependencies. State of the art
compilers [37] [19] [40] [6] for CGRAs deal only with the
straight-line code sequence (basic block) of the innermost loop
of a kernel. In case of conditional present in the innermost
loop, the compilers use predication [45] techniques to convert
the control flows into data flow structures. Indeed, these
compilers can only generate code to execute a single loop, as
a set of pipelined stages is repeatedly executed up to a certain
number (loop boundary / number of pipelined stages)
specified by the compiler. In case of nested loops, only the
innermost loop is accelerated using a CGRA, leaving the
outer loops for the host processor. However, this approach
requires several offloads by the host, which implies addi-
tional memory-mapped I/O operations for synchronization and
communication with the CGRA. Hence, it causes significant
overhead, especially when the innermost loop has a very small
number of iterations, which is a typical scenario for near-
sensor processing applications [50].

On the other hand, large CGRA architectures for high
performance computing have frequently resorted to predication
techniques to expose parallelism across control dependencies,
such as conditionals [45] [5]. Unfortunately, predication leads
to waste of resources and it is hard to justify in an extremely
power and area constrained scenario [52]. In this paper, we
address the above challenges by proposing a novel compilation
flow tailored for our ultra-low power IPA architecture. This
flow enables the execution of multiple loops and conditionals
starting from ANSI C code, relying on the energy efficient
register allocation approach presented in [8].

In a nutshell, this paper contributes to the two critical
aspects of energy-efficient application mapping onto CGRAs.
First, we carry out an architectural exploration, based on
the IPA proposed in [10], for optimizing performance and

energy efficiency. The IPA features full support for condi-
tional operations, exploits the internal registers of the PEs
for intermediate data exchange and relies on a multi-bank
TCDM only for accesses to input/output buffers, significantly
improving energy efficiency. Second, we describe a complete
compilation flow to map kernels with multiple loop nests
and conditionals onto the IPA. The flow helps releasing the
host processor from performing the computation of the outer
loops, significantly improving performance of the IPA. It also
achieves high energy efficiency by minimizing the number of
memory operations exploiting the features of the architecture.

To quantify the efficiency of IPA architecture and compila-
tion flow, we compare the performance and energy consump-
tion with the state of the art predication methods running on
the IPA. Experimental results on a benchmark set of control
intensive kernels show that the register allocation approach
achieves a maximum of 1.33× (with minimum of 1.04×
and average of 1.13×) and 1.8× (with minimum of 1.37×
and average of 1.59×) performance gain compared to partial
predication and full predication techniques. For what concerns
shared-L1 memory access optimization, our exploration shows
that a banking factor of 0.5 (i.e. 8 LSUs, 4 TCDM banks)
provides the optimal configuration in terms of performance
and energy for a IPA configuration with 4x4 PEs. Moreover,
the IPA features a very regular control and data-path structure,
which is suitable for fine-grained power management. We
exploit this architectural regularity to design a fine-grained
clock gating mechanism, which turns into an average 2×
energy efficiency boost with respect to the non-clock-gated
IPA. Results show that the IPA achieves a maximum speed
up of 20.3×, with an average of 9.7× compared to one or1k
processor [17]1, with an area ratio of just 1.6×. The average
energy efficiency achieved by the IPA operating at 0.6V is
1617 MOPS/mW, which is up to 18× and on average 9.23×
better than what is achieved by the processor.

The rest of this paper is organized as follows. In Section II,
the background and related work are discussed. In section III,
the target architecture, memory hierarchy and the execution
model are described. Section IV focuses on presenting the
full compilation flow, with the support of required definitions,
and models. Section V presents the implementation and exper-
imental results. Finally, the paper is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

Much research has been done to evaluate the performance,
power, and cost of CGRAs [11]. In this paper, we focus on the
energy efficiency aspects of both architecture and compiler.

A. Architecture

While targeting low power execution, data and context
management is of utmost importance. Integration of CGRAs
as accelerators with the data and instruction memory has seen
several solutions over the past years [11].

In many low-power targeted CGRAs [3][39][48][23], mem-
ory operations are managed by the host processor. Among

1This processor is optimized for low power execution in the context of near
threshold near-sensor processing
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these architectures, Ultra-Low-Power Samsung Reconfigurable
Processor (ULP-SRP) and Cool Mega Array (CMA) operate
in ultra-low-power (up to 3 mW) range. In these architectures,
PEs can only access the data once prearranged in the shared
register file by the processor. For an energy efficient implemen-
tation, the main challenge for these designs is to balance the
performance of the data distribution managed by the CPU, and
the computation in the PE array. However, in several cases, the
computational performance of the PE array is compromised by
the CPU, due to large synchronization overheads. For example,
in ADRES [3] the power overhead of the VLIW processor used
to handle the data memory access is up to 20%. In CMA [39]
the host CPU feeds the data into the PEs through a shared fetch
register (FR) file. This is very inefficient in terms of flexibility.
The key feature of this architecture is the possibility to apply
independent DVFS [51] or body biasing [36] to balance array
and controlling processor parameters to adjust performance
and bandwidth requirements of the applications. The highest
reported energy efficiency for CMA is 743 MOPS/mW on 8-
bit kernels, not considering the overhead of the controlling
processor, which is not reported. With respect to this work,
which only deals with DFG described with a customized lan-
guage, we target 32-bit data and application kernels described
in C language, which are mapped onto the array using an end-
to-end C-to-CGRA compilation flow.

In architectures such as, MorphoSys [49], RSPA[24], Smart-
Cell [29], PipeRench [18], SIMD-CGRA [15], load-store
operations are managed explicitly by the PEs. Data elements
in these architectures are stored in a shared memory with one
memory port per PE row. The main disadvantages of such
data access architecture are: (a) lots of contention between
the PEs on the same row to access the memory banks, and
(b) expensive data exchange between rows through complex
interconnect networks within the array. With respect to these
architectures, our approach minimizes contention by exploiting
a multi-banked shared memory with word-level interleaving.
In this way data-exchange among tiles can be performed
either through the much simpler point-to-point communication
infrastructure or fully flexible shared TCDM.

NASA’s Reconfigurable Data-Path Processor (RDPP) [13],
and Field Programmable Processor Array (FPPA) [14] are
targeted for low-power stream data processing for spacecrafts.
These architectures rely on control switching [13] of data
streams, and synchronous data flow computational model
avoiding investment on memories and control. On the contrary,
the IPA is tailored to achieve energy-efficient near sensor
processing of data with workloads very different from the
stream data processing.

Table I summarizes an overview of the jobs managed
by CGRA and the host processor for different architectural
approaches. Acceleration of the kernels involves memory op-
erations, innermost loop computation, outer loop computation,
offload and synchronization with the CPU. As shown in
the table, IPA manages to execute both the innermost and
outer loops, and the memory operations of a kernel imposing
least communication and memory operation overhead while
synchronizing with the CPU execution.

With respect to these state of the art reconfigurable ar-

rays and array of processors, this paper introduces a highly
energy efficient, general-purpose IPA accelerator where PEs
have random access to the local memory, and execute full
control and data flow of kernels on the array starting from a
generic ANSI C representation of applications [8]. This paper
also focuses on the architectural exploration of the proposed
IPA accelerator [10], with the goal to determine the optimal
configuration of number of LSUs and number of banks for
the shared L1 memory. Moreover, we employ a fine-grained
power management architecture to eliminate dynamic power
consumption of idle tiles during kernels execution which
provides 2× improvement of energy efficiency, on average.
The globally synchronized execution model, low cost but full-
flexible programmability, tightly coupled data memory organi-
zation, and fine-grained power management architecture define
the suitability of the proposed architecture as an accelerator
for ultra-low power embedded computing platforms.

B. Compilation

To map the loops, state of the art compilers for CGRA
mostly rely on software pipelining [19] [37] [40]. This ap-
proach can manage to map the innermost loop body in a
pipelined manner. On the other hand, for the outer loops,
CPU must initiate each iteration in the CGRA, which causes
significant overhead in the synchronization between the CGRA
and CPU execution. Liu et al in [31] pinpointed this issue and
proposed to map maximum of two levels of loops using poly-
hedral transformation on the loops. However, this approach
is not generic as it cannot scale to an arbitrary number of
loops. Some approaches [30] [27] use loop unrolling for the
kernels. The basic assumption for these implementations is
that the innermost loops trip count is not large. Hence, the
solutions end up doing partial unroll of the innermost loops.
The outer loops remain to be executed by the host processor.
As most of the proposed compilers handle innermost loop of

Table I: Comparison between different architectural ap-
proaches

References [3][39][48]
[14][13]
[38][35]

[31] [49][24]
[18][7]

IPA
This
paper

Memory ops CPU CGRA CPU CGRA
Innermost loop CGRA CGRA CGRA CGRA
Outer loop CPU CPU CGRA CGRA
Offload + Sync CPU CPU CPU CPU
Overhead

Table II: Comparison between different approaches to manage
control flow in CGRA

Techniques Conditionals Loops
Balanced Imbalanced Single Nested

Partial
predication [5]

√ √
× ×

Full predication [1]
√ √

× ×
State based
full predication [21]

√ √
× ×

Dual issue
single execution [20]

√
× × ×

TLIA [32]
√ √ √

×
Software
pipelining [37] × ×

√
×

Loop unrolling [27] × ×
√

NA
Register allocation [8]

√ √ √ √
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the kernels, they mostly bank upon the partial predication [5]
and full predication [1] techniques to map the conditionals
inside the loop body.

Partial predication maps instructions of both if-part and else-
part on different PEs. If both the if-part and the else-part
update the same variable, the result is computed by selecting
the output from the path that must have been executed based
on the evaluation of the branch condition. This technique
increases the utilization of the PEs, at the cost of higher energy
consumption due to execution of both paths in a conditional.
Unlike partial predication, in full predication all instructions
are predicated. Instructions on each path of a control flow,
which are sequentially configured onto PEs, will be executed
if the predicate value of the instruction is similar with the flag
in the PEs. Hence, the instructions in the false path do not get
executed. The sequential arrangement of the paths degrades
the latency and energy efficiency of this technique.

Full predication is upgraded in state based full predica-
tion [21]. This scheme prevents the wasted instruction is-
sues from false conditional path by introducing sleep and
awake mechanisms, but fails to improve performance. Dual
issue scheme [20] targets energy efficiency by issuing two
instructions to a PE simultaneously, one from the if-path,
another from the else-path. In this mechanism, the latency
remains similar to that of the partial predication with improved
energy efficiency. However, this approach is too restrictive,
as far as imbalanced and nested conditionals are concerned.
To map nested, imbalanced conditionals and single loop onto
CGRA, the triggered long instruction set architecture (TLIA)
is presented in [32]. This approach merges all the conditionals
present in kernels into triggered instructions, and creates
instruction pool for each triggered instruction. As the depth
of the nested conditionals increases the performance of this
approach decreases. As far as the loop nests are concerned,
the TLIA approach reaches bottleneck to accommodate the
large set of triggered instructions into the limited set of PEs.

The compilation flow we propose, uses the register alloca-
tion approach [8] to map CDFGs onto the CGRA. This allows
to map both loops and conditionals of any depth. In our case,
the only limitation in the mapping of kernels onto the CGRA
is given by the size of instruction memory of the PEs, and not
by the structure of the application (i.e. number of loops, and
branches). Also, one can increase the size of code segment to
be executed in the CGRA as much as possible, minimizing the
control and synchronization overheads with the core, which
is not negligible in the other approaches. Table II presents
a comprehensive comparison between several techniques to
manage control flow in the kernels. Software pipelining and
loop unrolling are mostly used for the mapping of the inner-
most loop, while branches inside the loop are managed by one
of the described predication techniques. Hence, the existing
compilers use combined solutions for branches and innermost
loop mapping. This requires exhaustive exploration to find out
the most suitable combination for the target architecture and
application domain. On the contrary, our proposed compilation
flow can handle both conditionals and loops efficiently.
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Figure 2: Integrated Programmable-Array Accelerator

III. IPA ARCHITECTURE AND EXECUTION MODEL

In this section, we present the Integrated Programmable-
Array Accelerator (IPA) architecture, supporting standalone
execution of complete control and data flow applications.

A. Integrated Programmable-Array Accelerator (IPA)

IPA is the integration of a PE Array (PEA) and a tightly
coupled data memory (TCDM) through a low-latency loga-
rithmic interconnect. An IPA controller loads the context into
the PEs from a pre-loaded Global Context Memory (GCM).
Fig. 2 shows the organization of the IPA.

The PEA consists of a parametric number of PEs connected
with a 2-dimensional tours network. The PE Array follows the
multiple instruction, multiple data (MIMD) model of compu-
tation. All PEs operate on different set of instructions. A bus
based interconnect network is implemented to load instructions
and constants (i.e. context) from the GCM into the PEs,
whereas the torus network is used during execution phase for
low power data communication between the PEs. The details
of the load context protocol are discussed in [10]. Targeting
low power execution, the instruction set architecture [10] was
designed from scratch resulting 20-bit long instruction. We
took the advantage of the visibility of the micro-architecture to
the compiler and moved the immediate data to constant register
file in the PEs (discussed later) which eases the compression
of the instruction, imposing low pressure on the decoder.

Fig. 3 describes the components of a PE. The Load Store
Unit (LSU) is optional for the PEs (the optimal number of
LSU is a parameter studied in this paper). Two operands (IN0
and IN1) define the inputs of each PE. The input sources are
the neighbouring PEs and the register file. A 32-bit ALU and a
16-bit× 16-bit→ 32-bit multiplier are employed in this block.
The Constant Register File (CRF) stores the immediate values
of the instructions, while the Regular Register File (RRF)
and Output Register (OPR) store the temporary variables.
The Controller fetches the instructions from the Instruction
Register File (IRF). If the decoded instruction is a jump, the
target address of the jump is stored in the Jump Register (JR).
The cjump (conditional jump) instruction contains two target
addresses. The true path is evaluated in the JR by the Boolean
“OR” of the Condition Register (CR) bits of the PEs.
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Figure 3: Components of the PE

The TCDM acts as L1 memory for the IPA. Featuring
a number of ports equal to the number of memory banks,
the TCDM provides concurrent access to different memory
locations. The TCDM is interfaced with the LSUs of the PE
array through a low latency, logarithmic interconnect [44],
implementing a word level interleaving scheme to minimize
access contention.

B. Power Management Unit (PMU)

To reduce dynamic power consumption in idle mode, each
PE contains a tiny Power Management Unit (PMU) which
clock gates the PEs when idle. An idle condition for a PE
arises from three situations: (i) Unused PE: when a PE is
not used during mapping; (ii) Load Store stall: In case of
TCDM banking conflict the PMU generates a global stall,
which is broadcast to all the PEs. Until the global stall is
resolved, all the PEs are clock gated by their corresponding
PMUs. LSUs are placed in the global clock region (Fig. 3)
to avoid deadlocks; (iii) Multiple NOP operations: a NOP
instruction contains the number of successive NOPs. When
a NOP instruction is fetched, the decoder loads this number
into a counter within the PMU. The clockgate en remains low
until the count reaches zero. The counter gets halted when it
encounters a global stall and resumes the count after the stall
is resolved, synchronizing the execution flow among PEs.

Due to the fine-grained nature of the power management,
more aggressive power gating is not implemented, since it
imposes large area penalty without remarkable benefits. The
leakage power of each tile is so small that it does not change
notably the energy efficiency when rest of the system is active.

C. Overview of the execution model

After compiling a kernel (see section IV), the compiler
generates the assembly and the addresses for the input and
output data in the local shared memory. The assembler takes
the assembly and the Instruction Set Architecture (ISA) of the
IPA, to generate the context (i.e. the program to be stored into
the IRF) for each PE, which is pre-loaded in the GCM. The
context contains instructions and constants for each PE in the
array. Prior to the execution start, the context is loaded into the

int example(int  a[4], int b[4])

{

int i;

for(i=0; i<4; i++)

{

     b[i] = a[i] + i;

}

}

PE1 PE2 PE3 PE4PE1 PE2 PE3 PE4

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

Cycle 1

Cycle 2

Cycle 3

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

Cycle 1

Cycle 2

Cycle 3

(a) 

(b) 

(c)

(d) 

time

(e)

        ldr     r3, [r7, #12]

        add     r3, r3, #1

        str     r3, [r7, #12]

.L2: ldr     r3, [r7, #12]

        cmp     r3, #3

        ite     gt

        movgt   r3, #0

        movle   r3, #1

        uxtb    r3, r3

        cmp     r3, #0

        bne     .L3

example(int*, int*):

        push    {r7}

        sub     sp, sp, #20

        add     r7, sp, #0

        str     r0, [r7, #4]

        str     r1, [r7, #0]

        mov     r3, #0

        str     r3, [r7, #12]

        b       .L2
.L3: ldr     r3, [r7, #12]

        lsl     r3, r3, #2

        ldr     r2, [r7, #0]

        adds    r3, r2, r3

        ldr     r2, [r7, #12]

        lsl     r2, r2, #2

        ldr     r1, [r7, #4]

        adds    r2, r1, r2

        ldr     r1, [r2, #0]

        ldr     r2, [r7, #12]

        adds    r2, r1, r2

        str     r2, [r3, #0]

        ldr     r3, [r7, #12]

        add     r3, r3, #1

        str     r3, [r7, #12]

.L2: ldr     r3, [r7, #12]

        cmp     r3, #3

        ite     gt

        movgt   r3, #0

        movle   r3, #1

        uxtb    r3, r3

        cmp     r3, #0

        bne     .L3

example(int*, int*):

        push    {r7}

        sub     sp, sp, #20

        add     r7, sp, #0

        str     r0, [r7, #4]

        str     r1, [r7, #0]

        mov     r3, #0

        str     r3, [r7, #12]

        b       .L2
.L3: ldr     r3, [r7, #12]

        lsl     r3, r3, #2

        ldr     r2, [r7, #0]

        adds    r3, r2, r3

        ldr     r2, [r7, #12]

        lsl     r2, r2, #2

        ldr     r1, [r7, #4]

        adds    r2, r1, r2

        ldr     r1, [r2, #0]

        ldr     r2, [r7, #12]

        adds    r2, r1, r2

        str     r2, [r3, #0]

Initialization

Loop control

Compute and 

store

Figure 4: (a) Sample program (b) Execution in CPU (c)
Example PEA (d) Execution in IPA (e) Execution metrics in
CPU and IPA

corresponding IRF and CRF of the PEs. We assume that the
code fits in the local memory. Larger execution contexts can
be handled using the IPA controller and overlays. Details on
this process are omitted for the sake of conciseness2. In each
cycle, the PEs fetch 20-bit instruction from the local IRF. The
immediate data are shifted to constant register file which eases
the compression of the instruction. Hence, the pressure on the
decoder is quite low.

Fig. 4 shows the execution of a sample program in a
traditional CPU and the IPA. The total number of instructions
for the sample program in the CPU and the IPA are 31 and 12
respectively. Also, the IPA achieves 28× performance gain
compared to that of the CPU while executing the sample
program. The decrease in the number of instructions in the
IPA in this specific example is mainly due to the much lower
number of memory operations and the fact that the small loop
can be completely unrolled without code size blown-up.

IV. COMPILATION FLOW

The compilation generates a mapping of the program for the
corresponding PEA. This section presents the models adopted
for the architecture and the application and the full compilation
flow to map control and data flow onto the PEA. We also
discuss the register allocation approach to exploit the register
files of the PEs while preserving control-carried dependencies.

A. Architecture, application model and homomorphism

The compiler takes two inputs. The first is the PEA model,
and the second is the ANSI-C code of the application. The
PEA is modelled by a bipartite directed graph with two types
of nodes: operators and registers. Timing is implicitly repre-
sented by connections between registers and operators, which

2Note that the context loading and setup cost are accounted for in the
experimental results.
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is referred to as the time extended model of the PEA [19].
Two types of operator nodes are defined for the PEAs. The
first type is the computing operator (functional unit (FU) nodes
in Fig. 5(a)) that represents the physical implementation of an
arithmetic and logical operation (+, ×, -, OR, AND) and/or
memory access (e.g. load/store). The second type of operator
is the memorization operator (circular nodes in Fig. 5(b)). It is
associated with the output register and represents the operation
of keeping a value in a local register explicitly.

Fig. 5 (a) shows a sample PEA with two PEs connected
by a torus network. Each PE has 3 registers in the distributed
register file, and a single output register. Fig. 5 (b) represents
the time extended model of the PEA shown in Fig. 5 (a). In this
model, one can vary the interconnect network, the distribution
and size of the register file, and the type of the PE, to explore
different PEA architectures.

The application is modelled as a control and data flow
graph (CDFG). Supporting control flow gives the opportunity
to accelerate a kernel without any intervention of the host
processor. A CDFG is depicted as G = (V,E) where V is the
set of basic blocks and E ⊆ V ×V is the set of directed edges
representing control flow. A Basic Block (BB) is represented
as a data flow graph (DFG) or BB = (D,O,A) where D is
the set of data nodes, O is the set of operation nodes and A
is the set of arcs representing dependencies. The control flow
from one basic block to another is supported with jump (jmp)
and conditional jump (cjmp) instructions.

Fig. 6 presents a sample program and the corresponding
CDFG. In this figure, basic blocks are represented as blue
rectangles. The flow from one basic block to another basic
block is represented by black arrows and managed by simple
branch (jmp) operation. The true and false paths of a condi-
tional managed by cjmp, are shown by solid and dashed arrows
respectively. The execution flow of the CDFG is presented as:
BB 1→ BB 2→ (either BB 3 or BB 8) if BB3→ BB 4
→ (either BB 5 or BB 6) → BB 7 → BB 2 · · · . In order
to maintain the execution flow, it is necessary to synchronize
all the PEs in the array, to the execution of the same basic
block. When the execution flow jumps from one basic block
to another, all the PEs in the PEA must be synchronized
to the current basic block execution. This allows to use all
the PEs concurrently or sequentially, while executing a single
basic block. Dually, several basic blocks can use the same
PE. The synchronized execution allows the compiler to map
several operations and data onto the same PE. Next, we present
the homomorphism of the CDFG model with the application
model, to support different stages in the compilation flow.

The basic blocks in the CDFG, presented in Fig. 5(c), are
composed of data nodes, operation nodes, and data depen-
dencies. Three equivalences between the basic block DFGs
and PEA model nodes are defined: (1) data and registers; (2)
computation and computing operators; (3) data dependences
and connection between the time extended PE components.
As the two models are homomorphic, the mapping of a DFG
onto the PEA is therefore a problem equivalent to finding a
DFG in the PEA graph.

Fig. 5(b) represents a possible mapping of the sample CDFG
in Fig. 5(c) onto the PEA in Fig. 5(a) over 4 cycles. Following,
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c

LT
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N[i] X2 M[i] X1
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c

c
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LD LD
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LD

X3 X4X4 X5

X5 X3 X4p[i]
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X4 X5
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MUL MUL
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c

LT
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c X5
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p[i]

(b)

N[i] X2 M[i] X1

X3
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c
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MUL

X3a

MUL
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X5 c X3
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X5 p[i]
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X3c

From previous cycle

X4

X4

X4

X4

(a)

FUFU FUFU
RFRF

PE1 PE2

FU FU
RFRF

PE1 PE2

Figure 5: (a) A 2×1 PEA with 3 registers in RF and one output
register (b) CDFG model (c) A possible mapping of (b) onto
the PEA over 4 cycles using register allocation based approach.
(d) The transformed CDFG of (b) for systematic load store
based approach (e) A possible mapping of (d) onto the PEA
over 7 cycles using systematic load store based approach

we discuss the full compilation flow for CDFG mapping.

B. The compilation flow step by step
Fig. 7 shows a schematic representation of the compilation

flow for mapping CDFGs onto the PEA. A CDFG mapping is
a set of DFG mappings that are compatible with each other. To
be compatible, the DFGs must access the data that remain in
the PEs (see symbol variables (see definition IV.1)) in the same
location. This is ensured by the register allocation approach.

To map the basic blocks, we rely on the highly scalable
and efficient mapping approach for DFGs described in [9].
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Figure 6: Sample program and corresponding CDFG
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Figure 7: Compilation flow

The compilation flow proposed in this paper, extends the DFG
mapping to accommodate the register allocation approach to
map a full CDFG onto the PE array. As presented in Fig. 7, the
full compilation flow is composed of six interdependent stages:
BB selection, backtracking, update constraints, scheduling and
placement, graph transformation and a stochastic pruning.
These tasks are described in detail in the next sub-sections.

1) Scheduling and placement: The proposed approach uses
a backward traversal [43] list scheduling algorithm to schedule
the DFG of each basic block. It relies on a heuristic in which
the schedulable operations are listed by priority order. In
backward traversal, a node is schedulable if and only if all its
children are already scheduled. The priority of nodes depends
on their mobility [42]. It is possible to process memorization
nodes and conventional nodes differently. Also, when several
nodes have the same mobility, their respective number of

1

1

1'

2 3 4 2 3 4

1

2 3 4

1

1

MOV

2 3 4

Memorization 

node

Assignment 

node

(a) Sample DFG (b) Operation 

splitting

(c) Memorization 

routing

(d) Assignment 

Routing

Figure 8: Graph transformation

successors is used as a second priority criterion. The higher
is the number of successors, the higher the priority is. Indeed,
a node with a higher number of successors is more difficult
to map due to the routing constraint coming from the limited
amount of connections between tiles. Thus, scheduling these
nodes at first usually allows to decrease the application’s
latency [43]. As soon as the highest priority node has been
defined, the compiler tries to find a placement in the PE array
model. If a placement solution exists, the node is scheduled
else the graph is transformed.

The proposed placement uses an incremental version of
Levi’s algorithm [28]. The proposed algorithm adds the newly
scheduled operation node and its associated data node to the
sub-graph composed of already scheduled and placed nodes.
Only the previous set of solutions that have been kept, location
constraints (RLC (see definition IV.3) and TLC (see defini-
tion IV.2)) are used to find every possibility to add this couple
of nodes without considering the non-yet scheduled nodes. If
no solution is found, there is absolutely no possibility to bind
this couple in all the previous partial solutions because Levi’s
algorithm provides a complete exploration of the solution
space. In that case, graph transformation is required.

2) Graph transformation: DFG is transformed dynamically
when no binding solution is found. The three graph transfor-
mations are used in our compilation flow (Fig. 8).
• Operation splitting duplicates an operation node by keep-

ing its same inputs and distributing output edges to reduce
the number of successors of the original operation node.

• Memorization routing adds a memorization node and its
associated data node to delay one operation and to keep
data dependencies

• Assignment routing adds an assignment node (mov op-
eration node) to increase the physical distance between
the source and the sink of symbol variables by one. Due
to TLC or RLC, when the physical distance between
the source and sink of the symbol variable becomes
more than one, the compiler dynamically adds one mov
operation node to the DFG.

3) Stochastic pruning: The exactness of the placement
approach leads to very large number of partial mappings.
And it grows exponentially if not pruned. Hence, we use the
stochastic pruning approach described in [9].

4) Basic block selection: Once all the nodes of the basic
block have been scheduled and bound, the compiler selects one
mapping among the several mappings generated, and selects
the next basic block to be mapped. As discussed previously,
the data integrity must be maintained over several basic block
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mappings. The data mapping problem for CDFG mapping is
now described before detailing the basic block selection step.

4.a: Definition and problem formulation
Data in an application is separated into two categories. (i)

The standard input and output data (mostly the array inputs
and outputs) are mapped as memory operands. The inputs and
outputs are allotted by load-store operations. In our sample
program in Fig. 6, m, n are the input arrays and p is the
output array, which are managed by load and store operations.
(ii) The internal variables of a program are mapped onto
the registers of the processing elements, and managed by the
register allocation based approach [8]. Following, we introduce
several definitions concerning register allocation approach:

Definition IV.1. [Symbol Variables and location constraints]
In compilation, the recurring variables (repeatedly written
and read) are managed in local register files of the PEs to
avoid multiple access of local memory. The recurring variables
which have occurrences in multiple basic blocks need special
attention since the integrity of these variables must be kept
intact throughout the mapping process for different basic
blocks. These variables are defined as Symbol variables. The
register locations for the symbol variables are referred to as
location constraints. For instance, variable c in the CDFG
(Fig. 6) is written in BB 3, and read in BB 4, BB 5 and
BB 6. The register location for c must be same for all the
mappings of these basic blocks. Similarly, X1, X2, X3, X4,
X5, i, a and b must be location constrained. In the rest of
the paper, the locations for such symbol variables are denoted
with an overline, as variable name.

Depending on the order of the basic blocks mapped (i.e.
traversing the CDFG), some location constrains may be reused
in the mapping process or may be kept reserved for later use.
These two types of location constraints are now detailed.

Definition IV.2. [Target Location Constraints (TLC)] We
consider a scenario scenario 1, where BB 6 is mapped first,
BB 3 is mapped next and so on. While mapping BB 6,
variables c and X5 are placed at c̄ and X5. While mapping
BB 3, c and X5 which are already mapped in BB 6, must
be considered because c will be used to map c in BB 3. In
other words, the placement of the variables in the registers
must be respected. Also, a, b, X1 and X2 must not reuse
X5. Otherwise, X5 will have wrong value when executing
BB 6. Let’s consider scenario 2 with another order of basic
blocks mapped, like first BB 3 and then BB6 and so on.
In this order of mapping, it is necessary to pass c and X5
from BB 3 to BB 6 mapping. To keep c and X5 alive in
BB 6 both c and X5 must be used in mapping of BB 6.
The placement or binding information which are passed from
the mapping of one basic block to the mapping of the other
basic block is referred to as constraint (e.g. scenario 1: c and
X5 passed from BB 6 to BB 3). The location constraints
related to the data that are used within a basic block mapping
phase (e.g. scenario 1: c in BB 3 mapping) are referred to
as target location constraints (TLC).

Definition IV.3. [Reserved Location Constraints (RLC)] As
we have seen in the previous examples, some of the location
constraints must be reserved in the mapping of basic blocks for

the sake of data integrity. To keep the symbol variables alive, it
is necessary to exclude the memory elements from placement.
Accordingly, these resources will not override while mapping
the basic block (e.g. scenario 1: X5 in BB 3 mapping).
These are referred to as reserved location constraints (RLC).

4.b: Selection approach
If the number of RLC and TLC is high, mapping becomes

complex. As TLC will force to use resources, and RLC will
force to exclude resources from placement. Hence, the primary
goal for our compiler is to minimize the number of TLCs and
RLCs by choosing an efficient traversal of the CDFG.

The basic solution to deal with the symbol variables is to
introduce memory operations. The symbol variables are stored
in the memory where they are written and are loaded from the
memory when read. In the rest of the paper this basic solution
is referred to as systematic load-store based approach. This
method is presented in the Fig. 5(d). For the symbol variable
c in the CDFG shown in Fig. 5(c), it stores variable c in the
memory in BB 3, and loads in BB 4, BB 5 and BB 6.
Fig. 5 refers to the mapping of the transformed CDFG in this
approach. This basic solution reduces the complexity of the
mapping as there are no constraints to be dealt with while
mapping the basic block. However, it requires a huge memory
bandwidth, significantly reducing the energy efficiency of the
system. As the compilation is built on register allocation
approach, the symbol variables are stored in the register files
when they are produced, and retrieved from the registers when
used as operands. While doing so, the effects of the constraints
in mapping are unavoidable. RLC restrict the use of some
resources, and TLC force to reuse some resources. If there is
only a single TLC in a basic block mapping, it becomes easier
to start mapping from the known place. But several TLC and
RLC complicates the mapping. Forced and blocked placements
by these constraints induce extra routing effort (dynamically
transforming the graph in compilation).

As the selection of the basic blocks during the mapping
is important, we compare the number of TLC and RLC for
several CDFG traversal in this section. Table III presents the
comparison between the number of different constraints in
the forward and backward CDFG traversal for Breadth First
Search (BFS) and Depth First Search (DFS) strategies. As the
trend is similar for other kernels we present the results for
sobel and seperable 2D filter only. The numbers show that
DFS strategy generates a lower number of RLC than the BFS
in both forward and backward traversal. The number of RLC
for sobel filter is much higher in BFS due to several sequential
loops present in the kernel. The numbers of TLC are similar in
both the strategies for different traversal mechanisms. Also for
the different search strategies forward and backward traversal
perform similarly. The DFS strategy is thus used.

5) Backtracking: For a basic block to be mapped (except
the first one), this stage selects the first map out of several
mappings generated for the last basic block mapped. The
selected map updates the constraints for the current basic
block mapping. If the compiler is unable to find a mapping
solution for the basic block due to the constraints, this stage
selects the second map from previous basic block to update
the constraints and restart mapping of the new basic block.
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Table III: Comparison of RLC and TLC numbers between different CDFG traversal

Kernels
Forward Traversal Backward Traversal

Breadth First Search DepthFirst Search Breadth First Search DepthFirst Search
# RLC # TLC # RLC # TLC # RLC # TLC # RLC # TLC

Seperable 2D Filter 22 35 17 35 22 35 17 35
sobel Filter 64 85 35 85 69 85 35 85

The process continues up to the first basic block mapped until
a valid mapping is found for the current basic block.

6) Update Constraints: In this stage, the compiler creates
and updates a constraint database. This database is used
in the placement algorithm, to place the data nodes and
corresponding operation nodes according to the TLC and
RLC. When mapping a current basic block, new variables
cannot be placed in RLCs, while TLCs are used to map
the symbol variables. If the symbol variables in the current
basic block mapping are not present in the constraint database,
then the variables are mapped using available resources, and
the respective placements are used to update the constraint
database prior to mapping of the next basic block. Once all the
basic blocks are mapped the compiler generates the assembly
containing a single map for the whole CDFG.

C. Assembler

Assembler holds the key to differentiate from the PEA
model used in the compiler and the actual hardware implemen-
tation. The assembler takes the ASCII text assembly generated
by the compiler and the instruction set architecture (ISA) and
produces machine code, which can then be used to configure
the PEs in the hardware. The ISA provides the added hardware
information to the PEA model used in the compiler. As an
example, the PEs in the IPA use an added constant register file
(CRF) for storing the constants. The introduction of the CRF in
the PEA model minimizes the instruction length by storing the
immediates of the instruction into the internal registers, giving
a low power solution. That is how the assembler separates the
model used in the compiler from the actual implementation of
the hardware. One can define their own PEA model and derive
an architecture from that for actual implementation. Thus, the
compiler can be used for a wide range of PEA variations.

V. EXPERIMENTAL RESULTS

This section analyses the implementation results, providing
performance, area, and energy consumption on several signal
processing kernels. We carry out experiments to show the
efficiency of the register allocation approach compared to
the state of the art predication techniques, considering a
wide range of control dominated kernels. An architectural
exploration is also performed to find the optimal configuration
in terms of number of load-store units and TCDM banks
for an IPA with 4x4 PE array. Performance, area and energy
efficiency are also compared with that of the or1k CPU [26].

A. Implementation Results

This section describes the implementation results for the
IPA accelerator, providing a comparison with the or1k CPU.
Both the designs were synthesized with Synopsys design
compiler 2014.09-SP4 using STMicroelectronics 28nm UTBB

FD-SOI technology libraries. Synopsys PrimePower 2013.12-
SP3 was used for timing and power analysis at the supply
of 0.6V, 25◦C temperature, in typical process conditions.
The cycle information was achieved simulating the RTL with
Mentor Questa Sim-64 10.5c. The code-sizes (instructions
and constants) of all the kernels used in the experiments
are presented in Table IV. In the following, the exploration
considers a 4×4 array with 16 PEs, each one including 20×32-
bit instruction register file, a 32×8-bit regular register file and
32×16-bit constant register file, as shown in Table V. For area
comparison, the CPU includes 32kB of data memory, 4kB of
instruction memory, and 1 kB of instruction cache, which is
equivalent to the design parameters of the IPA. The cost of
the IRF is considered both in size and power. Thanks to the
simpler architecture and tiny processing elements, at the target
operating voltage of 0.6V, the IPA runs at 100 MHz while or1k
can only reach 45MHz in the same operating point.

Fig. 9 shows the area of the whole array and memory with
different numbers of TCDM banks, where the total amount
of memory is kept constant at 32kB. As the area of LSUs is
negligible if compared to the overall system area, we show the
area results for the worst-case scenario with maximum number
of LSUs present in the PE array (i.e. 16). As shown in Fig. 9,
in the minimal configuration with 4 TCDM banks, the IPA area
is dominated by that of the array (60%) and by the local data
storage (35%), while the remaining 5% is consumed by the
interconnect. Increasing the number of TCDM banks imposes
a significant area overhead on the size of the interconnect.
Also, the area of the TCDM increases as well due to the higher
area/bit of small SRAM cuts necessary to implement 32kB
of memory with several banks. Hence, it is fundamental to
properly balance the number of LSUs and TCDM banks with
the bandwidth requirements of applications.

B. Comparison of the proposed compilation approach with
state of the art predication techniques

To evaluate the efficiency of the register allocation approach
to handle the control flow we compare the execution of six
control intensive kernels compared to the state of the art
partial and full predication techniques. The results, presented
in Table VI, show that the register based approach achieves
a maximum of 1.33× (with minimum of 1.04× and average
of 1.13×) and 1.8× (with minimum of 1.37× and average
of 1.59×) performance gain compared to partial predication
and full predication techniques. The maximum gain achieved
over existing methods are highlighted in bold in the table. The
smaller number of executed instructions allows the register al-
location approach to outperform the partial and full predication
techniques by an average of 1.54× (with min 1.35×, max 2×)
and 1.71× (with min 1.44×, max 2×) respectively in terms of
energy efficiency. The table also presents a comparison with
respect to or1k CPU and C64 DSP processor [22] from TI. The
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Table IV: Code size and the maximum depth of loop nests for the different kernels in the IPA

Kernels FIR MatM Conv Sep
Filter

Non Sep
Filter FFT DC

Filter cordic sobel gcd sad deblock manh-
dist

Code size (KB) 0.568 0.704 0.704 0.720 0.784 0.696 1.16 0.496 0.336 1.448 0.600 2.016 0.624
Max depth loop nests 2 3 3 3 4 2 2 1 1 1 2 3 2

Table V: Specifications of memories used in the IPA
Name Type Size
Global context memory SRAM 8KB
TCDM SRAM 32KB
Instruction Register File (IRF) Registers 0.08KB
Regular register file (RRF) Registers 0.032KB
Constant register fie(CRF) Registers 0.128KB
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Figure 9: Synthesized area of IPA for different number of
TCDM banks

register allocation approach achieves a maximum of 3.94×,
15.8× performance gain and 7.52×, 32.77× energy gain over
or1k and C64 processor, respectively. Due to the abundance of
branches in these kernels, the DSP processor performs worst.
Finally, we compare with the basic systematic load-store (SLS)
based approach for control mapping. It is depicted from the
Table VI that the register allocation approach performs an
average of 1.16× (with max of 1.46×, min of 1.05×) better
than the SLS based approach, while gaining an average of
1.31× energy efficiency with a maximum gain of 2× and
minimum gain of 1.07×.

C. Architectural Exploration

This section provides an extensive comparison with respect
to the CPU computational model and an evaluation of the
performance of the IPA while varying the number of LSUs
and TCDM banks, a critical parameter for data-hungry accel-
erators. To carry out the exploration, we selected 7 compute
intensive signal processing kernels featuring a high bandwidth
towards the TCDM.

1) Performance: Generally speaking, the IPA performs well
when significant parallelism can be extracted from a kernel.
This concept is well shown in Fig. 10, which compares the
performance of the IPA with that of the or1k processor on a
matrix multiplication when growing the size of the matrices
from 2×2 to 32×32. It is possible to note that the increase
of the kernel size increases the average utilization of the
PEs as well, which in turn helps to enhance performance. It
also demonstrates that the initial configuration time, which is
dominant for small kernel size is well amortized for larger
kernels, further contributing to improve performance.
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Figure 10: Performance of IPA executing matrix multiplication
of different size

Fig. 11 presents the total execution time (clock cycles)
of seven compute-intensive kernels. The execution time is
normalized with respect to that of or1k processor, where
the kernels are compiled with -O3 optimization flag. The
IPA outperforms the CPU by up to 20.3×, with an average
speed-up of 9.7×. A quantitative performance comparison
with respect to the CPU is presented in Table VII. The table
presents the configuration and execution cycles in the IPA
for different kernels. It also presents the average utilization
of PEs over the total execution period and total number of
instructions executed in the IPA. The instruction count includes
the instructions that are replicated on all the active PEs for
keeping the PE in synch across conditionals and jumps. It
also includes NOPs that are used when some PEs are stalled
due to manipulation of index variables. However, during NOP
execution PEs are clock gated and do not consume dynamic
power. The IPA achieves a maximum of 18× and an average
of 9.23× energy gain over the CPU.

To establish the impact of the memory bandwidth over
performance and energy efficiency, we vary the number of
LSUs in the PE array from 4 to 16 and the number of
TCDM banks from 4 to 32. The number of LSUs defines
the available bandwidth from the TCDM to the array, while
increasing the number of TCDM banks reduces the banking
conflict probability, improving performance. To perform the
exploration without any bias towards configurations, the in-
nermost loops of the kernels are unrolled to get a maximum
of 16 load-store operations in one cycle (as the highest number
of LSUs considered is 16, in the exploration). In Fig. 11, each
configuration is represented as a 2-dimensional number, where
the first one represents the number of LSUs, and the second
one represents the number of TCDM banks.

Results show that, as opposed to tightly coupled clusters of
processors which require a banking factor of 2 (i.e. number
of TCDM banks is twice the number of cores) [47], IPA
performance is almost insensitive to the number of TCDM
banks, and a configuration with a banking factor of 0.5 is
sufficient to minimize the impact of contention on the shared
memory banks for most applications. Indeed, while the typical
processor execution requires several load/store operations for
variables exceeding the size of the register file, direct CDFG
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Table VI: Performance comparison between the register allocation approach and the state of the art approaches

Kernels #
Loops

#
Condi
tionals

Performance (cycles) Energy (µJ)
reg

based
SLS based

[9][43]
partial

[5]
full
[1] CPU C64

DSP
reg

based
SLS based

[9][43]
partial

[5]
full
[1] CPU C64

DSP
cordic 1 2 328 408 396 542 513 286 0.001 0.002 0.002 0.002 0.004 0.002
sobel 4 11 179 617 262 282 188 253 245 583 454 028 669 794 0.736 1.102 1 1.058 3.531 5.656
gcd 1 1 55 312 58 596 73 747 92 852 67 545 92 184 0.227 0.246 0.392 0.4 0.525 0.778
sad 2 1 15 962 16 824 16 573 28 776 62 932 252 193 0.065 0.071 0.088 0.124 0.489 2.13
deblocking 5 7 472 258 495 081 518 722 727 243 834 683 1 310 220 1.936 2.079 2.754 3.134 6.492 11.064
manh-dist 1 1 6 288 6 826 6 738 9 522 15 394 55 317 0.026 0.029 0.036 0.041 0.12 0.467

max gain 1.46× 1.33× 1.8× 3.94× 15.8× 2× 2× 2× 7.52× 32.77×

Table VII: Overall instructions executed and energy consumption in IPA vs CPU
Kernels FIR MatM (16×16) Convolution SepFilter NonSepFilter FFT DC Filter

IPA

Configuration cycles 71 88 88 90 98 87 145
Execution cycles 6 071 11 940 56 241 827 685 1 852 382 8 076 4 748
Total number
of instructions executed 44 294 110 946 531 815 7 349 843 17 486 486 76 310 28 868

Active PEs/cycle (%) 46.1 58.5 59.2 55.5 59 59.7 39.5
Energy (µJ) 0.022 0.043 0.202 2.98 6.669 0.032 0.017
Energy (µJ) in
non-clock-gated IPA 0.047 0.077 0.479 7.152 11.704 0.063 0.045

CPU Execution cycles 37 677 96 256 616 805 5 982 730 9 084 101 164 480 50 085
Energy (µJ) 0.132 0.337 2.159 20.94 31.794 0.576 0.175
Speed-up 6.21x 8.06x 10.97x 7.23x 4.9x 20.3x 10.55x
Energy-gain 6x 7.84x 10.69x 7.03x 4.77x 18x 10.29x
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Figure 11: Latency performance in different configurations ([#LSUs][#TCDM Banks])

mapping on the IPA does not add extra memory operations
except primary inputs and outputs, since all the temporary
variables are stored in the register file of the PEs. Moreover,
flexible point-to-point connections within the array allow to
efficiently exchange data among PEs, further reducing the
pressure on the TCDM. This concept is well explained in
Fig. 4 and Fig. 1, which show the typical mapping of an
application on the IPA.

2) Energy Efficiency: Fig. 12 shows the average power con-
sumption breakdown for various configurations of the IPA. As
expected, the PE array is the most dominant power consumer
for all the configurations. The configurations with 4 TCDM
banks achieve the best power advantages in each group, as
increasing the number of banks increases the interconnect
complexity, causing timing pressure on the array, which in-
creases the sizing of the cells, hence power consumption.

Fig. 13 shows the average energy efficiency (MOPS/mW)
for different configurations. Million Operations Per Second
(MOPS) only considers the active PEs during execution, since
a PE may be idle due to TCDM bank access conflicts,
consecutive NOPs, or not mapped (not used in the application
execution). Executions with high number of active PEs/cycle
achieve large MOPS. As depicted in Fig. 13, for different
number of LSUs in the PE array, the configuration with
4 TCDM banks achieves the best energy efficiency, since
this is the least number of banks in each configuration, it
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Figure 12: Average power breakdown in different configura-
tions ([#LSUs][#TCDM Banks])

causes lowest power consumption. At the same time, the active
number of PEs/cycle does not get significantly impacted due
to the least memory access policy of the compilation. As a
result, the best efficiency is achieved at 2306 MOPS/mW for
matrix multiplication, in a configuration with 8 LSUs and 4
TCDM banks. The minimum energy efficiency is achieved at
1112 MOPS/mW for separable filter in a configuration with 4
LSUs and 16 TCDM banks.

To investigate the power gain in the fine-grained clock
gating we present the energy consumption of the clock gated
IPA and the non clock gated IPA in Table VII. The clock gated
design consumes an average of 2× less power compared to that
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Figure 13: Average energy efficiency for different configura-
tions ([#LSUs][#TCDM Banks])

of the non clock gated design. Due to the regular architecture
of the PE array, fine grained power management is much more
suitable to implement than a processor. Moreover, thanks to the
efficient execution of CDFG on the array, the smaller energy
required to execute an instruction in the IPA with respect to
a CPU (5.6E-07 µJ vs 3.49E-06 µJ), and the effectiveness of
the fine-grained power management the IPA outperforms the
or1k CPU’s energy efficiency by up to 18× (Table VII). The
energy per instruction execution in the IPA is much less than
that of the CPU due to its simple instruction set architecture.
Also, the lower number of memory operations executed in the
IPA helps reducing on the average energy consumption.

D. Comparison with low-power CGRA architectures

Table VIII shows a comparison with existing CGRAs. For
some papers, energy efficiency figures could not be extracted,
so ’NA’ is put in the corresponding cell. The energy efficiency
figures are provided both in the original manufacturing tech-
nology node and scaled to the 28nm technology, according to
the power scaling factor C∗V 2. C and V represent the effective
capacitance (approximated with the channel length of the
technology) and the supply voltage of the designs, normalized
to the nominal parameters of the 28nm technology node. It
should be noted that this simplified scaling factor penalizes
our design, since deep-submicron technologies such as 28nm,
where the load capacitance of gates is typically dominated by
wires require much more buffering than mature technology
nodes, which penalizes energy efficiency. Nevertheless, IPA
provides leading-edge energy efficiency, surpassing by more
than one order of magnitude other architectures featuring a
C based mapping flow. The driving factors for this gain are
(a) architectural simplicity with less complex interconnect net-
work, (b) low power instruction processing, (c) lowest possible
number of memory operations in application execution, (d)
fine grained power management architecture. Compared to
ultra-low power targets (that fit in a power envelope of 3mW),
the IPA presents a better energy efficiency than [33] and [36]
for which information could be extracted from the papers. One
distinguishing characteristic of the proposed accelerator is the
flexible execution model capable of implementing CDFG on
the array without the need of a host processor, coupled with
a fully automated mapping flow that starts from a plain ANSI
C description of the application. Moreover, the memory archi-
tecture, based on a shared multi-banked TCDM enables easy
integration within ultra-low-power tightly coupled clusters

of processors, while fine-grained power management allows
improving energy efficiency by up to 2×. The average power
consumption of the IPA is 0.49mW, which is compatible with
the ultra-low power target.

VI. CONCLUSION

This work presents an ultra-low power coarse grained
reconfigurable array accelerator for near-sensor processing.
The proposed Integrated Programmable-Array (IPA) is a 2-
D array of NxN processing elements (a 4x4 configuration
is used in this paper), and leverages a multi-banked tightly
coupled data memory for data storage, to ease the integration
in clustered multi-core architectures. We present a compilation
flow targeting the mapping of both control and data flow
portions of kernels onto the array of processing elements,
aimed at reducing the pressure on the shared data memory,
along with an architectural exploration of the memory ar-
chitecture parameters. The results of the exploration show
that a configuration of the IPA with 8 load-store units and 4
TCDM banks achieves the optimal performance/energy trade-
off featuring an average speed-up of 9.7× (max 20.3×, min
4.9×) compared to a general-purpose processor. With respect
to state of the art partial and full predication techniques, the
proposed compilation flow improves performance by 1.54×
on average (min 1.35×, max 2×) and energy efficiency by
1.71× on average (min 1.44×, max 2×). Thanks to the opti-
mized architecture and mapping flow, the proposed accelerator
achieves an average energy efficiency of 1617 MOPS/mW over
a wide range of sensor signal processing kernels, surpassing
other CGRA architectures featuring a C based mapping flow
by more than one order of magnitude.
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J. Becker, and R. Guerrieri. RTL-to-layout implementation of an
embedded coarse grained architecture for dynamically reconfigurable
computing in systems-on-chip. In 2009 International Symposium on
System-on-Chip, pages 110–113, Oct 2009.

[5] K. Chang and K. Choi. Mapping control intensive kernels onto coarse-
grained reconfigurable array architecture. In 2008 International SoC
Design Conference, volume 01, pages I–362–I–365, Nov 2008.



13

Table VIII: Comparison with the state of the art low power targets

Ref Arch Maps Source
Access
local

memory

Tech
[nm]

Supply
voltage

Area
[mm2 ]

Power
[mW]

Freq
[MHz]

Area
eff

[MOPS
/mm2 ]

Energy
eff

[MOPS
/mW]

Energy
eff

scaled
to 28nm

[MOPS/mW]

Perf
[MOPS]

Low power targets
[25] TCPA CDFG Customized VLIW 90 1.0V 15 12.48 200 106 112.00 360 1587
[46] Layers CDFG NA PE 65 1.0 0.35 44.45 488 2786 21.94 72 975
[29] SmartCell CDFG Customized PE 130 1.0V 8.2 160 100 13.04 37.8 176 6048
[18] PipeRench DFG Customized PE 180 1.8V 55.5 675 120 NA NA NA NA
[41] SYSCORE CDFG NA PE 90 1.0V 5.73 18.5 100 NA NA NA NA
[3] ADRES DFG ANSI C VLIW 90 1.0V 15 80 100 94 17.51 56 1409
[4] XPP CDFG ANSI C PE 90 1.0V 42 93 150 310 10.00 32 13000
[53] AsAP CDFG ANSI C PE 180 1.8V 23.76 84 116 40 11.00 229 942
[48] MUCCRA-3 DFG Customized VLIW 65 1.2V 8.82 11 41.4 NA NA NA NA

Ultra-low power targets
[33] Lopes et al DFG NA PE 90 1.0V 0.45 3.47 100 222 28.8 92.6 100
[36] CMA DFG Customized µC 65 0.5V 25 1.6 85 3 186a 430a 74a

[15] SIMD-CGRA DFG ANSI C PE 65 0.9 0.59 NA 1 NA NA NA NA
[23] ULP-SRP DFG ANSI C VLIW 40 0.5V NA 0.21 7 NA NA NA NA
This

paper IPA CDFG ANSI C PE 28 0.6V 0.25 0.49 100 3036 1617 1617 759

a PEs perform 8-bit operations, hence energy efficiency is normalized to equivalent 32-bit operations, does not include the power of controlling processor

[6] L. Chen and T. Mitra. Graph minor approach for application mapping
on cgras. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 7(3):21, 2014.

[7] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman.
Charm: A composable heterogeneous accelerator-rich microprocessor.
In Proceedings of the 2012 ACM/IEEE international symposium on Low
power electronics and design, pages 379–384. ACM, 2012.

[8] S. Das, K. J. M. Martin, P. Coussy, D. Rossi, and L. Benini. Ef-
ficient mapping of CDFG onto coarse-grained reconfigurable array
architectures. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 127–132, Jan 2017.

[9] S. Das, T. Peyret, K. Martin, G. Corre, M. Thevenin, and P. Coussy.
A scalable design approach to efficiently map applications on CGRAs.
In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 655–660, July 2016.

[10] S. Das, D. Rossi, K. Martin, P. Coussy, and L. Benini. A 142 mops/mw
integrated programmable array accelerator for smart visual processing.
In 2017 IEEE International Symposium of Circuits and Systems (ISCAS),
page Accepted, 2017.

[11] B. De Sutter, P. Raghavan, and A. Lambrechts. Coarse-Grained Re-
configurable Array Architectures, pages 449–484. Springer US, Boston,
MA, 2010.

[12] M. Dehyadegari, A. Marongiu, M. R. Kakoee, S. Mohammadi, N. Yaz-
dani, and L. Benini. Architecture support for tightly-coupled multi-core
clusters with shared-memory hw accelerators. IEEE Transactions on
Computers, 64(8):2132–2144, 2015.

[13] G. Donohoe. Reconfigurable data path processor, Apr. 19 2005. US
Patent 6,883,084.

[14] G. W. Donohoe, D. M. Buehler, K. J. Hass, W. Walker, and P.-S.
Yeh. Field programmable processor array: Reconfigurable computing
for space. In 2007 IEEE Aerospace Conference, pages 1–6. IEEE, 2007.

[15] L. Duch, S. Basu, R. Braojos, G. Ansaloni, L. Pozzi, and D. Atienza.
Heal-wear: An ultra-low power heterogeneous system for bio-signal
analysis. IEEE Transactions on Circuits and Systems I: Regular Papers,
64(9):2448–2461, 2017.

[16] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini. Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2017.

[17] M. Gautschi, A. Traber, A. Pullini, L. Benini, M. Scandale, A. Di Fed-
erico, M. Beretta, and G. Agosta. Tailoring instruction-set extensions for
an ultra-low power tightly-coupled cluster of openrisc cores. In 2015
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pages 25–30, Oct 2015.

[18] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor. Piperench: A reconfigurable architecture and compiler.
Computer, 33(4):70–77, 2000.

[19] M. Hamzeh, A. Shrivastava, and S. Vrudhula. Regimap: register-
aware application mapping on coarse-grained reconfigurable architec-
tures (cgras). In Proceedings of the 50th Annual Design Automation
Conference, page 18. ACM, 2013.

[20] K. Han, J. K. Paek, and K. Choi. Acceleration of control flow on

cgra using advanced predicated execution. In Field-Programmable
Technology (FPT), 2010 International Conference on, Dec 2010.

[21] K. Han, S. Park, and K. Choi. State-based full predication for low power
coarse-grained reconfigurable architecture. In 2012 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2012.

[22] T. Instruments. Tms320c64x/c64x+ dsp cpu and instruction set reference
guide. Texas Instruments, User manual SPRU732C, 2005.

[23] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim. Ulp-
srp: Ultra low-power samsung reconfigurable processor for biomedical
applications. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 7(3):22, 2014.

[24] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi. Resource sharing
and pipelining in coarse-grained reconfigurable architecture for domain-
specific optimization. In Design, Automation and Test in Europe, pages
12–17. IEEE, 2005.

[25] D. Kissler, A. Strawetz, F. Hannig, and J. Teich. Power-efficient
reconfiguration control in coarse-grained dynamically reconfigurable
architectures. Journal of Low Power Electronics, 5(1):96–105, 2009.

[26] D. Lampret, C.-M. Chen, M. Mlinar, J. Rydberg, M. Ziv-Av,
C. Ziomkowski, G. McGary, B. Gardner, R. Mathur, and M. Bolado.
Openrisc 1000 architecture manual. Opencores, January 2003.

[27] J. Lee, S. Seo, H. Lee, and H. U. Sim. Flattening-based mapping
of imperfect loop nests for cgras? In 2014 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 1–10, Oct 2014.

[28] G. Levi. A note on the derivation of maximal common subgraphs of
two directed or undirected graphs. Calcolo, 9(4):341–352, 1973.

[29] C. Liang and X. Huang. Smartcell: An energy efficient coarse-grained
reconfigurable architecture for stream-based applications. EURASIP
Journal on Embedded Systems, 2009(1):518659, Jun 2009.

[30] C. Liu, H. Ng, and H. K. So. Automatic nested loop acceleration
on fpgas using soft CGRA overlay. In Proceedings of the Second
International Workshop on FPGAs for Software Programmers (FSP),
pages 13–18, 2015.

[31] D. Liu, S. Yin, L. Liu, and S. Wei. Polyhedral model based mapping
optimization of loop nests for cgras. In Design Automation Conference
(DAC), 2013 50th ACM/EDAC/IEEE, pages 1–8. IEEE, 2013.

[32] L. Liu, J. Wang, J. Zhu, C. Deng, S. Yin, and S. Wei. Tlia: Efficient
reconfigurable architecture for control-intensive kernels with triggered-
long-instructions. IEEE Transactions on Parallel and Distributed Sys-
tems, 27(7):2143–2154, July 2016.

[33] J. Lopes, D. Sousa, and J. C. Ferreira. Evaluation of cgra architecture for
real-time processing of biological signals on wearable devices. In 2017
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1–7, Dec 2017.

[34] K. T. Madhu, S. Das, N. Sivanandan, S. K. Nandy, and R. Narayan.
Compiling HPC Kernels for the REDEFINE CGRA. In 2015 IEEE 17th
International Conference on High Performance Computing and Com-
munications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, pages 405–410, Aug 2015.

[35] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings.
A reconfigurable arithmetic array for multimedia applications. In



14

Proceedings of the 1999 ACM/SIGDA seventh international symposium
on Field programmable gate arrays, pages 135–143. ACM, 1999.

[36] K. Masuyama, Y. Fujita, H. Okuhara, and H. Amano. A 297mops/0.4
mw ultra low power coarse-grained reconfigurable accelerator CMA-
SOTB-2. In 2015 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), pages 1–6. IEEE, 2015.

[37] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. Dresc:
A retargetable compiler for coarse-grained reconfigurable architectures.
In Field-Programmable Technology, 2002.(FPT). Proceedings. 2002
IEEE International Conference on, pages 166–173. IEEE, 2002.

[38] E. Mirsky, A. DeHon, et al. Matrix: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources. In FCCM, volume 96, pages 17–19, 1996.

[39] N. Ozaki, Y. Yoshihiro, Y. Saito, D. Ikebuchi, M. Kimura, H. Amano,
H. Nakamura, K. Usami, M. Namiki, and M. Kondo. Cool mega-
array: A highly energy efficient reconfigurable accelerator. In Field-
Programmable Technology (FPT), 2011 International Conference on,
pages 1–8, Dec 2011.

[40] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim. Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 166–176. ACM, 2008.

[41] K. Patel, S. McGettrick, and C. J. Bleakley. Syscore: A coarse grained
reconfigurable array architecture for low energy biosignal processing. In
Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE
19th Annual International Symposium on, pages 109–112. IEEE, 2011.

[42] P. G. Paulin and J. P. Knight. Force-directed scheduling for the
behavioral synthesis of asics. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 8(6):661–679, 1989.

[43] T. Peyret, G. Corre, M. Thevenin, K. Martin, and P. Coussy. Efficient
application mapping on cgras based on backward simultaneous schedul-
ing/binding and dynamic graph transformations. In 2014 IEEE 25th
International Conference on Application-Specific Systems, Architectures
and Processors, pages 169–172. IEEE, 2014.

[44] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini. A fully-synthesizable
single-cycle interconnection network for shared-l1 processor clusters. In
2011 Design, Automation & Test in Europe, pages 1–6. IEEE, 2011.

[45] Z. E. Rakossy, A. Acosta-Aponte, T. G. Noll, G. Ascheid, R. Leupers,
and A. Chattopadhyay. Design and synthesis of reconfigurable control-
flow structures for cgra. In 2015 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), pages 1–8, Dec 2015.

[46] Z. E. Rákossy, D. Stengele, G. Ascheid, R. Leupers, and A. Chattopad-
hyay. Exploiting scalable cgra mapping of lu for energy efficiency using
the layers architecture. In Very Large Scale Integration (VLSI-SoC), 2015
IFIP/IEEE International Conference on, pages 337–342. IEEE, 2015.

[47] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Bartolini,
P. Flatresse, and L. Benini. A 60 GOPS/W, -1.8 V to 0.9 V body bias
ULP cluster in 28 nm UTBB fd-soi technology. Solid-State Electronics,
117:170 – 184, 2016.

[48] Y. Saito, T. Sano, M. Kato, V. Tunbunheng, Y. Yasuda, M. Kimura,
and H. Amano. Muccra-3: a low power dynamically reconfigurable
processor array. In Proceedings of the 2010 Asia and South Pacific
Design Automation Conference, pages 377–378. IEEE Press, 2010.

[49] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
Chaves Filho. Morphosys: an integrated reconfigurable system for data-
parallel and computation-intensive applications. IEEE Transactions on
Computers, 49(5):465–481, May 2000.

[50] Y. Song and Y. Lin. Unroll-and-jam for imperfectly-nested loops in dsp
applications. In Proceedings of the 2000 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, CASES
’00, pages 148–156, New York, NY, USA, 2000. ACM.

[51] H. Su, Y. Fujita, and H. Amano. Body bias control for a coarse
grained reconfigurable accelerator implemented with silicon on thin
box technology. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–6, Sept 2014.

[52] S. Yin, P. Zhou, L. Liu, and S. Wei. Acceleration of nested conditionals
on cgras via trigger scheme. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design. IEEE Press, 2015.

[53] Z. Yu, M. J. Meeuwsen, R. W. Apperson, O. Sattari, M. Lai, J. W.
Webb, E. W. Work, D. Truong, T. Mohsenin, and B. M. Baas. AsAP:
An asynchronous array of simple processors. IEEE Journal of Solid-
State Circuits, 43(3):695–705, 2008.

Satyajit Das is a PhD student at the Université de
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