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SOME SINGULAR CURVES AND SURFACES ARISING FROM INVARIANTS OF COMPLEX REFLECTION GROUPS by

We construct highly singular projective curves and surfaces defined by invariants of primitive complex reflection groups. C. BONNAFÉ For d = 8, 12, or 24, this reads µ D 4 (8) 53, µ D 4 (12) 198 and µ D 4 (24) 1 736. Using respectively the complex reflection groups G 28 = W(F 4 ), G 29 and G 32 , we prove that µ D 4 (8) 48, µ D 4 (12) 160 and µ D 4 (24) 1 440 (see Examples 4.3 and 4.5(3) and Table IV). This improves considerably the last known lower bounds [Esc2]. Recall that, by standard arguments, this implies that µ D 4 (8k ) 48k 3 , µ D 4 (12k ) 160k 3 and µ D 4 (24k ) 1 440k 3 for all k 1. Note that the fact that µ D 4 (24) 1 440 was first announced in [Bon1] (and a previous lower bound µ D 4 (8) 44 was also obtained): see Section 6 for details.

We also found examples which do not improve known lower bounds but might possibly be interesting for the number and the type of singularities they contain (with "big" multiplicities or "big" Milnor numbers): see Examples 3.4, 4.5, 4.7. The examples might also be interesting for their big group of automorphisms.

These computations also show that Miyaoka bounds are quite sharp, even for singularities that are not of type A. Contrary to previous constructions, the singular points of our curves or surfaces are in general not all real (1) (even though most of these varieties are defined over ). By contrast, note also that, using a theorem of Marin-Michel on automorphisms of reflection groups [MaMi], we can show that the Sarti dodecic can be defined over (this was still an open question).

For the smoothness of the exposition, we have decided to include most of the MAGMA codes in separate texts [Bon1] (for varieties associated with G 32 ) and [Bon2] (for the other examples), as well as some explicit polynomials: these two texts are not intended to be published, but are made for the reader interested in checking the computations by himself.

It is a classical problem to determine the maximal number of singularities of a given type that a curve or a surface might have. Several kinds of upper bounds have been given [Sak], [Bru], [Miy], [Var], [Wah]..., and these bounds have been approached for small degrees [Iv], [Bar], [START_REF] Escudero | Hypersurfaces with many A j singularities: explicit constructions[END_REF], [START_REF]ESCUDERO Arrangements of real lines and surfaces with A and D singularities[END_REF], [End], [EnPeSt], [Lab], [START_REF] Sarti | Symmetrische Flächen mit gewöhnlichen Doppelpunkten[END_REF], [Sta]... or general degrees [Chm].

In [Bar], [START_REF] Sarti | Pencils of Symmetric Surfaces in P 3[END_REF], [START_REF] Sarti | Symmetric surfaces with many singularities[END_REF], [START_REF] Sarti | Symmetrische Flächen mit gewöhnlichen Doppelpunkten[END_REF], Barth and Sarti used pencils of surfaces constructed from invariants of some finite Coxeter subgroups of GL 4 ( ) to obtain surfaces of degree 6, 10, 12 with the biggest number of nodes known up to now. We have decided to explore more systematically pencils of curves and surfaces constructed from invariants of finite complex reflection subgroups of GL 3 ( ) or GL 4 ( ). In this paper, we gather the results of these computations (made with MAGMA [Magma]) obtained from the primitive complex reflection. As the reader will see, not all the primitive complex reflection groups lead to interesting examples but these investigations have lead to the discovery of the following curves or surfaces, which improve some known lower bounds and are quite close to upper bounds found by Sakai [Sak] for curves or Miyaoka [Miy] for surfaces (we refer to Shephard-Todd notation [ShTo] for complex reflection groups; for Coxeter groups, we also use the notation W(Γ ), where Γ is a Coxeter graph):

(a) Using the complex reflection group G 24 ⊂ GL 3 ( ), we construct a curve of degree 14 with 42 cusps (i.e. singularities of type A 2 ): this improves known lower bounds (see Example 3.2). Note that the known upper bound for the number of cusps of a curve of degree 14 in P 2 ( ) is 55. (b) Using the complex reflection group G 26 , we construct a curve of degree 18 with 36 singular points of type E 6 (see Example 3.4). We do not know if such a bound was already reached. (c) Let µ D 4 (d ) denote the maximal number of quotient singularities of type D 4 that an irreducible surface in P 3 ( ) might have. Miyaoka [Miy] proved that

µ D 4 (d ) 16 117 d (d -1) 2 .
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Notation, preliminaries

We fix an n -dimensional -vector space V and a finite subgroup W of GL (V ). We set

Ref(W ) = {s ∈ W | dim (V s ) = n -1}.
Hypothesis. We assume throughout this paper that

W = 〈Ref(W )〉.
In other words, W is a complex reflection group. We also assume that W acts irreducibly on V . The number n is called the rank of W .

(1) There is an important exception to this remark: all the singular points of the surface of degree 8 with 48 singularities of type D 4 constructed in Example 4.3 have rational coordinates.

1.A.

Invariants. -We denote by [V ] the ring of polynomial functions on V (identified with the symmetric algebra S(V * ) of the dual V * of V ) and by [V ] W the ring of W -invariant elements of [V ]. By Shephard-Todd/Chevalley-Serre Theorem [START_REF] Broué | Introduction to complex reflection groups and their braid groups[END_REF]Theorem 4.1], there exist n algebraically independent homogeneous elements f 1 , f 2 ,. . . ,

f n of [V ] W such that [V ] W = [f 1 , f 2 , . . . , f n ].
Let d i = deg(f i ). We will assume that

d 1 d 2 • • • d n . A family (f 1 , f 2 , . . . , f n )
satisfying the above property is called a family of fundamental invariants of W . Whereas such a family is not uniquely defined, the list

(d 1 , d 2 , . . . , d n ) is well-defined and is called the list of degrees of W . If f ∈ [V ]
is homogeneous, we will denote by (f ) the projective (possibly reduced) hypersurface in P(V ) P n-1 ( ) defined by f . Its singular locus will be denoted by sing (f ).

A homogeneous element f ∈ [V ] W is called a fundamental invariant if it belongs to a family of fundamental invariants. Recall that a subgroup G of GL (V ) is called primitive if there does not exist a decom- position V = V 1 ⊕ • • • ⊕ V r with V i = 0 and
r 2 such that G permutes the V i 's. We will be mainly interested in primitive (often called exceptional) complex reflection groups, and we will refer to Shephard-Todd numbering [ShTo] for such groups (there are 34 isomorphism classes, named G i for 4 i 37). Almost all the computations (2) have been done using the software MAGMA [Magma].

1.B. Marin-Michel

Theorem. -Let denote the algebraic closure of in and we set Γ = Gal( / ). Using the classification of finite reflection groups, Marin-Michel [MaMi] proved that there exists a -structure V of V such that:

(1) V = ⊗ V is stable under the action of W (so that W might be viewed as a subgroup of GL (V )).

(2) The action of Γ on GL (V ) induced by the -form V stabilizes W . This implies that [V ] is a -form of [V ] stable under the action of W and that the action of Γ on [V ] induced by the -form [V ] stabilizes the invariant ring [V ].

Proposition 1.1. -The Sarti dodecic can be defined over .

Remark 1.2. -An explicit polynomial with rational coefficients defining the Sarti dodecic is given in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF].

Proof. -Assume here that W is a Coxeter group of type H 4 acting on a vector space V of dimension 4. We fix a -form V as above. Let f be a homogeneous invariant of W of degree 12 defining the Sarti dodecic: it belongs to [V ]. We fix a -basis (h 1 , h 2 , . . . , h 455 ) of the homogeneous component of degree 12 of [V ]. It is also a -basis of the homogeneous component of degree 12 of [V ]. By multiplying f by a scalar if necessary, we may assume that there exists i ∈ {1, 2, . . . , 455} such that the coefficient of f on h i is 1. Now, if γ ∈ Γ , then γ f is also an invariant of W of degree 12 defining an irreducible projective surface with 600 nodes. By the unicity of such an invariant [START_REF] Sarti | Symmetrische Flächen mit gewöhnlichen Doppelpunkten[END_REF], this forces

γ f = ξf for some ξ ∈ × . But ξ = 1 because the coefficient of f on h i is 1. So f ∈ [V ].
(2) Some Milnor and Tjurina numbers were computed with SINGULAR [DGPS].

Remark 1.3. -In our computations made with MAGMA, reflection groups W are represented as subgroups of GL n (K ) where K is a number field depending on W . There are of course infinitely many possibilities for representing W in this way, but it turns out that the choice of this model have a considerable impact on the time used for computations, and on the form of the defining polynomials for the singular varieties we obtain. Let us explain which choices we have made and for which reasons:

• We do not use the MAGMA command

ShephardTodd(k)

for defining the complex reflection group G k . Indeed, the MAGMA model for G k is generally not stable under the Galois action, and leads to very lengthy computations (and sometimes to computations that do not conclude after hours) and to very ugly defining polynomials for the singular varieties found by our methods.

• In his CHAMP package for MAGMA intended to study the representation theory of Cherednik algebras [Thi], Thiel used the model implemented in the CHEVIE package of GAP3 by Michel [Mic]. These models are almost all stable under the action of the Galois group (except for the Coxeter groups G 23 = W(H 3 ) and G 30 = W(H 4 )) and leads to much shorter computations and much nicer defining polynomials for singular varieties (for instance, they almost all have rational coefficients).

• We have decided to create our own models for the Coxeter groups G 23 = W(H 3 ) and G 30 = W(H 4 ): they are stable under the Galois action (so fit with Marin-Michel Theorem). This again shortens the computations and lead to polynomials with rational coefficients for defining singular varieties: this is how we found en explicit polynomial with rational coefficients defining the Sarti dodecic [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]. These models are implemented in a file primitive-complex-reflection-groups.m available in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] and are accessible through the command

PrimitiveComplexReflectionGroup(k)

once this file is downloaded. Note that: -This file copies almost entirely Thiel's file except for the Coxeter groups G 23 = W(H 3 ), G 28 = W(F 4 ) and G 30 = W(H 4 ). -For G 23 = W(H 3 ) and G 30 = W(H 4 ), we have given our own models defined over the field (ρ), where ρ 4 = 5ρ 2 -5 (i.e. ρ = (5 + 5)/2). We do not pretend it is the best possible model but, for our purposes, it is the best model available as of today. -For G 28 = W(F 4 ), we have used a version which contains the Coxeter group W(B 4 ) in its standard form (that is, as the group of monomial matrices whose non-zero coefficients belong to µ 2 = {1, -1}) as a subgroup of index 3. This implies in particular that invariant polynomials can be expressed in terms on elementary symmetric functions.

Of course, as explained in the introduction, the fact that most of the singular varieties we construct are defined over do not imply that the coordinates of all the singular points are rational, or even real. Some of the varieties have in fact no real points. 

Strategy for finding some "singular" invariants in rank n 3

If n = 2, then the varieties (f ) are just collections of points, and so are uninteresting for our purpose.

Hypothesis and notation.

From now on, and until the end of this paper, we assume moreover that n 3 and that W is primitive. We denote by r the minimal natural number such that the space of homogeneous invariants of W of degree d r has dimension 2.

Note that this implies that W is one of the groups G i , with 23 i 37, in Shephard-Todd classification. We recall in Table I the degrees (d 1 ,d 2 , . . . , d n ) of these groups. We also give the following informations: the order of W , the order of W /Z(W ) (which is the group which acts faithfully on P(V )), the degree d r and, whenever W is a Coxeter group, we recall its type (W(X i ) denotes the Coxeter group of type X i ). Recall from general theory that

|W | = d 1 d 2 • • • d n and |Z(W )| = Gcd(d 1 , d 2 , . . . , d n ).
Using MAGMA, we first determine by computer calculations some fundamental invariants f 1 ,. . . , f r . By the definition of r , the fundamental invariants f 1 ,. . . , f r -1 are uniquely determined up to scalar. By inspection of Table I, we see that

d 1 < d 2 < • • • < d n and that there is a unique f of the form f m 1 1 • • • f m r -1
r -1 which has degree d r . So the space of homogeneous invariants of degree d r has dimension 2, and is spanned by f r and f . Moreover, all fundamental invariants of degree d r are, up to a scalar, of the form f r + u f , for some u ∈ .

This means that we need to determine the values of u such that (f r + u f ) is singular. For this, we use the basis (x 1 , . . . , x n ) of V * chosen by MAGMA and we set

F u = f r + u f and F aff u (x 1 , . . . , x n-1 ) = F u (x 1 , . . . , x n-1 , 1).
This basis allows to identify P(V ) with P n-1 ( ) and we denote by A n-1 ( ) the affine open subset of P n-1 ( ) defined by x n = 0. Then aff (F aff t ) denotes the affine open subset of (F u ) defined by x n = 0. Note the following easy fact:

(2.2)

Any W -orbit of points in P n-1 ( ) meets A n-1 ( ).

Proof. -Indeed, the linear span of a W -orbit of a non-zero vector in V must be equal to V , because W acts irreducibly. So it cannot be fully contained in the orthogonal of x n .

One deduces immediately the following fact, which will be useful for saving much time during computations:

(2.3) (F u ) is singular if and only if aff (F aff u ) is singular. Now, let = {(ξ, u ) ∈ A n-1 ( ) × A 1 ( ) | F aff u (ξ) = 0}.
We denote by φ : → A 1 ( ) the second projection. Then the fiber φ -1 (u) is the variety

aff (F aff u ). We can then define sfib = {(ξ, u ) ∈ | ∂ F aff u ∂ x 1 (ξ) = • • • = ∂ F aff u ∂ x n-1 (ξ) = 0}.
Then sfib is not necessarily the singular locus of , but the points in φ( sfib ) are the values of u for which the fiber φ -1 (u) = aff (F aff u ) (or, equivalently, (F u )) is singular. We set U sing = φ( sfib ) and we denote by U irr sing the set of u ∈ U sing such that (F u ) is irreducible. This provides an algorithm for finding these values of u : it turns out that φ is not dominant in our examples, so that there are only finitely many such values of u . We then study more precisely these finite number of cases (number of singular points, nature of singularities, Milnor number,. . . ). Let us see on a simple example how it works:

Example 2.4 (Coxeter group of type H 3 ). -Assume here, and only here, that W = G 23 = W(H 3 ). Then (d 1 , d 2 , d 3 ) = (2, 6, 10) so that r = 2 and d r = 6. Then F u = f 2 + u f 3 1 . We first define W (see Remark 1.3 for the choice of a model) and the fundamental invariants f 1 and f 2 :

> load 'primitive-complex-reflection-groups.m'; > W:=PrimitiveComplexReflectionGroup(23); > K<a>:=CoefficientRing(W); > R:=InvariantRing(W); > P<x1,x2,x3>:=PolynomialRing(R); > f1:=InvariantsOfDegree(W,2)[1]; > f2:=InvariantsOfDegree(W,6)[1]; > Gcd(f1,f2); 1
Note that the last command shows that the invariant f 2 of degree 6 we have chosen is indeed a fundamental invariant. We now define F aff u and sfib and then determine the set U sing of values of u such that (F u ) is singular:

> P2:=Proj(P); > A2xA1<xx1,xx2,u>:=AffineSpace(K,3); > A1<U>:=AffineSpace(K,1); > phi:=map<A2xA1->A1 | [u]>; > f1aff:=Evaluate(f1,[xx1,xx2,1]); > f2aff:=Evaluate(f2,[xx1,xx2,1]); > Fuaff:=f2aff + u * f1aff^3; > X:=Scheme(A2xA1,Fuaff); > Xsfib:=Scheme(X,[Derivative(Fuaff,i) : i in [1,2]]); > Psing:=MinimalBasis(phi(Xsfib)); > # Psing; 1 > Factorization(Psing[1]); [ <T + 1, 1>, <T + 9/10, 1>, <T + 63/64, 1> ] > Using:=[-1, -9/10, -63/64];
We next determine for which values u ∈ U sing = {u 1 , u 2 , u 3 } the curve (F u ) is irreducible:

> F:=[f2+ui * f1^3 : ui in Using]; // the polynomials F_{t_i} > Z:=[Curve(P2,f) : f in F]; > [IsAbsolutelyIrreducible(i) : i in Z]; [ true, true, false ]
We then study the singular locus of the irreducible curves (F u ) for u = u 1 or u 2 . Let us see how to do it for u = u 1 : > Z1sing:=SingularSubscheme(Z[1]); > Z1sing:=ReducedSubscheme(Z1sing); > Degree(Z1sing); 10 > points:=SingularPoints

(Z[1]); > # points; 10 > pt:=points[1]; > IsNode(Z[1],pt); true > # ProjectiveOrbit(W,pt); 10
The command Degree(Z1sing) shows that (F u 1 ) contains exactly 10 singular points.

The command # points shows that they are all defined over the field K. The command # ProjectiveOrbit(W,p1) shows that they are all in the same W -orbit (the function ProjectiveOrbit has been defined by the author for computing orbits in projective spaces (see [START_REF] Bonnafé | A surface of degree 24 with 1440 singularities of type D 4[END_REF] or [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] for the code). So all these singularities are equivalent and the command IsNode(Z[1],pt) shows that they are all nodes.

One can check similarly that (F u 2 ) has 6 nodes, all belonging to the same W -orbit.

In the next sections, we will give tables of singular curves and surfaces obtained in this way. Inspection of these tables (and Examples 5.1 and 5.2) leads to the following result: Proposition 2.5. -Apart from the two singular surfaces and of degree 8 with 80 nodes defined by invariants of G 29 , all the singular curves and surfaces described in Tables II, III and IV can be defined over . The singular surfaces and are Galois conjugate over .

Proof. -One could just check that the polynomials given thanks to the MAGMA codes contained in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] have coefficients in . But one could also follow the same argument as in Proposition 1.1, based on Marin-Michel Theorem, by using the fact that all these singular curves and surfaces are characterized by their number of singular points or their type.

Proposition 2.6.

-If W = G k , with 23 k 35 and k = 34, and if u ∈ U irr sing , then W acts transitively on sing (F u ).

Singular curves from groups of rank 3

Hypothesis. We still assume that W is primitive but, in this section, we assume moreover that n = 3. This means that W is one of the groups G i , for 23 i 27. We denote by (f 1 , f 2 , f 3 ) a set of fundamental invariants provided by MAGMA. Table II gives the list of curves obtained through the methods detailed in Section 2. This table contains the degree d r , the cardinality of U irr sing , the number of singular points and the type of the singularity (since all singular points belong to the same W -orbit by Proposition 2.6, they are all equivalent singularities). Details of MAGMA computations are given in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] (they follow the lines of Example 2.4). We use standard notation for the types of the singularities of curves [AGV]. For instance (here, we denote by m the multiplicity, µ the Milnor number and τ the Tjurina number):

• A 1 is a node, i.e. a singularity equivalent to x y : in this case, m = 2 and µ = τ = 1.

• A 2 is a cusp, i.e. a singularity equivalent to y 2x 3 : in this case, m = 2 = µ = τ = 2.

• D 4 is a singularity equivalent to x (y 2x 2 ): in this case, m = 3, µ = τ = 4.

• X 9 is a singularity equivalent to x y (yx )(y + x ): in this case, m = 4, µ = τ = 9.

• E 6 is a singularity equivalent to y 3x 4 : in this case, m = 3, µ = τ = 6.

Example 3.2. -A plane curve is called cuspidal if all its singular points are of type A 2 . By [START_REF] Sakai | Singularities of plane curves, Geometry of complex projective varieties[END_REF](0.4)], a cuspidal plane curve of degree 14 has at most 55 singular points of type A 2 . But it is not known if this is the sharpest bound: to the best of our knowledge, no cuspidal plane curve of degree 14 with 42 or more singular points of type A 2 was known before the above example of (F u 3 ) for W = G 24 . Also, a cuspidal plane curve of degree 12 can have at most 40 singular points [START_REF] Sakai | Singularities of plane curves, Geometry of complex projective varieties[END_REF](0.4)], but it is not known if this bound can be achieved. However, there exists at least one cuspidal curve of degree 12 with 39 cusps [C-ALi, Example 6.3]. Our example obtained from invariants of G 25 , with 36 cusps, approaches these bounds and has an automorphism group of order 108. 6, 12, 18). Up to a scalar, any fundamental invariant of degree 18 of W is of the form

W d r |U irr sing | u i | sing (F u i )| Singularity G 23 = W(H 3 ) 6 2 u 1 6 A 1 u 2 10 A 1 G 24 14 3 u 1 21 A 1 u 2 28 A 1 u 3 42 A 2 G 25 12 2 u 1 12 D 4 u 2 36 A 2 G 27 12 2 u 1 45 A 1 u 2 36 A 1 TABLE II. Singularities of the curves (F u ) for u ∈ U irr sing (u , v ) | sing (F u ,v )| W -orbits Singularity (u 1 , v 1 ) 63 9 X 9 54 A 2 (u 2 , v 2 ) 21 9 X 9 12 D 4 (u 3 , v 3 ) 45 9 X 9 36 A 2 (u 4 , v 4 ) 36 36 E 6 (u 5 , v 5 ) 84 12 D 4 72 A 2
= G 26 . Recall that (d 1 , d 2 , d 3 ) = (
F u,v = f 3 + u f 1 f 2 + v f 3 1 for some (u , v ) ∈ A 2 ( ).
Using MAGMA, one can check the following facts. First, the set of (u, v ) ∈ A 2 ( ) such that (F u,v ) is singular is a union of three affine lines 1 , 2 , 3 and a smooth curve isomorphic to A 1 ( ). The singular locus sing of consists of 7 points and it turns out that there are only 5 points (u i , v i ) 1 i 5 in sing such that (F u i ,v i ) is irreducible. Table III gives the information about singularities of these varieties (F u i ,v i ) (with the numbering used in our MAGMA programs [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]).

Note that a cuspidal curve of degree 18 has at most 94 singularities of type A 2 [START_REF] Sakai | Singularities of plane curves, Geometry of complex projective varieties[END_REF](0.3)]. Note also that there exists a cuspidal curve of degree 18 with 81 cusps [Iv].

W d r |U irr sing | u i | sing (F u i )| Singularity G 28 = W(F 4 ) 6 4 u 1 12 A 1 u 2 12 A 1 u 3 48 A 1 u 4 48 A 1 G 29 8 5 u 1 40 A 1 u 2 20
Ordinary, m = 3, µ = 11, τ = 10

u 3 160 A 1 u 4 80 A 1 u 5 80 A 1 G 30 = W(H 4 ) 12 4 u 1 300 A 1 u 2 60 A 1 u 3 360 A 1 u 4 600 A 1 G 31 20 5 u 1 480 A 1 u 2 960 A 1 u 3 1 920 A 1 u 4 640 A 3 u 5 1 440 A 2 G 32 24 4 u 1 40 Ordinary, m = 6, µ = 125, τ = 125 u 2 360
Non-ordinary, m = 3, µ = 18, τ = 18

u 3 1 440 D 4 u 4 540
Non-simple, non-ordinary, m = 2, µ = 9, τ = 9 

Singular surfaces from groups of rank 4

Hypothesis. We still assume that W is primitive but, in this section, we assume moreover that n = 4.

This means that W is one of the groups G i , for 28 i 32. We denote by (f 1 , f 2 , f 3 , f 4 ) a set of fundamental invariants provided by MAGMA and we denote by U irr sing the set of elements u ∈ such that (F u ) is irreducible and singular. Table IV gives the list of surfaces obtained through the methods detailed in Section 2. This table contains the degree d r , the number of values of t such that (F u ) is irreducible and singular, the number of singular points and informations about the singularity (since all singular points belong to the same W -orbit by Proposition 2.6, they are all equivalent singularities). The number m (resp. µ, resp. τ) denotes the multiplicity (resp. the Milnor number, resp. the Tjurina number).

The example with 1 440 singularities of type D 4 obtained from G 32 is detailed in section 6: one can derive from the construction a surface of degree 8 with 44 singularities of type D 4 (see also [START_REF] Bonnafé | A surface of degree 24 with 1440 singularities of type D 4[END_REF]). IV, the cases of Coxeter groups of type F 4 and H 4 (i.e. the primitive reflection groups G 28 and G 30 ) was dealt with by Sarti [START_REF] Sarti | Pencils of Symmetric Surfaces in P 3[END_REF].

Examples 4.3 (Coxeter group of type F 4 ). -Assume in this example, and only in this example, that W = G 28 = W(F 4 ) is the Coxeter group of type F 4 , in the form explained in Remark 1.3. We denote by σ 1 , σ 2 , σ 3 , σ 4 the elementary symmetric polynomials in

x 1 , x 2 , x 3 , x 4 and if f ∈ [x 1 , x 2 , x 3 , x 4 ] and k 1, we set f [k ] = f (x k 1 , x k 2 , x k 3 , x k 4 ).
Let ϕ 1 and ϕ 2 be the following two polynomials:

ϕ 1 = 7σ 1 [2] 4 -72σ 1 [2] 2 σ 2 [2] + 4 320σ 4 [2] + 432σ 2 [4]
and

ϕ 2 = σ 1 [2] 4 -9σ 1 [2] 2 σ 2 [2] + 27σ 2 [2] 2 -27σ 1 [2]σ 3 [2] + 324σ 4 [2].
Then it is easily checked that ϕ i ∈ [V ] W and that the two varieties (ϕ i ) are isomorphic (because there is an element g of N GL 4 ( ) (W ) such that ϕ 2 = g ϕ 1 ) and have the following properties:

• The reduced singular locus sing (ϕ i ) has dimension 0 and consists of 48 points which are all quotient singularities of type D 4 . • The group G 28 acts transitively on sing (ϕ i ) and all elements of sing (ϕ i ) have coordinates in . This shows in particular that (4.4)

µ D 4 (8) 48,
as announced in the introduction. Figure I shows part of the real locus of (ϕ 2 ).

Examples 4.5 (The group G 29

). -Assume in this example, and only in this example, that W = G 29 , in the version implemented by Jean Michel in the Chevie package of GAP3 [Mic]. Then it contains the symmetric group S 4 (viewed as the subgroup of GL 4 ( ) consisting of permutation matrices). We use the notation of Example 4.3 for elementary symmetric functions and evaluation at powers of the indeterminates.

(1) Recall that the Endraß octic [End] has degree 8 and 168 nodes and its automorphism group has order 16. As shown in Table IV,(F u 3 ) is an irreducible surface in P 3 ( ) with 160 nodes and a group of automorphisms of order at least 1 920, thus approaching Endraß' record but with more symmetries. However, this surface has no real point. Up to a scalar, we have

F u 3 = σ 1 [8] + 3σ 1 [2] 2 σ 2 [2] + 2σ 2 [4] -30σ 1 [2]σ 3 [2] + 240σ 4 [2].
It is still an open question to determine whether one can find a surface of degree 8 in P 3 ( ) with more than 168 nodes (being aware that the maximal number of nodes cannot exceed 174, see [Miy]).

(2) For the surface (F u 2 ), it can be shown with the software SINGULAR that the singularities are all of type T 4,4,4 and are equivalent to the singularity 4x y z + x 4 + y 4 + z 4 . Up to a scalar, we have

F u 2 = σ 1 [2] 4 -32σ 1 [2]σ 3 [2] + 256σ 4 [2].
Figure II shows part of the real locus of (F u 2 ).

(3) On the other hand, if we set

ϕ 1 = σ 1 [2] 6 - 3 2 σ 1 [2] 4 σ 2 [2] -78σ 1 [2] 2 σ 2 [2] 2 + 585 2 σ 1 [2] 3 σ 3 [2] + 208σ 2 [2] 3 -990σ 1 [2]σ 2 [2]σ 3 [2] + 1710σ 1 [2] 2 σ 4 + 1350σ 3 [2] 2 -2880σ 2 [2]σ 4 [2],
we can check that ϕ 1 ∈ [V ] W and that:

• (ϕ 1 ) has exactly 160 singular points, which are all singularities of type D 4 .

• sing (ϕ 1 ) is a single G 29 -orbit. This shows that (4.6)

µ D 4 (12) 160,
as announced in the introduction. This improves considerably known lower bounds (to the best of our knowledge, it was only known that µ D 4 (12) 96, see [START_REF]ESCUDERO Arrangements of real lines and surfaces with A and D singularities[END_REF]). Recall also that Miyaoka's bound says that µ D 4 (12) 198. Figure III shows part of the real locus of (ϕ 1 ).

(4) Let us keep going on with fundamental invariants of degree 12. Let

ϕ 2 = σ 3 [2]σ 1 [2] 3 -4σ 1 [2]σ 2 [2]σ 3 [2] + 4σ 1 [2] 2 σ 4 [2] + 4σ 3 [2] 2 (up to a scalar). Then ϕ 2 ∈ [V ] W is irreducible over
(this has been checked with SINGULAR) and computations with MAGMA show that:

• sing (ϕ 2 ) has pure dimension 1 and is the union of 30 lines.

• G 29 acts transitively on these 30 lines.

• The set of points belonging to at least two of these 30 lines has cardinality 60, and splits into two G 29 -orbits (one of cardinality 40, the other of cardinality 20). Figure IV shows part of the real locus of (ϕ 2 ). Example 4.7 (The group G 31 ). -Recall that the Chmutov surface [Chm] of degree 20 has 2 926 nodes and that an irreducible surface in P 3 ( ) of degree 20 cannot have more than 3 208 nodes [Miy]. The third surface associated with G 31 in Table IV has "only" 1 920 nodes and most of them are not real (contrary to the Chmutov surface). However, it has a big group of automorphisms (of order a least 11 520). 

Examples in higher dimension

Example 5.1 (The group G 33 ). -Computations with MAGMA show that all fundamental invariants f 3 of degree 10 of G 33 are such that (f 3 ) is singular [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]. The other exceptional groups have been investigated but the computations are somewhat too long (note that n 5).

The case of G 32

Hypothesis. We assume in this section, and only in this section, that W is the primitive complex reflection group G 32 .

In Table IV, it is said that the surface (F u 3 ) attached to G 32 has 1 440 singularities of type D 4 . We give here a detailed account of this example, and show that it also produces surfaces of degree 8 and 16 with many singularities of type D 4 . The MAGMA codes are contained in the ARXIV version of this section [START_REF] Bonnafé | A surface of degree 24 with 1440 singularities of type D 4[END_REF].

We need some more notation. If f ∈ [x 1 , x 2 , x 3 , x 4 ] is homogeneous, we denote by

f [k ] the homogeneous polynomial f (x k 1 , x k 2 , x k 3 , x k 4 ).
Let W 1 be the subgroup of GL 4 ( ) generated by

s 1 =    0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 -1    , s 2 =    1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 -1    and s 3 =    -1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0    .
Let ζ 3 (resp. ζ 4 ) be a primitive third (resp. fourth) root of unity. Let W 2 be the subgroup of GL 4 ( ) generated by

s 1 =    0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 ζ 4    , s 2 =    1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 ζ 4    and s 3 =    -ζ 4 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0    .
Finally, let W = W 3 denote the subgroup of GL 4 ( ) generated by

s 1 =    1 0 0 0 0 1 0 0 0 0 ζ 3 0 0 0 0 1    , s 2 =     ζ 3 +2 3 ζ 3 -1 3 ζ 3 -1 3 0 ζ 3 -1 3 ζ 3 +2 3 ζ 3 -1 3 0 ζ 3 -1 3 ζ 3 -1 3 ζ 3 +2 3 0 0 0 0 1     , s 3 =    1 0 0 0 0 ζ 3 0 0 0 0 1 0 0 0 0 1    and s 4 =     ζ 3 +2 3 1-ζ 3 3 0 1-ζ 3 3 1-ζ 3 3 ζ 3 +2 3 0 ζ 3 -1 3 0 0 1 0 1-ζ 3 3 ζ 3 -1 3 0 ζ 3 +2 3     .
Commentaries. The following facts are checked using MAGMA, as explained in [START_REF] Bonnafé | A surface of degree 24 with 1440 singularities of type D 4[END_REF].

Let Z(W i ) denote the center of W i . In all cases, it is isomorphic to a group of roots of unity acting by scalar multiplication. Then:

(a) The group W 1 has order 48 and is isomorphic to the non-trivial double cover GL 2 ( 3 ) of the symmetric group S 4 W 1 /Z(W 1 ). (b) The group W 2 has order 768, contains a normal abelian subgroup H of order 32 and W 2 /H S 4 . The group W 2 /Z(W 2 ) has order 192, but is not isomorphic to a Coxeter group of type D 4 . (c) The group W 3 is the complex reflection group denoted by G 32 in the Shephard-Todd classification [ShTo] (it has order 155 920). Recall that the group W 3 /Z(W 3 ) is a simple group of order 25 920 and is isomorphic to the derived subgroup of the Weyl group of type E 6 (i.e. to the derived subgroup of the special orthogonal group SO 5 ( 3 )). It contains the group W 1 as a subgroup, as well as a subgroup of diagonal matrices isomorphic to (µ 3 ) 4 , where µ d is the group of d -th roots of unity.

Note that we have used the version of G 32 implemented by Michel in the Chevie package of GAP3 [Mic].

If λ = (λ 1 λ 2 λ 3 λ 4 ) is a partition of 8 of length at most 4, we denote by Ω - λ (resp.

Ω + λ ) be the orbit of the monomial x 

m + 611 = m - 611 = x 6 1 x 2 x 3 + x 6 1 x 2 x 4 -x 6 1 x 3 x 4 + x 1 x 6 2 x 3 -x 1 x 6 2 x 4 + x 6 2 x 3 x 4 +x 1 x 2 x 6 3 + x 1 x 6 3 x 4 -x 2 x 6 3 x 4 -x 1 x 2 x 6 4 -x 1 x 3 x 6 4 -x 2 x 3 x 6 4 . Now, let g = m - 8 -6m - 62 -60m - 611 + 2 240m - 521 -14m - 44 + 10 180m - 431 + 40 412m - 422 -23 440m - 4211 + 111 980m - 332 + 154 704m - 2222 .
By construction, m - λ is invariant under the action of W 1 and so g is invariant under the action of W 1 S4 . One can check with MAGMA the following facts [Bon1, Proposition 1]:

Proposition 6.1. -If 1 k 3, then the polynomial g [k ] is invariant under the action of W k .
One can also check that g [3] is the polynomial denoted by F u 3 (suitably normalized) in Table IV (in the G 32 example). Theorem 6.2. -The homogeneous polynomial g satisfies the following statements:

(a) (g ) is an irreducible surface of degree 8 in P 3 ( ) with exactly 44 singular points which are all quotient singularities of type D 4 .

(b) If k 1, then (g [k ]
) is an irreducible surface of degree 8k , whose singular locus has dimension 0 and contains at least 44k 3 quotient singularities of type D 4 . (c) (g [2]) is an irreducible surface of degree 16 with exactly 472 singular points: 24 quotient singularities of type A 1 , 96 quotient singularities of type A 2 and 352 quotient singularities of type D 4 . (d) (g [3]) is an irreducible surface of degree 24 in P 3 ( ) with exactly 1 440 singular points which are all quotient singularities of type D 4 .

Remark 6.3. -Note that g has coefficients in but the singular points of (g ), (g [2]) and (g [3]) have coordinates in various field extensions of , and most of the singular points are not real (at least in this model).

We now turn to the study of the singularities of the varieties (g [i ]) for i ∈ {1, 2, 3}. Note the following fact, checked using MAGMA [Bon1, Lemma 3], that will be used further: Lemma 6.4. -If 1 i < j 4, then the closed subscheme of P 3 ( ) defined by the homogeneous ideal 〈g , Note that the points in the W 1 -orbit of cardinality 8 are the only real singular points of (g ). Figure V shows part of the real locus of (g ).

∂ g ∂ x i , ∂ g ∂ x j 〉 has dimension 0.

6.B. Degree 8k . -

Let denote the open subset of P 3 ( ) defined by x 1 x 2 x 3 x 4 = 0 and let σ k : P 3 ( ) → P 3 ( ), [x 1 ; x 2 ; x

3 ; x 4 ] → [x k 1 ; x k 2 ; x k 3 ; x k 4 ].
The restriction of σ k to a morphism → is an étale Galois covering, with group (µ k ) 4 /∆µ k (here, ∆ : µ k → (µ k ) 4 is the diagonal embedding). We have (g [k ]) = σ -1 k ( (g )).

Let us first prove that (g [k ]) is irreducible. We may assume that k 2, as the result has been proved for k = 1 in the previous section. Recall that

∂ g [k ] ∂ x i = k x k -1 i ( ∂ g ∂ x i • σ k ),
so the singular locus of (g [k ]) is contained in

{p 1 , p 2 , p 3 , p 4 } ∪ i = j σ -1 k ( i , j ) ,
where p i = [δ i 1 ; δ i 2 ; δ i 3 ; δ i 4 ] (and δ i j is the Kronecker symbol) and i , j is the subscheme of P 3 ( ) defined by the ideal 〈g ,

∂ g ∂ x i , ∂ g ∂ x j
〉 (and which has dimension 0 by Lemma 6.4). Since σ k is finite, this implies that sing (g [k ]) has dimension 0, so (g [k ]) is irreducible. Now, σ k : → is étale and the singular locus of (g ) is contained in (see Proposition 4(b)). Therefore, the 44 singularities of (g ) lift to 44k 3 singularities in (g [k ]) ∩ of the same type, i.e. quotient singularities of type D 4 . This proves the statement (b) of Theorem 6.2.

Note that, for k = 2, 3 and 4 (and maybe for bigger k ) we will prove in the next sections that (g [k ]) contains singular points outside of . 6.C. Degree 16. -Using the morphism σ 2 defined in the previous section, we get that (g [2])∩ has exactly 352 singular points, which are all quotient singularities of type D 4 . The other singularities are determined thanks to MAGMA computations that are detailed in [START_REF] Bonnafé | A surface of degree 24 with 1440 singularities of type D 4[END_REF]§3], and which confirm the statement (c) of Theorem 6.2. Note that we also need the software SINGULAR [DGPS] for computing some Milnor numbers and identifying the singularity A 2 . Note also that W 2 acts transitively on the 24 quotient singularities of type A 1 and also acts transitively on the 96 quotient singularities of type A 2 . Figure VI shows part of the real locus of (g ). 6.D. Degree 24. -Using the morphism σ 3 defined in Section 6.B, we get that (g [3]) ∩ has exactly 44×3 3 = 1188 singular points, which are all quotient singularities of type D 4 . The other singularities are determined thanks to MAGMA computations that are detailed in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] or [START_REF] Bonnafé | A surface of degree 24 with 1440 singularities of type D 4[END_REF]§4], and which confirm the statement (d) of Theorem 6.2. Note also that, in the given model, the surface (g [3]) has only 32 real singular points: Figure VII gives partial views of its real locus.

6.E. Complements. -From Section 6.B, we deduce that sing (g [4]) has 2 816 quotient singularities of type D 4 lying in the open subset and it can be checked that it has 432 other singular points not lying in , for which we did not determine the type. 
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TABLE I .

 I Degrees of primitive complex reflection groups in rank 3

TABLE III

 III 

. Some singular curves of degree 18 defined by invariants of G 26 Remark 3.3. -Note that G 26 does not appear in Table

II

. The reason is the following: if W = G 26 , then d r = 12 but G 26 contains W = G 25 as a normal subgroup of index 2 and it turns out that invariants of degree 12 of G 25 and G 26 coincide. This makes the computation for G 26 unnecessary in this case. Note, however, the next Example 3.4, where we construct singular curves of degree 18 using invariants of G 26 .

Example 3.4 (The group G 26 ). -We assume in this example that W
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