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SOME SINGULAR CURVES AND SURFACES ARISING

FROM INVARIANTS OF COMPLEX REFLECTION GROUPS

by

CÉDRIC BONNAFÉ

If V is an n-dimensional C-vector space and W is a finite subgroup of GLC(V ), then
the algebra C[V ]W of W -invariant polynomial functions on V is finitely generated. If
f ∈C[V ]W is homogeneous, then it defines a projective hypersurface Z ( f ) in P(V ) which
is acted on by W and it is natural to determine the geometric structure of Z ( f ).

Let us illustrate this on an example due to Sarti [Sar3]. Assume for the moment that
W is a Weyl group of type H4 acting on a 4-dimensional C-vector space V . Then C[V ]W =
C[q , f , g , h ] where q , f , g , h are homogeneous of respective degrees 2, 12, 20, 30 (q is
the invariant quadratic form). If f is choosen randomly, any other polynomial of the
form f − t q 6, with t ∈ C, is homogeneous of degree 12 and can replace f in the list of
generators. But, according to [Sar3], there exists a unique t0 ∈ C such that the projective
surface in P(V ) ≃ P

3(C) defined by f − t0q 6 has 600 nodal points (this is Sarti dodecic) For
generic values of t , the corresponding surface is smooth, while for three other values
of t , the surface has “only” 60, 300 and 360 nodes respectively. This example, after Barth
sextic [Bar], shows that one can obtain surfaces with many singularities from this method.

In this paper, we stick to the case where W is generated by (pseudo-)reflections (i.e.
elements fixing an hyperplane pointwise) and we will construct several singular curves
and surfaces in this way. Recall for instance that we have already obtained a surface of
degree 8 (resp. 24) with 44 (resp. 1440) quotient singularities of type D4, starting from
invariants of degree 24 of the complex reflection group denoted by G32 in Shephard-Todd
classification. Since we are interested in exceptional curves and surfaces, it is natural to
expect to obtain them using invariants of exceptional complex reflection groups: we will
mostly stick to these groups.

Contrary to previous constructions, the singular points of our curves or surfaces are
not all real (even though most of them are defined over Q). By contrast, note also that,
using a theorem of Marin-Michel on automorphisms of reflection groups [MaMi], we can
show that Sarti dodecic can be defined over Q: this was still an open question.

The author is partly supported by the ANR (Project No ANR-16-CE40-0010-01 GeRepMod).
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1. Notation, preliminaries

We fix an n-dimensional C-vector space V and a finite subgroup W of GLC(V ). We set

Ref(W ) = {s ∈W | dimC(V
s ) = n −1}.

Hypothesis. We assume throughout this paper that

W = 〈Ref(W )〉.

In other words, W is a complex reflection group. We also assume that
W acts irreducibly on V . The number n is called the rank of W .

1.A. Invariants. — We denote by C[V ] the ring of polynomial functions on V (identi-
fied with the symmetric algebra S(V ∗) of the dual V ∗ of V ) and by C[V ]W the ring of
W -invariant elements of C[V ]. By Shephard-Todd/Chevalley-Serre Theorem [Bro, The-
orem 4.1], there exist n algebraically independent homogeneous elements f1, f2,. . . , fn of
C[V ]W such that

C[V ]W =C[ f1, f2, . . . , fn ].

Let di = deg( fi ). We will assume that d1 ¶ d2 ¶ · · · ¶ dn . A family ( f1, f2, . . . , fn ) satisfying
the above property is called a family of fundamental invariants of W . Whereas such a fam-
ily is not uniquely defined, the list (d1, d2, . . . , dn ) is well-defined and is called the list of
degrees of W . If f ∈C[V ] is homogeneous, we will denote byZ ( f ) the projective (possibly
reduced) hypersurface in P(V ) ≃ P

n−1(C) defined by f . Its singular locus will be denoted
by Zsing( f ). An homogeneous element f ∈ C[V ] is called a fundamental invariant if it be-
longs to a family of fundamental invariants. As we will be interested in the singular locus
of projective hypersurfaces, recall the following very easy fact:

Lemma 1.1. — Let g ∈C[V ] be homogeneous. If dimZsing(g ) ¶ n −4, then Z (g ) is irreducible.

Proof. — Indeed, if Z (g ) has (at least) two distinct irreducible components Z1 and Z2,
then dim(Z1∩Z2) = n −3 (because it is the intersection of two hypersurfaces in the projec-
tive space P

n−1(C)), and all the points in Z1 ∩Z2 are singular.

Recall that a subgroup G of GLC(V ) is called primitive if there does not exist a de-
composition V = V1 ⊕ · · · ⊕ Vr with Vi 6= 0 and r ¾ 2 such that G permutes the Vi ’s. We
will be mainly interested in primitive complex reflection groups, and we will refer to
Shephard-Todd numerology [ShTo] for such groups (there are 34 isomorphism classes,
named Gi for 4 ¶ i ¶ 37). Almost all the computations(1) have been done using the soft-
ware MAGMA [Magma].

(1)Some Milnor and Tjurina numbers were computed with SINGULAR [DGPS].
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1.B. Marin-Michel Theorem. — LetQ denote the algebraic closure ofQ in C and we set
Γ = Gal(Q/Q). Using the classification of finite reflection groups, Marin-Michel [MaMi]
proved that there exists a Q-structure VQ of V such that:

(1) VQ =Q⊗Q VQ is stable under the action of W (so that W might be viewed as a sub-
group of GLQ(VQ)).

(2) The action of Γ on GLQ(VQ) induced by the Q-form VQ stabilizes W .

This implies that Q[VQ] is a Q-form of C[V ] stable under the action of W and that the
action of Γ on Q[VQ] induced by the Q-form Q[VQ] stabilizes the invariant ring Q[VQ].

Proposition 1.2. — Sarti dodecic can be defined over Q.

Proof. — Assume here that W is a Coxeter group of type H4 acting on a vector space V

of dimension 4. We fix a Q-form VQ as above. Then the homogeneous invariant f of W

of degree 12 defining the Sarti dodecic belongs to Q[VQ]. But, if γ ∈ Γ , then γ f is also an
invariant of W of degree 12 defining an irreducible projective surface with 600 nodes. By
the unicity of such an invariant [Sar3], this forces γ f = f , and so f ∈Q[VQ].

2. Strategy for finding some “canonical” invariants in rank n ¾ 3

Hypothesis and notation. From now on, and until the end of this
paper, we assume that n ¾ 3 and that W is primitive. We denote by r the
minimal natural number such that the space of homogeneous invariants
of degree dr has dimension ¾ 2.

Note that this implies that W is one of the groups Gi , with 23 ¶ i ¶ 37, in Shephard-
Todd classification. We recall in Table 2.1 the degrees (d1, d2, . . . , dn ) of the fundamental
invariants of these groups. We also give the following information: the order of W , the
order of W /Z(W ) (which is the group which acts faithfully on P(V )) and, whenever W is
a Coxeter group, we recall its type (W(X i ) denotes the Coxeter group of type X i ). Recall
from general theory that |W |= d1d2 · · ·dn and |Z(W )|=Gcd(d1, d2, . . . , dn ).

Using MAGMA, we first determine by computer calculations some fundamental invari-
ants f1,. . . , fr . By the definition of r , the fundamental invariants f1,. . . , fr−1 are uniquely
determined up to scalar. By inspection of Table 2.1, we see that there is a unique f of the
form f

m1

1 · · · f
mr−1

r−1 which has degree dr . So the space of homogeneous invariants of degree
dr has dimension 2, and is spanned by fr and f . Moreover, all fundamental invariants of
degree dr are of the form fr − t f , for some t ∈C.

This means that we need to determine the values of t such that Z ( fr − t f ) is singular.
For this, we use the basis (x1, . . . , xn ) of V ∗ chosen by MAGMA and we set

Ft = fr − t f and F aff
t (x1, . . . , xn−1) = Ft (x1, . . . , xn−1, 1).

This basis allows to identify P(V ) with P
n−1(C) and we denote by A

n−1(C) the affine open
subset of P

n−1(C) defined by xn 6= 0. Then Z aff(F aff
t ) denotes the affine open subset of
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n W |W | |W /Z(W )| (d1, d2, . . . , dn )

3

G23 =W(H3) 120 60 2, 6, 10

G24 336 168 4, 6, 14

G25 646 108 6, 9, 12

G26 1 296 216 6, 12, 18

G27 2 160 360 6, 12, 30

4

G28 =W(F4) 1 152 576 2, 6, 8, 12

G29 7 680 1 920 4, 8, 12, 20

G30 =W(H4) 14 400 7 200 2, 12, 20, 30

G31 46 080 11 520 8, 12, 20, 24

G32 155 520 25 920 12, 18, 24, 30

5 G33 51 840 25 920 4, 6, 10, 12, 18

6 G34 39 191 040 6 531 840 6, 12, 18, 24, 30, 42

G35 =W(E6) 51 840 25 920 2, 5, 6, 10, 12, 14, 18

7 G36 =W(E7) 2 903 040 1 451 520 2, 6, 8, 10, 12, 14, 18

8 G37 =W(E8) 696 729 600 348 364 800 2, 8, 12, 14, 18, 20, 24, 30

TABLE 2.1. Degrees of primitive complex reflection groups in rank ¾ 3

Z (Ft ) defined by xn 6= 0. Note the following fact, which will be useful for saving many
time during computations:

(2.2) Z (Ft ) is singular if and only if Z aff(F aff
t ) is singular.

Proof. — Indeed, if Z (Ft ) contains a singular point ξ = [ξ1, . . . ,ξn ] ∈ P
n−1(C) such that

ξn = 0, then the W -orbit of ξ consists of singular points of Z (Ft ) and then it also meets
the affine open subset Z aff(F aff

t ) because W acts irreducibly on V (so it cannot stabilizes
the hyperplane orthogonal to xn ).

Let
X = {(ξ, t )∈ A

n−1(C)×A
1(C) | F aff

t (ξ) = 0}.

We denote by φ : X → A
1(C) the second projection. Then the fiber φ−1(t ) is the variety

Z aff(F aff
t ). We can then define

Xsfib = {(ξ, t )∈X |
∂ F aff

t

∂ x1

(ξ) = · · ·=
∂ F aff

t

∂ xn−1

(ξ) = 0}.

Then Xsfib is not necessarily the singular locus of X , but the points in φ(Xsfib) are the
values of t for which the fiber φ−1(t ) =Z aff(F aff

t ) (or, equivalently, Z (Ft )) is singular. This
provides an algorithm for finding these values of t : it turns out that generally φ is not
dominant, so that there are only finitely such values of t . We will then study more pre-
cisely these finite number of cases (number of singular points, nature of singularities,
Milnor number,. . . ).

Let us see on a simple example how it works:

Example 2.3 (Coxeter group of type H3). — Assume here, and only here, that W =G23 =

W(H3). Then (d1, d2, d3) = (2, 6, 10) so that r = 2 and dr = 6. Then Ft = f2 − t f 3
1 . We first

define W and the fundamental invariants f1 and f2:
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> W:=ShephardTodd(23);

> K<a>:=CoefficientRing(W);

> R:=InvariantRing(W);

> P<x1,x2,x3>:=PolynomialRing(R);

> f1:=InvariantsOfDegree(W,2)[1];

> f2:=InvariantsOfDegree(W,6)[1];

> Gcd(f1,f2);

1

Note that the last command shows that the invariant f2 of degree 6 we have chosen is
indeed a fundamental invariant. We now define F aff

t andXsfib and then determine the set
Tsing of values of t such that Z (Ft ) is singular:

> P2:=Proj(P);

> A2xA1<xx1,xx2,t>:=AffineSpace(K,3);

> A1<T>:=AffineSpace(K,1);

> phi:=map<A2xA1->A1 | [t]>;

> f1aff:=Evaluate(f1,[xx1,xx2,1]);

> f2aff:=Evaluate(f2,[xx1,xx2,1]);

> Ftaff:=f2aff - t * f1aff^3;

> X:=Scheme(A2xA1,Ftaff);

> Xsfib:=Scheme(X,[Derivative(Ftaff,i) : i in [1,2]]);

> Tsing:=MinimalBasis(phi(Xsfib));

> # Tsing;

1

> Factorization(Tsing[1]);

[

<T - 1, 1>,

<T - 9/10, 1>,

<T - 63/64, 1>

]

> Tsing:=[1, 9/10, 63/64];

We next determine for which values t ∈ Tsing = {t1, t2, t3} the curve Z (Ft ) is irreducible:

> F:=[f2-ti*f1^3 : ti in Tsing]; // the polynomials F_{t_i}

> Z:=[Curve(P2,f2-ti*f1^3) : ti in Tsing];

> [IsAbsolutelyIrreducible(i) : i in Z];

[ true, true, false ]

We then study the singular locus of the irreducible curvesZ (Ft ) for t = t1 or t2. Let us see
how we do in for t = t1:

> Z1sing:=SingularSubscheme(Z[1]);

> Z1sing:=ReducedSubscheme(Z1sing);

> Z1singirr:=IrreducibleComponents(Z1sing);

> &+ [Degree(i) : i in Z1singirr]

10

> p1:=P2 ! [1,0,0];

> p1 in Zsing[1];

true (1 : 0 : 0)

> # ProjectiveOrbit(W,p1);

10

> IsNode(Z[1],p1);

true
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The command &+ [Degree(i) : i in Z1singirr] shows thatZ (Ft1
) contains

10 singular points. The command # ProjectiveOrbit(W,p1) shows that they are
all in the same W -orbit (the function ProjectiveOrbit has been defined by the au-
thor for computing orbits in projective spaces (see [Bon] for the code). So all these sin-
gularities are equivalent and the command IsNode(Z[1],p1) shows that they are all
nodes.

One can check similarly that Z (Ft2
) has 6 nodes, all belonging to the same W -orbit. �

In the next sections, we will give tables of singular curves and surfaces obtained in this
way: inspection of these tables lead to the following result:

Proposition 2.4. — Apart from the two singular curves C and C ′ of degree 8 with 80 nodes
defined by invariants of G29, all the singular curves and surfaces described in Tables 3.2, 3.6
and 4.2 can be defined over Q. The singular curves C and C ′ are Galois conjugate.

Proof. — This follows from the same argument as in Proposition 1.2, based on Marin-
Michel Theorem, by using the fact that all these singular curves and surfaces are charac-
terized by their number of singular points or their type.

3. Singular curves from groups of rank 3

Hypothesis. We still assume that W is primitive but, in this section, we
assume moreover that n = 3.

This means that W is one of the groups Gi , for 23 ¶ i ¶ 27. We denote by ( f1, f2, f3)

a set of fundamental invariants provided by MAGMA and we denote by T irr
sing the set of

elements t ∈C such that Z (Ft ) is irreducible and singular. It turns out that the following
fact can be checked case-by-case:

Proposition 3.1. — Assume that n = 3 and W is primitive. Then W acts transitively on
Zsing(Ft ) for all t ∈ T irr

sing.

Table 3.2 gives the list of curves obtained through the methods detailed in Section 2.
We do not provide details of the computations, as they follow the same lines as the ones in
Example 2.3. This table contains the degree dr , the number of values of t such that Z (Ft )

is irreducible and singular, the number of singular points and informations about the
singularity (since all singular points belong to the same W -orbit by Proposition 3.1, they
are all equivalent singularities): the number m (resp. µ, resp. τ) denotes the multiplicity
(resp. the Milnor number, resp. the Tjurina number) of the singularity. A singularity is
called ordinary if its tangent cone is reduced.
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W dr |T
irr

sing| ti |Zsing(Fti
)| Singularity

G23 =W(H3) 6 2
t1 10 A1

t2 6 A1

G24 14 3

t1 28 A2

t2 21 A2

t3 42 A2

G25 12 2
t1 12 Ordinary, m = 3, µ= 4, τ= 4

t2 36 A2

G27 12 2
t1 45 A1

t2 36 A1

TABLE 3.2. Singularities of the curves Z (Ft ) for t ∈ T irr
sing

Remark 3.3. — A plane curve is called cuspidal if all its singular points are of type A2.
By [Sak, (0.4)], a cuspidal plane curve of degree 14 has at most 55 singular points of type
A2. But it is not known if this is the sharpest bound: at the best of our knowledge, no
cuspidal plane curve of degree 14 with 42 or more singular points of type A2 was known
before the above example of Z (Ft3

) for W =G24.
Also, a cuspidal plane curve of degree 12 can have at most 40 points [Sak, (0.4)], but it

is not known if this bound can be achieved. However, there exists at least one cuspidal
curve of degree 12 with 39 cusps [C-ALi, Example 6.3]. �

Remark 3.4. — Note that G26 does not appear in Table 3.2. The reason is the following:
if W = G26, then dr = 12 but G26 contains W ′ = G25 as a normal subgroup of index 2

and it turns out that invariants of degree 12 of G25 and G26 coincide. This makes the
computation for G26 unnecessary in this case. Note, however, the next Example 3.5, where
we construct singular curves of degree 18 using invariants of G26. �

Example 3.5 (The group G26). — We assume in this example that W = G26. Recall that
(d1, d2, d3) = (6, 12, 18). Any fundamental invariant of degree 18 of W is of the form Ft ,u =

f3− t f1 f2−u f 3
2 for some (t , u ) ∈ A

2(C). Using MAGMA, one can check the following facts.
First, the set C of (t , u ) ∈ A

2(C) such that Z (Ft ,u) is singular is a union of three affine lines
L1, L2, L3 and a smooth curve E isomorphic to A

1(C). The singular locus Csing of C
consists into 6 points and it turns out that there are only 4 points (ti , ui )1 ¶ i ¶ 4 in Csing

such that Z (Fti ,ui
) is irreducible. Table 3.6 gives the information about singularities of the

varieties Z (Fti ,ui
) (with the numbering used in our MAGMA programs).

Note that a cuspidal curve of degree 18 has at most 94 singularities of type A2 [Sak,
(0.3)]. Note also that there exists a cuspidal curve of degree 18 with 81 cusps [Iv]. �
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(t , u ) |Zsing(Ft ,u )| W -orbits Singularity

(t1, u1) 21
9 Ordinary, m = 4,µ= 9,τ= 9

12 Ordinary, m = 3,µ= 4,τ= 4

(t2, u2) 45
9 Ordinary, m = 4,µ= 9,τ= 9

36 A2

(t3, u3) 36 36 Non-ordinary, m = 3,µ= 6,τ= 6

(t4, u4) 84
12 m = 3,µ= 4,τ= 4

72 A2

TABLE 3.6. Some singular curves of degree 18 defined by invariants of G26

4. Singular surfaces from groups of rank 4

Hypothesis. We still assume that W is primitive but, in this section, we
assume moreover that n = 4.

This means that W is one of the groups Gi , for 28 ¶ i ¶ 32. We denote by ( f1, f2, f3, f4)

a set of fundamental invariants provided by MAGMA and we denote by T irr
sing the set of

elements t ∈C such that Z (Ft ) is irreducible and singular. It turns out that we have again
the same result as in rank 3 about W -orbit of singular points:

Proposition 4.1. — Assume that n = 4 and W is primitive. Then W acts transitively on
Zsing(Ft ) for all t ∈ T irr

sing.

Table 4.2 gives the list of curves obtained through the methods detailed in Section 2.
We do not provide details of the computations for all groups: the surface of degree 24

admitting 1 440 quotient singularities of type D4 defined by an invariant of G32is detailed
in [Bon]. This table contains the degree dr , the number of values of t such that Z (Ft )

is irreducible and singular, the number of singular points and informations about the
singularity (since all singular points belong to the same W -orbit by Proposition 3.1, they
are all equivalent singularities).

Remark 4.3 (Coxeter groups of rank 4). — The case of Coxeter groups of type F4 and H4

(i.e. primitive reflection groups G28 and G30) was dealt with by Sarti [Sar1]. �

Remark 4.4 (The group G29). — Recall that Endraß octic [End] has degree 8 and 168 nodes
and its automorphism group has order 16. As shown in Table 4.2, invariants of G29 pro-
vide an irreducible surface in P

3(C) with 160 nodes with a group of automorphisms of
order at least 1 920, thus approaching Endraß’ record but with more symmetries. It is still
an open question to determine whether one can find a surface of degree 8 in P

3(C) with
more than 168 nodes (being aware that the maximal number of nodes cannot exceed 174,
see [Miy]). �
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W dr |T
irr

sing| ti |Zsing(Fti
)| Singularity

G28 =W(F4) 6 4

t1 12 A1

t2 12 A1

t3 48 A1

t4 48 A1

G29 8 5

t1 40 A1

t2 20 Ordinary, m = 3,µ= 11,τ= 10

t3 160 A1

t4 80 A1

t5 80 A1

G30 =W(H4) 12 4

t1 300 A1

t2 60 A1

t3 360 A1

t4 600 A1

G31 20 5

t1 480 A1

t2 960 A1

t3 1 920 A1

t4 640 A1

t5 1 440 A1

G32 24 40

t1 40 Ordinary, m = 6,µ= 125,τ= 125

t2 360 Non-ordinary, m = 3,µ= 18,τ= 18

t3 1 440 D4

t4 540 Non-simple, non-ordinary, m = 2,µ= 9,τ= 9

TABLE 4.2. Singularities of the surfaces Z (Ft ) for t ∈ T irr
sing

Remark 4.5 (The group G31). — Recall that Chmutov surface [Chm] of degree 20 has 2 926

nodes and that a surface in P
3(C) of degree 20 cannot have more than 3 208 nodes [Miy].

The third surface associated with G31 in Table 4.2 has “only” 1 920 nodes and most of
them are not real (contrarily to Chmutov surface). However, it has a big group of auto-
morphisms (of order a least 11 520). �

5. Examples in higher dimension

Example 5.1 (The group G33). — Computations with MAGMA show that there are no
fundamental invariant f of degree 10 of G33 such that Z ( f ) is singular. �

Example 5.2 (Coxeter group of type E 6). — Assume in this Example, and only in this
Example, that W =G35 is a Coxeter group of type E6. Then r = 3 and (d1, d2, d3) = (2, 5, 6),
so that any fundamental invariant of degree 6 of W is of the form Ft = f3 − t f 3

1 for some
t ∈C. Computations with MAGMA show that:
(a) Tsing = T irr

sing has cardinality 8.
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(b) For each t ∈ Tsing, Z (Ft )sing has dimension 0, W acts transitively on Z (Ft )sing, and all
these singular points are nodes.

(c) The hypersurfaces Z (Ft ), t ∈ T irr
sing, have respectively 27, 36, 135, 216, 360, 432, 1080

and 1080 singular points. �
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