
Subutai: Distributed Synchronization Primitives in NoC

Interfaces for Legacy Parallel-Applications

Rodrigo Cataldo1,2, Ramon Fernandes2, Kevin J.M. Martin1, Johanna Sepulveda3,
Altamiro Susin4, César Marcon2, Jean-Philippe Diguet1

1 Univ. Bretagne-Sud, CNRS UMR 6285, Lab-STICC, Lorient
2 Pontifical Catholic Univ. of Rio Grande do Sul

3 Technical Univ. of Munich 4 Federal Univ. of Rio Grande do Sul

Abstract

Parallel applications are essential for efficiently us-
ing the computational power of a Multiprocessor
System-on-Chip (MPSoC). Unfortunately, these
applications do not scale effortlessly with the num-
ber of cores because of synchronization operations
that take away valuable computational time and re-
strict the parallelization gains. Moreover, synchro-
nization is also a bottleneck due to sequential access
to shared memory. We address this issue and intro-
duce ”Subutai”, a hardware/software (HW/SW)
architecture designed to distribute essential syn-
chronization mechanisms over the Network-on-
Chip (NoC). It includes Network Interfaces (NIs),
drivers and a custom library of a NoC-based MP-
SoC architecture that speeds up the essential syn-
chronization primitives of any legacy parallel appli-
cation. Besides, we provide a fast simulation tool
for parallel applications and a HW architecture of
the NI. Experimental results with PARSEC bench-
mark show an average application speedup of 2.05
compared to the same architecture running legacy
SW solutions for 36% overhead of HW architec-
ture.

1 Introduction

Parallel applications have become ubiquitous with
the huge adoption of MPSoCs in the electronics
industry. Besides, the tendency is to continue to
deliver high-performance computing by increasing
the number of processors, which requires efficient
communication architectures, such as a NoC, lead-

ing to the NoC-based MPSoC architectures and
their challenges. From the parallel application
point-of-view, the delay effect is felt on the syn-
chronization primitives used to order global events
among communicating processors and memories.
The time spent to synchronize such events is one of
the most significant parts of the execution time as
such events are primarily done sequentially, delay-
ing the application execution. Besides, a huge part
of the sequential latency of parallel applications
is due to interprocessor communication latency,
including cache updates of shared data, and the
software implementation of synchronization mecha-
nisms. Unfortunately, Attiya et al. [3] have already
formally proved that deterministic structures, such
as queues and mutual exclusion, cannot eliminate
the use of expensive synchronization in software.

Although it is feasible to relax the specification
of such structures, the consequence is a signifi-
cant source code redesign. The majority of recent
works requires source code meddling, which is no-
toriously a hard task [13][15]. We developed Sub-
utai, a hardware-software solution that tackles the
synchronization overhead by offloading its process-
ing to a new low-latency NI enhanced with dedi-
cated resources. Our approach extends the NI ar-
chitecture implementing, in a distributed way, the
following synchronization primitives: mutex, bar-
rier, and condition. Moreover, we create new types
of packets to transport the synchronization primi-
tives among NIs through the NoC. We developed an
Application Programming Interface (API) that re-
places the underlying synchronization API with the
same function interface, and a driver for the Oper-
ating System (OS). Therefore, our approach keeps
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Figure 1: Subutai solution, including library,
driver, hardware part and the communication pro-
cedures

unchanged the legacy code of applications avoiding
time-consuming and error-prone redesign; a recom-
pilation is required only for static binaries. Fig. 1
depicts how our solution interacts with the various
components of the system.

We demonstrate our solution by employing the
Gem5 simulator with the data processing applica-
tions Streamcluster and Bodytrack from the PAR-
SEC benchmark. Like Butko et al. [5], we pro-
duced synchronization points of them; next, we feed
this information to an in-house SystemC simula-
tor, which enables us to collect experimental re-
sults. The main contributions of this paper are:
(i) a solution to accelerate application execution
without requiring source code modification; (ii) an
enhanced NI architecture able to compute and ac-
celerate expensive synchronization primitives and
being compliant with any NI that has access to a
local memory; (iii) a set of APIs for parallel com-
puting architectures; (iv) a trace-based simulation
tool to allow fast simulations of real parallel ap-
plications; and (v) synthesis of the enhanced NI
architecture with a 28 nm SOI technology.

2 Related Work

Accelerating parallel applications using hardware
has been studied at least since the ’90s. Sivaram et
al. [16] propose a fault tolerant HW-based barrier
synchronization. Their design uses a tree structure
to sum up intermediate values for decreasing the

number of packets injected into the network. Their
work is complementary to our solution. Abellán
et al. [1] explore three HW-based barrier architec-
tures and integrate them on the OpenMP program-
ming model. Unfortunately, their results are for
synthetic applications only. Stoif et al. [18] imple-
ment an arbiter on FPGA that guarantees mutual
exclusion to a portion of the shared memory area
and a HW-based barrier that provides sound re-
sults; however, their work does not implement full
barriers and conditions, and it is limited to simple
test cases instead of real applications.

Patel et al. [15] propose a special HW instruc-
tion to change multiple memory positions atomi-
cally, optimizing the synchronization process. This
instruction is an extension of the currently widely
available compare-and-swap instruction, which is
similar to the hardware transactional memory ap-
proach [7] where the developer delimits atomic
blocks of codes. For both cases, if the code can-
not be executed atomically, the developer has to
re-execute the code. Unfortunately, this procedure
requires lock-free parallel applications that are dif-
ficult to design and debug. Software-oriented solu-
tions, like the ones presented in [11] and [6], focus
on relaxing the constraints that force the use of ex-
pansive synchronization. Kirsch et al. [11] propose
k-FIFO, which is a lock-free queue that removes
up to k − 1 out-of-order elements from the queue.
Desnoyers et al. [6] describe a synchronization tech-
nique based on the publish-subscribe mechanism
called Read-Copy Update (RCU). Parallel appli-
cations that rely on RCU have to deal with stale
data. These approaches suffer from the same prob-
lem described earlier: the burden of adapting the
code to these solutions is passed on to the devel-
oper. Finally, Martin et al. [12] propose the Noti-
fying Memories concept to reduce communication
latencies introduced in the NoC by pruning use-
less memory accesses. This concept is applied to
dataflow applications only. Our work is also based
on NI, but targeting shared-memory systems.

Table 1 positions our work in the current state
of the art. To the best of the authors’ knowledge,
this is the first work for dealing with multiple syn-
chronization primitives in hardware while retaining
the source code application.
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Table 1: Related work comparison.

Work
HW/SW
Solution

Legacy code
compatible

Primitive Application

[16] HW Not addressed Fault-tolerant barrier Synthetic

[1] HW Not addressed Barrier Synthetic

[18] HW Not addressed Locking Synthetic

[15] Both No Atomic operations Synthetic

[7] Both No Atomic operations STAMP suite +Synthetic

[11] SW No Locking Synthetic + Mandelbrot
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Figure 2: Schematic representation of the NoC-
based MPSoC architecture and the Subutai-HW

3 NoC-Based MPSoC Archi-
tecture

Fig. 2 depicts the HW elements of our target scal-
able architecture. Each core includes a dedicated
Level 1 (L1) cache, subdivided into data and in-
struction, and a Level 2 (L2) cache. The core com-
municates directly with the NI through I/O oper-
ations. The main memory of the system is kept
off-chip. A packet-based NoC, implemented with a
mesh topology, handles the communications. Fig.
2 also shows the modifications required to the NI for
handling the synchronization primitives. The hard-
ware architecture of Subutai is detailed in Sec. 5.
Tasks share memory space, but the target archi-
tecture inhibits excessive caching by employing a
distributed approach to the OS. This OS replica-
tion allows us to avoid expensive memory barrier
into the scheduler [9], which is crucial for our solu-
tion. A faster scheduling implies that threads can
wake up more efficiently, as shown in Sec. 6.2.

4 API Implementation and
HW/SW Communication

As a proof-of-concept, we chose to overwrite the im-
plementation of the POSIX Threads (PThreads) li-
brary, as it is one of the most well-known interfaces
used in parallel applications. We focused on three
of the four main groups of PThreads operations:
mutex, barrier, and condition handling. Thread
events (create, exit, join) are not on the critical
path and so can be achieved at the OS level. An
extensive description of PThreads operations is out
of our scope. We limit the discussion to the essen-
tials of the three focused groups.

The mutex group contains locking and unlocking
functions. Locking is a blocking function that ex-
clusively locks a variable. If the variable is already
locked, the calling thread is blocked. Otherwise,
this operation returns with the variable locked by
the calling thread. Unlocking is a non-blocking
function that changes the variable state and, if
there are any waiting threads, wakes up previously
blocked functions. The barrier group contains a
single blocking function, called wait, which syn-
chronizes participating threads at a user-specified
code point. A barrier has a fixed number of threads
decided at allocation time. When all participating
threads reach the barrier, all threads are woken up.
The condition group contains three functions: wait,
signal and broadcast. Wait is an unconditionally
blocking function that puts the thread on a waiting
list for a condition event. It requires that designers
previously lock a mutex variable and pass a refer-
ence to it. Then, the wait function unlocks the mu-
tex once it finished its work. Next, when the thread
is woken up, it reacquires the mutex. The mutex
dependency is due to race conditions. The signal
and broadcast are non-blocking functions that wake
up one and all threads respectively waiting for a
condition event. Mutex, in these cases, is optional.

For all groups, one or more queues are required to
record blocked threads. Condition functions need
to handle two queues because of the mutex depen-
dency. Barrier and mutex functions deal with only
one queue. Besides, they have non-blocking func-
tions that allocate and deallocate variables. This
work replaces the handling of these operations from
an entire SW solution to a HW/SW approach. Fig.
3 depicts the communicating flow of our system.
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Figure 3: The main message path chart of Subutai

First, the application makes a PThreads interface
request; the Subutai library identifies the unique
ID for this primitive and passes it on to the driver,
along with the interface request. Depending on the
implementation, the driver writes to either registers
or a memory that NI has direct access to (DMA).
Next, the driver writes in a control register to in-
form the NI of a command and waits for an in-
terrupt to receive the remote response. The local
NI injects a packet into the NoC targeting the re-
mote Subutai-HW, which handles the request and
responds to the local NI with a new packet. There
are two complementary scenarios for Fig. 3. One
when there is no response packet and no backward
procedure; thus, the driver returns immediately af-
ter writing in the control register. The other one
happens when the driver accesses the local Subutai-
HW. The same procedure is followed, but with-
out injecting packets into the NoC. An incremen-
tal counter per core determines the NI that hosts
a synchronization primitive. The first primitive is
hosted in NI0; the second one in NI1, and so on
following a fairness method. Other dynamic allo-
cation strategies can be further studied, but this is
out of the scope of the paper.

5 Subutai-HW

Subutai-HW extends the NI for handling synchro-
nization primitives. As shown in Fig. 2, its main
components are: (i) a Finite State Machine (FSM);
(ii) a set of registers; and (iii) a local ScratchPad
Memory (SPM), which is entirely controlled in HW
by the FSM except for memory initialization. We
have implemented and validated the HW architec-
ture by RTL simulation.

(a) Control structure. (b) Queue structure.

Figure 4: Subutai-HW

Subutai-HW employs double-linked queues to
record events, as shown on the left-hand side of
Fig. 2. As an alternative to a garbage collector, the
double-linked queues allow Subutai-HW to employ
a dynamic allocator to reduce memory consump-
tion to the minimum at the cost of 33 additional
sub-states on its FSM. The queue manipulation is
based on the futex implementation of the Linux
Kernel [8]. Subutai-HW operates using two record
information structures. The first one, shown in Fig.
4a, records the synchronization primitives’ meta-
data. The first 32-bit field is the only one known
by software and is employed as a unique ID of this
primitive. However, for Subutai-HW, the first bit
F is employed to allocate/deallocate this structure.
The next 7-bit field is the unique ID for the NI on
the system NI ID. Lastly, the furthest 24-bit is used
as a pointer to itself; we employ this technique to
avoid the cost of searching for an entry every time
a new request has arrived. The next 32-bit field is
the head and tail of the double-linked queue imple-
mented in the second structure. The queue records
threads waiting for new events on the primitive.
Finally, the last 32-bit field record values used for
some of the primitives. The first 16-bit is employed
to (i) record the thread and CPU that owns a mu-
tex; and (ii) store the current number of threads
waiting on a barrier. The furthest 16-bit is ap-
plied only for the barrier primitive to record the
maximum number of threads allowed in a barrier.
Fig. 4b shows the entry to the double-linked queue
composed of six fields. The first bit is employed
to allocate or deallocate the entry. The prev and
next fields are pointers to the previous and next en-
tries, respectively, or nil if they do not exist. The
16th bit R is reserved and can be used for memory
alignment. The last 32-bit field identifies the re-
questing thread. The Processor ID field is padded
with zeroes because the NoC packet uses only 8-bit
to identify the processor.

The bare minimum memory requirement for
SPM is one control entry and 63 queue entries, re-
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garding a 64-processor architecture as described in
Sec. 3. Since we have to record up to p− 1 proces-
sors, the minimum SPM size is (1×96+63×64)/8 =
516 bytes. Note that Subutai-HW is incorporated
into every NI; consequently, we handle up to 64
primitives even with minimum sizing. For our ex-
perimentation, we use an SPM of 1 KiB (4 control
entries and 122 queue entries) that handle up to
256 primitives. A double-linked list of events is
employed to allocate dynamically queue entries, al-
lowing Subutai to consume memory on demand. A
static allocator, on the other hand, would not be
able to handle more than one control entry with
only 122 queues (< 2 × 63) – since the worst case
scenario is 63 queues per entry, as shown earlier.
Thus, a static solution would be either too limited
or a waste of memory resource.

Table 2 shows the latencies of the states as de-
pendent on the Subutai-HW cycle c, SPM latency
m, number of synchronization primitives handled n,
and maximum number of threads on a barrier max.
Each memory operation can either be a write or
read in SPM in a given cycle. The table is organized
as follows. The first column identifies the Subutai-
HW state. The second and third columns identify
the fastest and slowest latencies for the state, re-
spectively. Finally, the last column shows when the
packet is ready to be injected into the NoC – as, for
some states, we can inject packets before we have fi-
nalized processing the requests. Additionally, some
primitives (e.g., Deallocation) do not need to gen-
erate packets at all.

To illustrate the best and worst response time
of Table 2, we describe the modeling of Mutex
Lock state, which is responsible for modeling the

Table 2: Latency of Subutai-HW states. c = cycle
latency, m = memory latency, n = variables handled
by Subutai-HW, max = threads on a barrier.

State
Best response

time

Worst
response time

Packet Injection

Allocation 4m+ 1c
(n× 1m) +

3m+ 1c
(n× 1m) + 1m+ 1c

Deallocation 3m 3m None

Mutex Lock 2m+ 1c 11m 2m+ 1c

Mutex Unlock 2m 10m+ 1c 2m+ 1c

Barrier Wait 7m
max× (11m+
3c) + 1m+ 1c

1m1c+ 12m4c+ 23m7c...
=

1m+1c+max×(11m+3c)

Condition Wait
5m+ 1c+

Mutex Unlock
10m+ 1c+

Mutex Unlock
None

Condition
Broadcast

1m 18m+ 1c 11m+ 1c

Condition Signal 1m 29m+ 2c 11m+ 1c

pthread mutex lock operation. The fastest scenario,
whose latency is 2m+1c, happens when the control
variable is unlocked. Hence, it requires two mem-
ory operations: (i) fetch the control structure (field
Value from Fig. 4a) to check the owner of the mu-
tex (latency = 1m); and (ii) rewrite this field with
the requesting thread (latency = 1m). Finally, NI
is notified that a new packet can be injected (la-
tency = 1c). The injected packet is the same as
the requesting packet except for the header. The
worst scenario takes more time (latency = 11m) be-
cause Mutex Lock state requires dealing with two
queues. It starts with the same memory opera-
tion that reads the control structure for this prim-
itive. Thus, the circuit realizes there is already an
owner, which demands to queue up the request.
First, Subutai-HW allocates a free queue entry and
updates the empty queue pointers (takes up to 4
memory operations); then, it writes the requesting
thread information into it and the tail information
in the primitive (six more memory operations), per-
forming 11 memory operations in total. We do not
describe the latency models for the other Subutai-
HW states in detail; however, they follow a similar
procedure.

Table 3 shows the resulting latency model used
for this work. We clocked Subutai-HW at the same
frequency as the NI (1 GHz). SPM employs the pre-
viously discussed 1 KiB single-port SRAM-based
implementation with a uniform access taking 2 cy-
cles [19], 4 control structures and 122 queue posi-
tions. We also considered 4 ns for an entry latency
(3 flits of 32 bits and 1 cycle to take a decision)
and 1 ns for an exit latency (1 cycle to set a flag)
to reach any state shown in Table 3.

Table 3: Subutai-HW latencies with parameters set to
c=1ns, m=2ns, n=4, max=63, entry=4ns, exit=1ns

State Best response time
(empty queue)

Worst response
time (queued)

Packet Injection

Best Worst

Allocation 14 ns 20 ns 10 ns 15 ns

Deallocation 11 ns 11 ns None

Mutex Lock 10 ns 27 ns None 10 ns

Mutex Unlock 9 ns 26 ns None 12 ns

Barrier Wait 19 ns 1583 ns None 7, 32, 57, ... ns

Condition Wait 20 ns 47 ns None

Condition
Broadcast

7 ns 42 ns None 27 ns

Condition Signal 7 ns 65 ns None 27 ns

The latency required to release threads on a bar-
rier exceeds one thousand ns. However, this latency
is due to the queue size of threads waiting on the
barrier and does not represent the packet injection
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Figure 5: Fields of Subutai packet
latency. Therefore, some of the threads execute
much earlier than the total value. As shown in the
last column, the packets are injected periodically
at every 25 ns, except the first packet, which is in-
jected in 7 ns. Thus, the total number of cycles is
1583 ns, which is composed by the following param-
eters: entry+ exit+ 1m+ 1c+max× (11m+ 3c).

The Condition Broadcast and Condition Signal
states present interesting latency results. At first
glance, it would seem more reasonable that releas-
ing one thread (Signal) would be faster than releas-
ing all threads (Broadcast). However, it does not
happen due to the following reasons. First, by re-
leasing all threads, the state has to deal with only
one queue (mutex ) instead of two queues (mutex
and condition). Second, due to the way condition
works, only one thread is truly released since a mu-
tex is associated with it. Therefore, the broadcast
state avoids the scenario previously described for
the barrier state – only the owner of the mutex will
be released.

Subutai-HW includes six 32-bit and three 1-bit
registers; three are used for the packet fields (see
Fig. 5) and six more to: (i) handle empty queue
entries; (ii) memory swapping operations; and (iii)
control flags to receive and send packets. For re-
ceiving and sending packets, Subutai-HW reuses
the already available registers of the NI. The packet
structure is combined with the recorded informa-
tion on the two control structures described earlier
(Fig. 4) to handle any request.

The synthesis of Subutai-HW was achieved us-
ing Synopsis DC with an ST SOI 28 nm technology
with 1 GHz clock frequency. The SPM area was cal-
culated by CACTI 6.5 [14] using a 32 nm SRAM
technology. Subutai-HW comprises of a register-
based NI, an FSM that controls synchronization
and manipulates linked pointers, and a 1 KiB SPM
to store metadata and events. We use a basic NI
with 32 bits links, packing and unpacking logic, no
virtual channel and 2 I/O buffers of 16 × 32 bits.
Besides, it is worth noting that using HW syn-
chronization operations releases valuable memory
and cache space that would otherwise be required.
Additionally, the memory requirement is negligible

when compared to a typical processor cache (less
than 10%, if cache size is 16 KiB). Table 4 summa-
rizes the synthesis results showing that our solution
increases by 36% the basic NI area including the lo-
cal SPM. However, the overhead can be negligible
compared to the chip area; for a 400 mm2 chip [15],
64 Enhanced NI have an overhead of 0.03%.

6 Experimental Results

6.1 Validation Methodology and
Exp. Setup

Considering the prohibitive simulation time when
using Gem5 for simulating complex applications
(billions of ns) with a large number of processors
and distributed OS, we choose an approach that
extracts only the useful information of the appli-
cation and uses a high-level model to measure the
speedup provided by our solution. Fig. 6 shows the
methodology flow of our experimental setup in four
steps.

The first step is the application execution using
Gem5 in full-system simulation mode to provide an
accurate characterization of the applications. The
second step is the application execution trace, from
start to finish, as the sequential portions of code
can hinder the real speedup of a parallel applica-
tion [17]. The application trace, which was based
on [5], provides the execution times among syn-
chronization calls, and the number and execution
time of each synchronization call. The trace is fur-
ther annotated with every synchronization primi-
tives – so that we can simulate these functions ac-
curately. Moreover, we make sure to employ synced
POSIX clocks for recording each thread start. The
third step is the execution of our NoC-based MP-
SoC simulator called Subutai-simulator (modeled
in SystemC). The simulator reads the traces to gen-
erate tasks in the OS. Then, these tasks mimic the

Table 4: Synthesis results for Subutai-HW using
28 nm SOI (logic) and 32 nm CACTI ITRS LSTP
(memory) technologies.

Component
Area
(µm2)

Technology Overhead

Basic NI 13539.23 28 nm -
Subutai FSM 2626.21 28 nm 19 %

SPM 2269.97 32 nm 17 %
Enhanced NI

(Basic NI + Subutai-HW)
18434.60 28/32 nm 36 %
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Figure 6: Validation methodology
execution of the applications, considering execution
times from the traces, and execute the synchroniza-
tion functions. We reproduce NoC communication,
queues and hardware latencies in our SystemC en-
vironment. Additionally, we adapted an existing
NoC implementation to be event-based; otherwise,
the simulation would be far too slow. The NoC
was set up to the configuration of Gem5’s NoC
(Garnet) [2]. The OS latencies were extracted from
FreeRTOS [10]. The processing cores are clocked at
1 GHz and are kept the same for both Gem5 and
our simulation. Thus, our solution does not speed
up any application computation portion. The re-
sults from our simulation tool are clustered in the
fourth step of Fig. 6 and will be discussed in the
following section.

6.2 Results Evaluation

Fig. 7 shows the results obtained on Subutai-
simulator for two data processing applications:
(i) Bodytrack, which is a computer-vision appli-
cation that tracks a 3D pose of a mark-less body,
and (ii) Streamcluster, which is a data-mining ap-
plication that solves the online clustering problem
for a stream of input points [4]. We have tested
these applications for three system configurations
(16, 32, and 64 cores) to visualize the scalability
of our solution. For fair comparisons, we consider
the same scheduler (round robin) for both. We plot
the results for two threads for each application: the
master thread (T0), responsible for global synchro-
nization, and a worker thread instance (T7). Fig. 7
illustrates that our solution reduces the application
total time by handling synchronization faster.
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Figure 7: Execution times in seconds of Bodytrack
and Streamcluster on SW and Subutai architec-
tures

Table 6 depicts the detailed execution values and
the speedup achieved by our solution. These values
are (i) Processing time; (ii) Waiting time for all syn-
chronization primitives; (iii) NoC time for Subutai
communication; and (iv) Subutai-HW time. For
the SW solution, both (iii) and (iv) are handled
by software; consequently, their values are com-
puted together with (i) and (ii). The comparison
between SW and Subutai solutions shows a signifi-
cant speedup for our solution in all examined cases.

From the designer point-of-view, the master
thread (T0) shows the effective speedup, as it is
responsible for initializing and finalizing the ap-
plication. Bodytrack achieved a speedup of 1.71,
1.78, and 1.77 for 16, 32, and 64 cores, respec-
tively. Streamcluster achieved a speedup of 2.11,
2.71, and 2.20 for the same core set. Therefore, our

Table 5: Number of synchronization-primitives
events in Bodytrack and Streamcluster executions

Application Type Events per number of threads

16 32 64

Bodytrack
Barrier 2,101 4,293 13,416

Condition 447 750 1,529

Mutex 9,000 10,472 8,677

Streamcluster
Barrier 208,048 364,480 728,960

Condition 381 802 1,274

Mutex 510 1,054 2,142
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Table 6: Detailed execution time, in seconds, and the speedup for Bodytrack and Streamcluster.

Application
Type

16 32 64

Thread 0 Thread 7 Thread 0 Thread 7 Thread 0 Thread 7

SW Subutai SW Subutai SW Subutai SW Subutai SW Subutai SW Subutai

Bodytrack

Processing *2.1 2.1 *14.0 14.0 *2.2 2.2 *14.0 14.0 *2.8 2.8 *17.0 17.0
Synch. Wait 27.0 15.0 3.6 3.0 30.0 16.0 6.6 4.6 50.0 27.0 23.0 13.0

Synch. NoC - 6.2 E-06 - 9.5 E-06 - 1.4 E-05 - 1.0 E-05 - 3.6 E-05 - 2.0 E-05
Subutai-
HW

- 2.4 E-05 - 4.6 E-05 - 4.5 E-05 - 8.9 E-05 - 8.0 E-05 - 1.8 E-05

Total 29.1 17.1 17.6 17.0 32.2 18.2 20.6 18.6 52.8 29.8 40.0 30.0
Speedup 1 1.71 1 1.04 1 1.78 1 1.11 1 1.77 1 1.32

Streamcluster

Processing *0.1 0.1 *9.2 9.2 *0.1 0.1 *5.4 5.4 *0.2 0.2 * 30.0 30.0

Synch. Wait 42.0 20.0 15.0 11.0 65.0 24.0 27.0 18.0 215.0 97.0 118.0 67.0

Synch. NoC - 2.8 E-06 - 3.0 E-04 - 8.0 E-06 - 3.5 E-04 - 2.3 E-05 - 1.7 E-04
Subutai-
HW

- 3.9 E-06 - 2.8 E-03 - 8.3 E-06 - 6.7 E-03 - 1.7 E-05 - 1.6 E-02

Total 42.1 20.1 24.2 20.2 65.1 24.1 32.4 24.4 215.2 97.2 148.0 97.0
Speedup 1 2.11 1 1.24 1 2.71 1 1.36 1 2.20 1 1.52

(*) Processing times of SW solution are a little greater, but the differences are in order of µs, which is insignificant from the

order of seconds.

Table 7: Results for producer-consumer applica-
tions
Synchroniza-
tion

Type Avg. SW (ns) Avg. Subutai (ns)

Mutex
Lock Empty 1,537 127
Lock Queued 64,178 916

Unlock 4,400 60

Barrier
Wait
(released)

102,467 1,183

Condition Broadcast 25,209 60
Queued 42,844 1,022

solution achieved a speedup of 2.05, on average. Ta-
ble 5 shows the number of synchronization calls, ex-
plaining the speedup difference; Streamcluster re-
quires, roughly, 18, 23, and 31 times the equivalent
of Bodytrack for 16, 32, and 64 cores, respectively.
Thus, we can better optimize worker threads, as
they are the ones using these primitives. Table 6
shows for all cases the worker threads of Stream-
cluster achieve a higher speedup when compared
to the worker threads of Bodytrack. The results
also show that both applications are not scalable
to 64, or even, 32 cores. Southern et al. [17] have
independently corroborated this limitation as well.
Our solution works the same regardless of the appli-
cation scaling – as will be shown with a producer-
consumer application.

The application results give us a systemic view
of Subutai, but it does not convey the optimiza-
tion on the synchronization itself. The lack of a
microcosm view happens because our applications
use at least tens of thousands of synchronization
primitives during its execution. Consequently, we
employ a one producer many consumers application

encompassing the three synchronization primitives
(mutex, barrier, and condition) using six threads.
Table 7 shows the average absolute time of Subutai
and SW for these primitives.

Subutai significantly speeds up every synchro-
nization primitive compared to the SW implemen-
tation (Linux Kernel 2.6). The comparison is made
from the application perspective. For instance, the
Condition Broadcast and Mutex Unlock scenarios
have no response packet; consequently, Subutai can
return to the application immediately after the re-
quest packet is sent. Thus, the processing is of-
floaded to the HW, and the primitive is handled
faster from the caller perspective. The SW imple-
mentation depends on the following costs to han-
dle synchronization primitives: (i) context switch-
ing; (ii) synchronization for queue operations; and
(iii) kernel space switching. Item (i) is reduced in
Subutai by using a distributed OS. As stated in
Sec. 3, we can use a faster context switch with a dis-
tributed OS. The faster OS is useful for functions
that are blocking, and, as discussed in Sec. 4, ev-
ery group handled by Subutai has these functions.
Item (ii) is reduced by offloading all queue opera-
tions to hardware. Finally, item (iii) is not present
in our OS. Subutai adds the cost of I/O operations
to deal with Subutai-HW, which is not present in
the SW solution. Nonetheless, these factors explain
the gains shown in Table 7.
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7 Conclusion

This paper presents Subutai, an HW/SW approach
to accelerate parallel applications with no source
code modification. Subutai is composed of an en-
hanced NI with an efficient local memory manage-
ment. It includes an OS driver and a library to
overwrite the underlying synchronization API. We
provide an in-house tool to simulate fast MPSoCs
using applications traces. Results show an aver-
age application speedup of 2.05 compared to the
same architecture running an entire SW solution.
Finally, the HW implementation shows a limited
overhead of 36% compared to a basic NI, includ-
ing a 1 KiB SPM that relieves the processor mem-
ory and cache from synchronization data. In the
next steps, we will take benefit from the saved time
to maximize the processor usage in HPC/Cloud
domains. It means (i) Subutai-aware coopera-
tive schedulers running multiple applications; and
(ii) strategies for dynamic allocation of Subutai re-
sources.
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