Rodrigo Cataldo

Ramon Fernandes

Kevin J M Martin

Johanna Sepúlveda

Altamiro Susin

Cesar Marcon

Jean-Philippe Diguet

Johanna Sepulveda

César Marcon

Subutai: Distributed Synchronization Primitives in NoC Interfaces for Legacy Parallel-Applications

come L'archive ouverte pluridisciplinaire

Introduction

Parallel applications have become ubiquitous with the huge adoption of MPSoCs in the electronics industry. Besides, the tendency is to continue to deliver high-performance computing by increasing the number of processors, which requires efficient communication architectures, such as a NoC, lead-ing to the NoC-based MPSoC architectures and their challenges. From the parallel application point-of-view, the delay effect is felt on the synchronization primitives used to order global events among communicating processors and memories. The time spent to synchronize such events is one of the most significant parts of the execution time as such events are primarily done sequentially, delaying the application execution. Besides, a huge part of the sequential latency of parallel applications is due to interprocessor communication latency, including cache updates of shared data, and the software implementation of synchronization mechanisms. Unfortunately, Attiya et al. [START_REF] Attiya | Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated[END_REF] have already formally proved that deterministic structures, such as queues and mutual exclusion, cannot eliminate the use of expensive synchronization in software.

Although it is feasible to relax the specification of such structures, the consequence is a significant source code redesign. The majority of recent works requires source code meddling, which is notoriously a hard task [START_REF] Mckenney | Introducing technology into the linux kernel: A case study[END_REF] [START_REF] Patel | A hardware implementation of the MCAS synchronization primitive[END_REF]. We developed Subutai, a hardware-software solution that tackles the synchronization overhead by offloading its processing to a new low-latency NI enhanced with dedicated resources. Our approach extends the NI architecture implementing, in a distributed way, the following synchronization primitives: mutex, barrier, and condition. Moreover, we create new types of packets to transport the synchronization primitives among NIs through the NoC. We developed an Application Programming Interface (API) that replaces the underlying synchronization API with the same function interface, and a driver for the Operating System (OS). Therefore, our approach keeps

Related Work

Accelerating parallel applications using hardware has been studied at least since the '90s. Sivaram et al. [START_REF] Sivaram | A reliable hardware barrier synchronization scheme[END_REF] propose a fault tolerant HW-based barrier synchronization. Their design uses a tree structure to sum up intermediate values for decreasing the number of packets injected into the network. Their work is complementary to our solution. Abellán et al. [START_REF] Abellán | Design of a collective communication infrastructure for barrier synchronization in cluster-based nanoscale MPSoCs[END_REF] explore three HW-based barrier architectures and integrate them on the OpenMP programming model. Unfortunately, their results are for synthetic applications only. Stoif et al. [START_REF] Stoif | Hardware synchronization for embedded multi-core processors[END_REF] implement an arbiter on FPGA that guarantees mutual exclusion to a portion of the shared memory area and a HW-based barrier that provides sound results; however, their work does not implement full barriers and conditions, and it is limited to simple test cases instead of real applications.

Patel et al. [START_REF] Patel | A hardware implementation of the MCAS synchronization primitive[END_REF] propose a special HW instruction to change multiple memory positions atomically, optimizing the synchronization process. This instruction is an extension of the currently widely available compare-and-swap instruction, which is similar to the hardware transactional memory approach [START_REF] Diegues | Virtues and limitations of commodity hardware transactional memory[END_REF] where the developer delimits atomic blocks of codes. For both cases, if the code cannot be executed atomically, the developer has to re-execute the code. Unfortunately, this procedure requires lock-free parallel applications that are difficult to design and debug. Software-oriented solutions, like the ones presented in [START_REF] Kirsch | Fast and scalable, lock-free k-fifo queues[END_REF] and [START_REF] Desnoyers | User-level implementations of read-copy update[END_REF], focus on relaxing the constraints that force the use of expansive synchronization. Kirsch et al. [START_REF] Kirsch | Fast and scalable, lock-free k-fifo queues[END_REF] propose k-FIFO, which is a lock-free queue that removes up to k -1 out-of-order elements from the queue. Desnoyers et al. [START_REF] Desnoyers | User-level implementations of read-copy update[END_REF] describe a synchronization technique based on the publish-subscribe mechanism called Read-Copy Update (RCU). Parallel applications that rely on RCU have to deal with stale data. These approaches suffer from the same problem described earlier: the burden of adapting the code to these solutions is passed on to the developer. Finally, Martin et al. [START_REF] Martin | Notifying memories: A case-study on dataflow applications with NoC interfaces implementation[END_REF] propose the Notifying Memories concept to reduce communication latencies introduced in the NoC by pruning useless memory accesses. This concept is applied to dataflow applications only. Our work is also based on NI, but targeting shared-memory systems. Tasks share memory space, but the target architecture inhibits excessive caching by employing a distributed approach to the OS. This OS replication allows us to avoid expensive memory barrier into the scheduler [START_REF] Howells | Linux kernel memory barriers[END_REF], which is crucial for our solution. A faster scheduling implies that threads can wake up more efficiently, as shown in Sec. 6.2.

API Implementation and HW/SW Communication

As a proof-of-concept, we chose to overwrite the implementation of the POSIX Threads (PThreads) library, as it is one of the most well-known interfaces used in parallel applications. We focused on three of the four main groups of PThreads operations: mutex, barrier, and condition handling. Thread events (create, exit, join) are not on the critical path and so can be achieved at the OS level. An extensive description of PThreads operations is out of our scope. We limit the discussion to the essentials of the three focused groups.

The mutex group contains locking and unlocking functions. Locking is a blocking function that exclusively locks a variable. If the variable is already locked, the calling thread is blocked. Otherwise, this operation returns with the variable locked by the calling thread. Unlocking is a non-blocking function that changes the variable state and, if there are any waiting threads, wakes up previously blocked functions. The barrier group contains a single blocking function, called wait, which synchronizes participating threads at a user-specified code point. A barrier has a fixed number of threads decided at allocation time. When all participating threads reach the barrier, all threads are woken up. The condition group contains three functions: wait, signal and broadcast. Wait is an unconditionally blocking function that puts the thread on a waiting list for a condition event. It requires that designers previously lock a mutex variable and pass a reference to it. Then, the wait function unlocks the mutex once it finished its work. Next, when the thread is woken up, it reacquires the mutex. The mutex dependency is due to race conditions. The signal and broadcast are non-blocking functions that wake up one and all threads respectively waiting for a condition event. Mutex, in these cases, is optional.

For all groups, one or more queues are required to record blocked threads. Condition functions need to handle two queues because of the mutex dependency. Barrier and mutex functions deal with only one queue. Besides, they have non-blocking functions that allocate and deallocate variables. This work replaces the handling of these operations from an entire SW solution to a HW/SW approach. Fig. 3 depicts the communicating flow of our system. First, the application makes a PThreads interface request; the Subutai library identifies the unique ID for this primitive and passes it on to the driver, along with the interface request. Depending on the the driver writes to either registers or a memory that NI has direct access to (DMA). Next, the driver writes in a control register to inform the NI of a command and waits for an interrupt to receive the remote response. The local NI injects a packet into the NoC targeting the remote Subutai-HW, which handles the request and responds to the local NI with a new packet. There are two complementary scenarios for Fig. 3. One when there is no response packet and no backward procedure; thus, the driver returns immediately after writing in the control register. The other one happens when the driver accesses the local Subutai-HW. The same procedure is followed, but without injecting packets into the NoC. An incremental counter per core determines the NI that hosts a synchronization primitive. The first primitive is hosted in NI 0 ; the second one in NI 1 , and so on following a fairness method. Other dynamic allocation strategies can be further studied, but this is out of the scope of the paper.

Subutai-HW

Subutai-HW extends the NI for handling synchronization primitives. As shown in Fig. 2, its main components are: (i) a Finite State Machine (FSM); (ii) a set of registers; and (iii) a local ScratchPad Memory (SPM), which is entirely controlled in HW by the FSM except for memory initialization. We have implemented and validated the HW architecture by RTL simulation. Subutai-HW employs double-linked queues to record events, as shown on the left-hand side of Fig. 2. As an alternative to a garbage collector, the double-linked queues allow Subutai-HW to employ a dynamic allocator to reduce memory consumption to the minimum at the cost of 33 additional sub-states on its FSM. The queue manipulation is based on the futex implementation of the Linux Kernel [START_REF] Drepper | Futexes are tricky[END_REF]. Subutai-HW operates using two record information structures. The first one, shown in Fig. 4a, records the synchronization primitives' metadata. The first 32-bit field is the only one known by software and is employed as a unique ID of this primitive. However, for Subutai-HW, the first bit F is employed to allocate/deallocate this structure. The next 7-bit field is the unique ID for the NI on the system NI ID. Lastly, the furthest 24-bit is used as a pointer to itself; we employ this technique to avoid the cost of searching for an entry every time a new request has arrived. The next 32-bit field is the head and tail of the double-linked queue implemented in the second structure. The queue records threads waiting for new events on the primitive. Finally, the last 32-bit field record values used for some of the primitives. The first 16-bit is employed to (i) record the thread and CPU that owns a mutex; and (ii) store the current number of threads waiting on a barrier. The furthest 16-bit is applied only for the barrier primitive to record the maximum number of threads allowed in a barrier. Fig. 4b shows the entry to the double-linked queue composed of six fields. The first bit is employed to allocate or deallocate the entry. The prev and next fields are pointers to the previous and next entries, respectively, or nil if they do not exist. The 16th bit R is reserved and can be used for memory alignment. The last 32-bit field identifies the requesting thread. The Processor ID field is padded with zeroes because the NoC packet uses only 8-bit to identify the processor.

The bare minimum memory requirement for SPM is one control entry and 63 queue entries, re-garding a 64-processor architecture as described in Sec. 3. Since we have to record up to p -1 processors, the minimum SPM size is (1×96+63×64)/8 = 516 bytes. Note that Subutai-HW is incorporated into every NI; consequently, we handle up to 64 primitives even with minimum sizing. For our experimentation, we use an SPM of 1 KiB (4 control entries and 122 queue entries) that handle up to 256 primitives. A double-linked list of events is employed to allocate dynamically queue entries, allowing Subutai to consume memory on demand. A static allocator, on the other hand, would not be able to handle more than one control entry with only 122 queues (< 2 × 63) -since the worst case scenario is 63 queues per entry, as shown earlier. Thus, a static solution would be either too limited or a waste of memory resource.

Table 2 shows the latencies of the states as dependent on the Subutai-HW cycle c, SPM latency m, number of synchronization primitives handled n, and maximum number of threads on a barrier max. Each memory operation can either be a write or read in SPM in a given cycle. The table is organized as follows. The first column identifies the Subutai-HW state. The second and third columns identify the fastest and slowest latencies for the state, respectively. Finally, the last column shows when the packet is ready to be injected into the NoC -as, for some states, we can inject packets before we have finalized processing the requests. Additionally, some primitives (e.g., Deallocation) do not need to generate packets at all.

To illustrate the best and worst response time of Table 2, we describe the modeling of Mutex Lock state, which is responsible for modeling the pthread mutex lock operation. The fastest scenario, whose latency is 2m+1c, happens when the control variable is unlocked. Hence, it requires two memory operations: (i) fetch the control structure (field Value from Fig. 4a) to check the owner of the mutex (latency = 1m); and (ii) rewrite this field with the requesting thread (latency = 1m). Finally, NI is notified that a new packet can be injected (latency = 1c). The injected packet is the same as the requesting packet except for the header. The worst scenario takes more time (latency = 11m) because Mutex Lock state requires dealing with two queues. It starts with the same memory operation that reads the control structure for this primitive. Thus, the circuit realizes there is already an owner, which demands to queue up the request. First, Subutai-HW allocates a free queue entry and updates the empty queue pointers (takes up to 4 memory operations); then, it writes the requesting thread information into it and the tail information in the primitive (six more memory operations), performing 11 memory operations in total. We do not describe the latency models for the other Subutai-HW states in detail; however, they follow a similar procedure.

Table 3 shows the resulting latency model used for this work. We clocked Subutai-HW at the same frequency as the NI (1 GHz). SPM employs the previously discussed 1 KiB single-port SRAM-based implementation with a uniform access taking 2 cycles [START_REF] Wang | Designing scratchpad memory architecture with emerging stt-ram memory technologies[END_REF], 4 control structures and 122 queue positions. We also considered 4 ns for an entry latency (3 flits of 32 bits and 1 cycle to take a decision) and 1 ns for an exit latency (1 cycle to set a flag) to reach any state shown in Table 3. The latency required to release threads on a barrier exceeds one thousand ns. However, this latency is due to the queue size of threads waiting on the barrier and does not represent the packet injection Figure 5: Fields of Subutai packet latency. Therefore, some of the threads execute much earlier than the total value. As shown in the last column, the packets are injected periodically at every 25 ns, except the first packet, which is injected in 7 ns. Thus, the total number of cycles is 1583 ns, which is composed by the following parameters: entry + exit + 1m + 1c + max × (11m + 3c).

The Condition Broadcast and Condition Signal states present interesting latency results. At first glance, it would seem more reasonable that releasing one thread (Signal) would be faster than releasing all (Broadcast). However, it does not happen due to the following reasons. First, by releasing all threads, the state has to deal with only one queue (mutex) instead of two queues (mutex and condition). Second, due to the way condition works, only one thread is truly released since a mutex is associated with it. Therefore, the broadcast state avoids the scenario previously described for the barrier state only the owner of the mutex will be released.

Subutai-HW includes six 32-bit and three 1-bit registers; three are used for the packet fields (see Fig. 5) and six more to: (i) handle empty queue entries; (ii) memory swapping operations; and (iii) control flags to receive and send packets. For receiving and sending packets, Subutai-HW reuses the already available registers of the NI. The packet structure is combined with the recorded information on the two control structures described earlier (Fig. 4) to handle any request.

The synthesis of Subutai-HW was achieved using Synopsis DC with an ST SOI 28 nm technology with 1 GHz clock frequency. The SPM area was calculated by CACTI 6.5 [START_REF] Muralimanohar | Cacti 6.0: A tool to understand large caches[END_REF] using a 32 nm SRAM technology. Subutai-HW comprises of a registerbased NI, an FSM that controls synchronization and manipulates linked pointers, and a 1 KiB SPM to store metadata and events. We use a basic NI with 32 bits links, packing and unpacking logic, no virtual channel and 2 I/O buffers of 16 × 32 bits. Besides, it is worth noting that using HW synchronization operations releases valuable memory and cache space that would otherwise be required. Additionally, the memory requirement is negligible when compared to a typical processor cache (less than 10%, if cache size is 16 KiB). Table 4 summarizes the synthesis results showing that our solution increases by 36% the basic NI area including the local SPM. However, the overhead can be negligible compared to the chip area; for a 400 mm 2 chip [START_REF] Patel | A hardware implementation of the MCAS synchronization primitive[END_REF], 64 Enhanced NI have an overhead of 0.03%.

Experimental Results

Validation Methodology and Exp. Setup

Considering the prohibitive simulation time when using Gem5 for simulating complex applications (billions of ns) with a large number of processors and distributed OS, we choose an approach that extracts only the useful information of the application and uses a high-level model to measure the speedup provided by our solution. Fig. 6 shows the methodology flow of our experimental setup in four steps. The first step is the application execution using Gem5 in full-system simulation mode to provide an accurate characterization of the applications. The second step is the application execution trace, from start to finish, as the sequential portions of code can hinder the real speedup of a parallel application [START_REF] Southern | Deconstructing PARSEC scalability[END_REF]. The application trace, which was based on [START_REF] Butko | A trace-driven approach for fast and accurate simulation of manycore architectures[END_REF], provides the execution times among synchronization calls, and the number and execution time of each synchronization call. The trace is further annotated with every synchronization primitives -so that we can simulate these functions accurately. Moreover, we make sure to employ synced POSIX clocks for recording each thread start. The third step is the execution of our NoC-based MP-SoC simulator called Subutai-simulator (modeled in SystemC). The simulator reads the traces to generate tasks in the OS. Then, these tasks mimic the of the applications, considering execution times from the traces, and execute the synchronization functions. We reproduce NoC communication, queues and hardware latencies in our SystemC environment. Additionally, we adapted an existing NoC implementation to be event-based; otherwise, the simulation would be far too slow. The NoC was set up to the configuration of Gem5's NoC (Garnet) [START_REF] Agarwal | Garnet: A detailed on-chip network model inside a fullsystem simulator[END_REF]. The OS latencies were extracted from FreeRTOS [START_REF] Howells | Freertos[END_REF]. The processing cores are clocked at 1 and are kept the same for both Gem5 and our simulation. Thus, our solution does not speed up any application computation portion. The results from our simulation tool are clustered in the fourth step of Fig. 6 and will be discussed in the following section.

Results Evaluation

Fig. 7 shows the results obtained on Subutaisimulator for two data processing applications: (i) Bodytrack, which is a computer-vision application that tracks a 3D pose of a mark-less body, and (ii) Streamcluster, which is a data-mining application that solves the online clustering problem for a stream of input points [START_REF] Bienia | The parsec benchmark suite: Characterization and architectural implications[END_REF]. We have tested these applications for three system configurations [START_REF] Sivaram | A reliable hardware barrier synchronization scheme[END_REF]32, and 64 cores) to visualize the scalability of our solution. For fair comparisons, we consider the same scheduler (round robin) for both. We plot the results for two threads for each application: the master thread (T0), responsible for global synchronization, and a worker thread instance (T7). Fig. 7 illustrates that our solution reduces the application total time by handling synchronization faster. From the designer point-of-view, the master thread (T0) shows the effective speedup, as it is responsible for initializing and finalizing the application. Bodytrack achieved a speedup of 1.71, 1.78, and 1.77 for 16, 32, and 64 cores, respectively. Streamcluster achieved a speedup of 2.11, 2.71, and 2.20 for the same core set. Therefore, our solution achieved a speedup of 2.05, on average. Table 5 shows the number of synchronization calls, explaining the speedup difference; Streamcluster requires, roughly, 18, 23, and 31 times the equivalent of Bodytrack for 16, 32, and 64 cores, respectively. Thus, we can better optimize worker threads, as they are the ones using these primitives. Table 6 shows for all cases the worker threads of Streamcluster achieve a higher speedup when compared to the worker threads of Bodytrack. The results also show that both applications are not scalable to 64, or even, 32 cores. Southern et al. [START_REF] Southern | Deconstructing PARSEC scalability[END_REF] have independently corroborated this limitation as well.

Our solution works the same regardless of the application scaling -as will be shown with a producerconsumer application.

The application results give us a systemic view of Subutai, but it does not convey the optimization on the synchronization itself. The lack of a microcosm view happens because our applications use at least tens of thousands of synchronization primitives during its execution. Consequently, we employ a one producer many consumers application encompassing the three synchronization primitives (mutex, barrier, and condition) using six threads. Table 7 shows the average absolute time of Subutai and SW for these primitives.

Subutai significantly speeds up every synchronization primitive compared to the SW implementation (Linux Kernel 2.6). The comparison is made from the application perspective. For instance, the Condition Broadcast and Mutex Unlock scenarios have no response packet; consequently, Subutai can return to the application immediately after the request packet is sent. Thus, the processing is offloaded to the HW, and the primitive is handled faster from the caller perspective. The SW implementation depends on the following costs to handle synchronization primitives: (i) context switching; (ii) synchronization for queue operations; and (iii) kernel space switching. Item (i) is reduced in Subutai by using a distributed OS. As stated in Sec. 3, we can use a faster context switch with a distributed OS. The faster OS is useful for functions that are blocking, and, as discussed in Sec. 4, every group handled by Subutai has these functions. Item (ii) is reduced by offloading all queue operations to hardware. Finally, item (iii) is not present in our OS. Subutai adds the cost of I/O operations to deal with Subutai-HW, which is not present in the SW solution. Nonetheless, these factors explain the gains shown in Table 7.

Conclusion

This paper presents Subutai, an HW/SW approach to accelerate parallel applications with no source code modification. Subutai is composed of an enhanced NI with an efficient local memory management. It includes an OS driver and a library to overwrite the underlying synchronization API. We provide an in-house tool to simulate fast MPSoCs using applications traces. Results show an average application speedup of 2.05 compared to the same architecture running an entire SW solution. Finally, the HW implementation shows a limited overhead of 36% compared to a basic NI, including a 1 KiB SPM that relieves the processor memory and cache from synchronization data. In the next steps, we will take benefit from the saved time to maximize the processor usage in HPC/Cloud domains. It means (i) Subutai-aware cooperative schedulers running multiple applications; and (ii) strategies for dynamic allocation of Subutai resources.

Figure 1 :

 1 Figure 1: Subutai solution, including library, driver, hardware part and the communication procedures

Figure 2 :

 2 Figure 2: Schematic representation of the NoCbased MPSoC architecture and the Subutai-HW

Figure 3 :

 3 Figure 3: The main message path chart of Subutai

 (a) Control structure. (b) Queue structure.

Figure 4 :

 4 Figure 4: Subutai-HW

Figure 6 :

 6 Figure 6: Validation methodologyof the applications, considering execution times from the traces, and execute the synchronization functions. We reproduce NoC communication, queues and hardware latencies in our SystemC environment. Additionally, we adapted an existing NoC implementation to be event-based; otherwise, the simulation would be far too slow. The NoC was set up to the configuration of Gem5's NoC (Garnet)[START_REF] Agarwal | Garnet: A detailed on-chip network model inside a fullsystem simulator[END_REF]. The OS latencies were extracted from FreeRTOS[START_REF] Howells | Freertos[END_REF]. The processing cores are clocked at 1 and are kept the same for both Gem5 and our simulation. Thus, our solution does not speed up any application computation portion. The results from our simulation tool are clustered in the fourth step of Fig.6and will be discussed in the following section.

Figure 7 :

 7 Figure 7: Execution times in seconds of Bodytrack and Streamcluster on SW and Subutai architectures Table 6 depicts the detailed execution values and the speedup achieved by our solution. These values are (i) Processing time; (ii) Waiting time for all synchronization primitives; (iii) NoC time for Subutai communication; and (iv) Subutai-HW time. For the SW solution, both (iii) and (iv) are handled by software; consequently, their values are computed together with (i) and (ii). The comparison SW and Subutai solutions shows a significant speedup for our solution in all examined cases.

Table 1

 1

	positions our work in the current state
	of the art. To the best of the authors' knowledge,
	this is the first work for dealing with multiple syn-
	chronization primitives in hardware while retaining
	the source code application.

Table 1 :

 1 Related work comparison.

	Work	HW/SW Solution	Legacy code compatible	Primitive		Application
	[16]	HW	Not addressed	Fault-tolerant barrier		Synthetic
	[1]	HW	Not addressed		Barrier		Synthetic
	[18]	HW	Not addressed	Locking		Synthetic
	[15]	Both	No	Atomic operations		Synthetic
	[7]	Both	No	Atomic operations	STAMP suite +Synthetic
	[11]	SW		No	Locking	Synthetic + Mandelbrot
	[6]	SW		No	Locking	OS Kernel + Synthetic
	[12]	HW	Yes	FIFO events		MPEG4-SP
	This	Both	Yes	Locking, barrier and Condition	Synthetic + PARSEC Benchmark
								Core
	Control (Fig. 4a)	Synch ID Task Data Synch ID	FSM	Registers	FSM	L1d	NI Bus L1i L2 Bus L2
	Queue						
	(Fig 4b)							Core +
		nil	DATA					Caches
								NI
				ScratchPad Memory	I/O FIFO		R
				(SPM)			Core +
								Caches
								NI
								R

Table 2 :

 2 Latency of Subutai-HW states. c = cycle latency, m = memory latency, n = variables handled by Subutai-HW, max = threads on a barrier.

	State	Best response time	Worst response time	Packet Injection
	Allocation	4m + 1c	(n 1m) + 3m + 1c	(n × 1m) + 1m + 1c
	Deallocation	3m	3m	None
	Mutex Lock	2m + 1c	11m	2m + 1c
	Mutex Unlock	2m	10m + 1c	2m + 1c
	Barrier Wait	7m	max × (11m + 3c) + 1m + 1c	1m1c + 12m4c + 23m7c... = 1m+1c+max×(11m+3c)
	Condition Wait	5m + 1c+ Mutex Unlock	10m + 1c+ Mutex Unlock	None
	Condition Broadcast	1m	18m + 1c	11m + 1c
	Condition Signal	1m	29m + 2c	11m + 1c

Table 3 :

 3 Subutai-HW latencies with parameters set to

	c=1ns, m=2ns, n=4, max=63, entry=4ns, exit=1ns
	State	Best response time (empty queue)	Worst response time (queued)	Packet Injection Best Worst
	Allocation	14 ns	20 ns	10 ns	15 ns
	Deallocation	11 ns	11 ns		None
	Mutex Lock	10 ns	27 ns	None	10 ns
	Mutex Unlock	9 ns	26 ns	None	12 ns
	Barrier Wait	19 ns	1583 ns	None	7, 32, 57, ... ns
	Condition Wait	20 ns	47 ns		None
	Condition Broadcast	7 ns	42 ns	None	27 ns
	Condition Signal	7 ns	65 ns	None	27 ns

Table 4 :

 4 Synthesis results for Subutai-HW using 28 nm SOI (logic) and 32 nm CACTI ITRS LSTP (memory) technologies.

	Component	Area (µm 2)	Technology Overhead
	Basic NI	13539.23	28 nm	-
	Subutai FSM	2626.21	28 nm	19 %
	SPM	2269.97	32 nm	17 %
	Enhanced NI (Basic NI + Subutai-HW)	18434.60	28/32 nm	36 %

Table 5 :

 5 Number of synchronization-primitives events in Bodytrack and Streamcluster executions

	Application	Type	Events per number of threads
			16	32	64
		Barrier	2,101	4,293	13,416
	Bodytrack	Condition	447	750	1,529
		Mutex	9,000	10,472	8,677
		Barrier	208,048	364,480	728,960
	Streamcluster	Condition	381	802	1,274
		Mutex	510	1,054	2,142