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Abstract. Computing the constant Z that normalizes an arbitrary distribution
into a probability distribution is a difficult problem that has applications in statis-
tics, biophysics and probabilistic reasoning. In biophysics, it is a prerequisite for
the computation of the binding affinity between two molecules, a central ques-
tion for protein design. In the case of a discrete stochastic Graphical Model,
the problem of computing Z is equivalent to weighted model counting in SAT
or CSP, known to be #P-complete [38]. SAT solvers have been used to accel-
erate guaranteed normalizing constant computation, leading to exact tools such
as cachet [33], ace [8] or minic2d [28]. They exploit determinism in the
stochastic model to prune during counting and the dependency structure of the
model (partially captured by tree-width) to cache intermediary counts, trading
time for space. When determinism or structure are not sufficient, we consider the
idea of discarding sufficiently negligible contributions to Z to speedup counting.
We test and compare this approach with other solvers providing deterministic
guarantees on various benchmarks, including protein binding affinity computa-
tions, and show that it can provide important speedups.

1 Introduction

Graphical models [12] are sparse representations of highly dimensional multivariate
distributions that rely on a factorization of the distribution in small factors. When vari-
ables are discrete, graphical models cover a variety of mathematical models that repre-
sent joint discrete distributions (or functions) that can be either Boolean functions (e.g.,
in propositional satisfiability SAT and constraint satisfaction CSP), cost functions (as in
partial weighted MaxSAT and Cost Function Networks [9]) or probability distributions
(in stochastic models such as Markov Random Fields and Bayesian networks).

Typical queries on such graphical models are either optimization or counting queries
(or a mixture of these). In optimization queries, we look for an assignment that max-
imizes the joint function, i.e., a model in SAT, a solution in CSP or a Maximum a
posteriori assignment (MAP) in a Markov Random Field (MRF). All these problems
have an associated NP-complete decision problem.

Counting problems are central in stochastic graphical models because they capture
the computation of marginal probabilities on subsets of variables and the computation of
the normalizing constant Z that is required to define a probability distribution from the



non-normalized distribution of Markov Random Fields. This difficult problem requires
a summation over an exponential number of elementary terms and is #P-complete [38].
As shown by [37], one call to a #-P oracle suffices to solve any problem in the Meyer-
Stockmeyer polynomial hierarchy in deterministic polynomial time, an indication that
it could be outside of the PH.

Computing Z is a central problem in statistics (e.g., for parameter estimation in
MRFs), for Bayesian network processing (to account for evidence) and is also crucial
in statistical physics where it is called the partition function. A typical domain where
partition function computation can be extremely useful is computational protein design.
Indeed, the affinity of a protein for a specific target molecule can be estimated by mod-
eling both molecules as MRFs representing physics force fields and by computing the
two partition functions: one for the bound protein and target and another for the same
molecules in unbound state [35].

For these reasons, various approaches have been designed to tackle this problem.
The Mean-Field algorithm [17], Tree-reweighted Belief Propagation [40] as well as
more recent proposals [25] have been proposed, but they do not offer any formal guar-
antee on the quality of the approximation they produce, except in very special cases.
Monte-Carlo methods including Markov Chain Monte Carlo methods [16] offer asymp-
totic convergence /s, but convergence is impractically slow. Indeed, there are recent
significant examples showing that the time needed for Monte Carlo methods to con-
verge can be easily under-estimated [36]. Practical MCMC based tools also rely on
heuristics that destroy these theoretical guarantees. More recent stochastic methods ex-
ploiting universal hashing functions offer “Probably Approximately Correct” (PAC)
estimators [14, 7]. Here, a bound δ on the probability that the estimation does not lie
within a (1 + ε) ratio of the true value is set and a corresponding estimation produced.

Finally, different methods, mostly based on SAT-solvers, have been defined that can
perform exact weighted model counting (#SAT) with deterministic guarantees, a prob-
lem to which the problem of computing Z can be easily reduced. To avoid the exponen-
tial blowup in the number of terms to add, solvers providing deterministic guarantees
rely on two independent ideas: exploiting determinism (zero weights) to prune regions
of the space that do not contribute to the sum, and exploiting independence which may
be detected at the graphical model structure level, as captured by its tree-width, but also
at a finer level as context-sensitive independence [33]3. Independence enables caching
of intermediate counts that can be factored out and lead to exponential time savings at
the cost of memory. The very same ideas are also exploited in knowledge compilers
that may compile graphical models or SAT formulas to languages on which counting
becomes easy [8, 28].

In this paper, we explore the possibility of preserving the deterministic guarantees
of exact solvers and explore a new source of pruning that may be present even when
determinism or independence are too limited to allow for exact counting: detecting and
pruning regions for which it is possible to prove, at limited cost, that they contain an
amount of weight which is too small to significantly change the computed value of Z.
Instead of providing a PAC guarantee, our algorithm provides an approximation of the

3 They may also exploit the fact that counting the number of models of a valid formula is easy.
This requires to check for validity, something that modern CDCL solvers do not do anymore.



normalizing constant that is guaranteed to lie within a ratio of 1 + ε of the true value
(with probability 1), a guarantee that none of the PAC randomized algorithms above
can provide in finite time.

Our initial motivation for computingZ lies in Computational Protein Design (CPD).
The aim of CPD is to design new proteins that have desirable properties which are
not available in the existing catalog of known proteins. One of these properties is the
affinity between a protein and another molecule (such as another protein, a peptide, an
amino-acid, a small organic molecule, etc. . . ). The binding affinity gives an indication
of the likelihood that two molecules will prefer to bind together rather than remain
dissociated and thus that a protein will be likely to bind to another molecule of interest.
Proteins can be described as a set of bound atoms subjected to a number of atom scale
forces captured by a pairwise force field defining a Markov Random Field [29]. From
this MRF, the binding affinity can be estimated by computing the ratio of the partition
functions of the molecules in bound and unbound states [35, 15].

In the rest of the paper, after introducing our notations and the binding affinity
computation problem, we present the Z∗ε algorithm, a variant of Branch and Bound
targeted at counting instead of optimizing. Z∗ε relies on the availability of a local upper
bound on Z. We then consider different simple, fast, safe and incremental upper bounds
on Z, integrate them in Z∗ε and compare them to exact counting tools on two categories
of benchmarks: general benchmarks extracted from the UAI and Probabilistic Inference
(PIC’2011) challenges and partition function computation problems appearing as sub-
problems of binding affinity computation on real proteins. Surprisingly, despite a very
limited caching strategy, the resulting algorithm is able to outperform exact solvers on
a variety of problems and is especially efficient on CPD-derived problems. Because Z∗ε
relies on a new source of pruning, its underlying principle and associated bounds can
be immediately used to improve existing SAT-based counters using Max-SAT bounds,
which are closely related to local consistencies in Cost Function Networks [23, 4, 24].

2 Background

A Markov Random Field defines a joint probability distribution over a set of variables
as a factorized product of local functions, usually denoted as potential functions.

Definition 1 A discrete Markov Random Field (MRF) is a pair (X,Φ) where X =
{1, . . . , n} is a set of n random variables, and Φ is a set of potential functions. Each
variable i ∈ X has a finite domain Di of values that can be assigned to it. A potential
function φS ∈ Φ, with scope S ⊆ X , is a function φS : DS 7→ R ∪ {∞} where DS

denotes the Cartesian product of all Di for i ∈ S.

The energy or potential of an assignment t ∈ DX is denoted asE(t) =
∑
φS∈Φ φS(t[S])

where t[S] is the projection (or restriction) of t to the variables in S. Notice that this
definition shows that an MRF is essentially equivalent to a Cost Function Network (or
WCSP [9]). A tuple t ∈ DS will be represented as a set of pairs {(i, t[i]) | i ∈ S}.

The probability of a tuple t ∈ DX is then defined as:

P (t) =
exp(−E(t))∑

t′∈DX exp(−E(t′))



The normalizing constant below the fraction is usually denoted as Z. The potential φS
are called energies, in relation with statistical physics. An assignment with minimum
energy has therefore maximum probability. With pairwise potentials (|S| ≤ 2), an MRF
defines a graph with variables as vertices and potential scopes S as edges. In the rest of
this paper, for the mere sake of simplicity and w.l.o.g., we assume pairwise MRFs in-
cluding also unary potential functions and a constant φ∅ potential function. We denote
by d the maximum domain size and e the number of pairwise potential functions. Using
table representations, a pairwise MRF requires O(ed2) space to be represented.

Note that Bayesian networks can be seen as specific MRFs enforcing a local nor-
malization condition of potentials and a specific DAG-base graph structure, that to-
gether guarantee that Z = 1. As soon as evidence (observations) change the domain
of the variables however, Bayesian networks become unnormalized and computing Z
becomes #P-complete in general.

2.1 Computational Protein Design and Binding Affinity

Proteins are linear chains of small molecules called “amino-acids”. There are 20 nat-
ural different amino-acids. All amino-acids share a common core and the cores of all
successive amino-acids in a proteins are linked together to form a linear chain, called
the protein backbone. Each amino-acid also has a variable side-chain which chemical
nature defined the precise amino-acid used. This lateral chain is highly flexible. The
structure of a protein in 3D-space is therefore characterized by the shape of the lin-
ear chain itself (the backbone), and the specific spatial orientation of all side-chains,
at each position of the chain. Proteins are universally present in the cells of all living
organisms and perform a vast array of functions including catalyze, signaling, recogni-
tion, transporting, repair. . . Proteins differ from one another primarily in their sequence
of amino-acids which usually results in protein folding into a specific 3D structure that
determines its function. The characteristic of proteins that also allows their diverse set
of functions is their ability to bind other molecules, with high affinity and specificity.
See [5, 1] for an intrduction to proteins targeted at the CP audience.

Proteins have a relatively stable general shape. The relative stability of a molecule
in a given conformation can be evaluated by computing its energy, lower energy states
being more stable. This energy is derived from various molecular forces including bond
angles, electrostatic forces, molecular clashes and distances. It can be computed us-
ing existing force fields such as Amber [29], the one used in our experiments. Notice
that molecular clashes – interpenetrating atoms – may generate infinite energies i.e.,
determinism.

Despite a plethora of functionalities of proteins, there is still an ever-increasing de-
mand for proteins endowed with specific properties of interest for many applications
(in biotechnology, synthetic biology, green chemistry and nanotechnology) which ei-
ther do not exist in nature or have yet not been found in the biodiversity. To this end,
Computational structure-based Protein Design (CPD) has become a key technology. By
combining physico-chemical models governing relations between protein amino-acid
composition and protein 3D structure with advanced computational algorithms, CPD
seeks to identify one or a set of amino-acid sequences that fold into a given 3D structure



and possess the targeted properties. This in silico search for the best sequence candi-
dates opens up new possibilities to better guide protein engineering by focusing exper-
imentation on the relevant sequence space for the desired protein function and thereby
reducing the size of mutant libraries that need to be built and screened. In recent years,
CPD has experienced important success, especially in the design of therapeutic pro-
teins [27], novel enzymes [31], protein-protein interfaces [18, 32], and large oligomeric
ensembles [19]. Nevertheless, the computational design of proteins with defined affinity
for a given molecule (such as a small organic, a peptide, another protein. . . ) which is
essential for large range of applications, continues to present challenges.

L
rotamer 1 rotamer 2

Bac
kb

one

Side chain

ARG rotamers

Fig. 1. A local view of a protein with a backbone and two acid side-chain reorientations (rotamers)
for a given amino-acid (L = Leucine). A typical rotamer library for another amino-acid is shown
on the right (ARG = Arginine).

A traditional approach to model proteins in CPD is to assume that their backbone
is totally rigid and that only side-chains move, each side-chain being able to adopt a
discrete set of most likely conformations defined in a so-called “rotamer” library (see
Figure 1). We use the Penultimate rotamer library [26].

With one variable per side-chain, each with a domain equal to the set of avail-
able rotamers for this side-chain and a pairwise decomposable energy function such
as Amber force field, a protein naturally defines a pairwise MRF with a rather dense
graph. The partition function Z of this MRF captures important properties of the pro-
tein. Specifically, the association constant (or binding constant) is used to describe the
affinity between a protein and a ligand (a protein or another molecule of interest). This
association constant can be estimated by computing the partition function of the two
molecules in bound and unbound states. The ratio of these two partition functions being
proportional to their affinity.

From a computational point of view, an important property of proteins of inter-
est is that their general shape is stable which means that the proportion of low energy
(or high probability) states among the exponential number of possible states is likely
to be very small. On the opposite side of the energy scale, the infinite energies cre-
ated by molecular clashes means that there will be states with 0 probability. This is
favorable for exact solvers that can exploit determinism to speedup Z computation. It



however means that CPD instances will exhibit unbounded tilt (defined in [7] as the
ratio τ =

maxt∈DX P (t)

mint∈DX P (t) ). This situation is not ideal for the WeightMC PAC algorithm
which requires a finite upper-bound on τ to run in finite time.

3 Guaranteed counting

Because it is rarely (if ever) needed to compute a probability or a partition function
with an absolute precision (which is also inherently limited by finite representations),
we consider the general problem of computing an ε- approximation Ẑ of Z, i.e., such
that:

Z

1 + ε
≤ Ẑ ≤ Z (1)

Such approximation allows us to compute an estimate P̂ (t) = exp(−E(t))

Ẑ
such that

P (t) ≤ ˆP (t) ≤ (1 + ε)P (t). In the context of #-SAT, it has been shown that providing
such relative approximations remains intractable for most of the known SAT polyno-
mial classes [30]. As we will see, it can however be exploited to prune during poly-
nomial space depth-first tree-search based counting and sometimes provide important
speedups.

Assuming that for any MRF, and any assignment t of some of its variables, we can
compute an upper bound Ub(t) of the partition function of the MRF where variables
are assigned as in t, the Depth First Branch and Bound schema used for exactly solv-
ing optimization problems on cost function networks [9, 1] can be adapted to compute
Z [39].

Function Z∗ε (t, V )
if V = ∅ then1

Ẑ ← Ẑ + exp(−E(t));2

else
Choose i ∈ V ;3

for a ∈ Di do
t′ ← t ∪ {(i, a)};
if (U + Ub(t′) + Ẑ ≤ (1 + ε)Ẑ) then4

U ← U + Ub(t′);5

else
Z∗ε (t′, V − {i});

Algorithm 1: Guaranteed approximate counting. Initial call: Z∗ε (∅, X). U and Ẑ are
global variables initialized to 0.

The algorithm simply explores the tree of all possible assignments of the MRF,
starting with the whole set of unassigned variables (in V ), choosing an unassigned



variable (line 3), trying all possible values. When all variables are assigned (line 1),
the contribution of the complete assignment t is accumulated in a running count which
will eventually define the approximation Ẑ (line 2). However, branches which provide
a sufficiently small mass of probability (as estimated by Ub(t′)) are pruned and this
overestimation of the neglected mass is accumulated in U (line 5). Because pruning
may occur, eventually, Ẑ will be a lower bound of Z.

Theorem 1. Z∗ε terminates and returns an ε-approximation of Z.

Proof. The termination follows from the fact that Z∗ε explores a finite tree. We now
show that the algorithm always provides a ε-approximation. When the algorithm fin-
ishes, all the assignments have either been explored (line 2) and counted or pruned
(line 5). Since U is the sum of all the upper bounds on the mass of probability in all
pruned branches, we have that Ẑ + U ≥ Z. Initially, Ẑ = U = 0 and the invariant
Ẑ ≥ Ẑ+U

1+ε holds. The test at line 4 guarantees that this invariant still holds at the end of
the algorithm. Therefore Ẑ ≥ Z

(1+ε) . ut

While inspired by Depth First Branch and Bound (DFBB) that provides polynomial
space complexity, this algorithm behaves differently from it. In DFBB, for a fixed order
of exploration, when the local bound used for pruning (here Ub(t)) is tighter, less nodes
are explored. This property is lost in Z∗ε . Indeed, it is easy to imagine a scenario where
a tight bound Ub(t) will lead to more nodes being explored than using a weaker Ub′(t):
imagine that search has started and collected a mass Ẑ = 1 and U = 0 for either
bounds. Then comes a subtree of small size for which Ub(t) = ε while Ub′(t) � ε.
This subtree will be pruned by Ub(t) leading to U = ε but instead will be enumerated
with Ub′(t) preserving U = 0. In this context, the algorithm using the tight Ub(t) is not
allowed to prune anymore in the immediate future: if the forthcoming leaves all have
very small probability mass, it will be forced to visit all of them while the algorithm
using Ub′(t) preserved some margin and may be able to skip a significant fraction of
them.

Indeed, similarly to what happens with the α-β algorithm [20], the order in which
leaves are explored may have a major effect on the algorithm efficiency. Let us assume
that we have a perfect Ub(t) and that the leaves of the tree have exponentially decreas-
ing mass of probability, the ith visited leaf having a mass of εi−1, ε < 1 (such an
extreme distribution of probability mass may seem unlikely, but corresponds to linearly
increasing energies). In this case, the first leaf bears more mass than all the rest of the
tree and the Z∗ε algorithm would visit just one leaf. If the inverse ordering of leaves is
assumed, the algorithm will have to explore all leaves. It seems therefore important to
collect highest masses first. The polynomial space complexity of DFBB comes however
with strict constraints on the order of exploration of leaves and best-first algorithms that
could overcome this restriction would lead to worst-case exponential space complexity.
Interesting future work would be to use the recent highly flexible any-space Branch and
Bound algorithm HBFS [2] to improve the leaf ordering within bounded space.

However, contrary to what happens with optimization, even an exact upper bound
and a perfect ordering does not guarantee that only one leaf needs to be explored. If we
instead assume a totally flat energy landscape, with all leaves having the same energy,



Z∗ε will have to explore a 1
1+ε fraction of the leaves just to accumulate enough mass in

Ẑ to prune.
Overall, it is important to realize that Z∗ε needs to achieve two goals:

1. collect probability masses on a potentially very large number of complete assign-
ments to compute a suitable approximation

2. exploit its upper bound to prune the largest possible part of the tree

The first goal could be achieved by existing algorithms producing an exhaustive list of
the m-best assignments [13] or all assignment within a threshold of the optimum (a
service that any DFBB-based optimization system provides for free). These algorithms
use bounds on the maximum probability instead of the total probability mass which
leads to stronger pruning and potentially higher efficiency than Z∗ε but do not provide
any guarantee since the number m of assignments that would need to be enumerated to
provide ε-approximation is unknown.

Because a potentially very large number of probability masses need to be collected,
a very fast search is required. To accelerate it, we equip Z∗ε with a very simple form of
“on the fly” caching: at any node during the search, we eliminate any variable which
is either assigned or of bounded degree as proposed initially for optimization [22], but
using sum-product variable elimination [11]. This caches all the influence of the elimi-
nated variable in a temporary (trailed) potential function. This means that the leaves of
the search tree will be sub-problems with bounded tree-width that may represent an ex-
ponential number of assignments. This naturally makes Z∗ε related to the vec weighted
counting algorithm, an anytime MRF counter based on w-cutsets (vertex cutset which
if assigned leave a w-tree) and variable elimination over w-trees [11].

The second goal is to prune the largest possible part of the tree search. However,
since the first goal requires a very fast search algorithm, using a powerful but computa-
tionally expensive bound is probably doomed to fail. For this reason, we have consid-
ered simple fast incrementally updated upper bounds by borrowing recent optimization
bounds [9] which are known to work well in conjunction with Depth First Search.

3.1 Bounds for guaranteed counting

For any MRF, we define a first upper bound on Z denoted by Ub1.

Z ≤ Ub1 =

 ∏
φS ,|S|<2

∑
t∈DS

exp (−φS(t))

 ·
 ∏
φS ,|S|≥2

exp

(
− min
t∈DS

φS(t)

)
Proof. By definition, we have that

Z =
∑
t∈DX

 ∏
φS ,|S|<2

exp (−φS(t)) ·
∏

φS ,|S|≥2

exp (−φS(t))


Trivially, exp (−φS(t)) ≤ maxt∈DS (exp (−φS(t))) = exp (−mint∈DS φS(t))

(by monotonicity). Applying this to the right term above, and exploiting the fact that
this term now does not depend on t, we get that:



Z ≤

 ∑
t∈DX

∏
φS ,|S|<2

exp (−φS(t))

 ·
 ∏
φS ,|S|≥2

exp

(
− min
t∈DS

φS(t)

)
Since the set {φS , |S| < 2} contains only unary or constant functions, distributivity

allows to swap sum and product and the result follows. Notice that this bound can be
computed in linear time. ut

This bound can be strengthened by selecting a subset of all pairwise potentials
in Φ defining a partial spanning k-tree T ⊂ Φ. By applying a sum-product non se-
rial dynamic programming [11] on T ′ = T ∪ {φS ∈ Φ : |S| < 2}, we can
obtain the exact ZT ′ for this sub-MRF in polynomial time. We can multiply ZT ′ by
(
∏
φS∈Φ\T ′ exp(−mint∈DS φS(t))) and get a tighter upper bound on Z which we de-

note UbT :

Z ≤ UbT =

 ∑
t∈DX

∏
φS∈T ′

exp (−φS(t))


︸ ︷︷ ︸

Computed using non serial dynamic programming

·

 ∏
φS∈Φ\T ′

exp

(
− min
t∈DS

φS(t)

)

Proof. The proof is essentially similar to the previous one, and obtained by just replac-
ing the set {φS , |S| < 2} and its complement set {φS , |S| ≥ 2}, defining the ranges of
the products by the sets {φS ∈ T ′} (and its complement respectively). The first item
can be simply computed in O(nd2) time using non serial dynamic programming. ut

These bounds alone are very weak. To further strengthen them, we reformulate the
MRF using soft arc-consistencies [9] on its energy representation [1]. Soft arc con-
sistencies essentially shift energy from pairwise potential functions to unary potential
functions and eventually to the constant potential function φ∅ while preserving equiv-
alence. The result of this is an equivalent MRF (defining the same distribution) with
increased unary and constant φ∅ potential functions and pairwise potential functions
that satisfy mint∈DS φS(t) = 0. Besides strengthening the bounds, it removes the need
to compute the right term which is always equal to 1. Ub1 and UbT can then be com-
puted in O(nd) and O(nd2) instead of O(ed2) (extension to non pairwise potentials
would require the use of partial k-trees instead of trees and change the d2 into a dk+1).

In the rest of the paper we consider spanning trees and try both Existential Di-
rectional Arc Consistency (EDAC) and Virtual Arc Consistency (VAC) [9] as possible
ways of strengthening Ub1 and UbT .

4 Experimental evaluation and comparison

To evaluate the ability of the Z∗ε algorithm to provide guaranteed deterministic approx-
imations to Z, we implemented it on the top of the open source toulbar2 solver4.

4 http://www.inra.fr/mia/T/toulbar2



The variable and value ordering used are the default weighted-degree and last conflict
variable ordering and the existential support value-ordering [9]. We enforce EDAC at
the root node and during search as usual for optimization. When VAC is used, it is
only enforced at the root node because of its computational cost. Instead of the k-way
branching described in Algorithm 1, we use a binary branching that either includes or
reject a chosen value a at each branching decision. At each node, all variables of de-
gree ≤ 2 are eliminated. The upper bound UbT uses a fixed maximum spanning tree
with maximum sum of mean cost after enforcing arc consistencies at the root node. Our
implementation is limited to pairwise potentials.

We compared it to different exact weighted counting approaches in terms of effi-
ciency and quality of our guaranteed approximation. Four different exact counters have
been considered. The first one is the already described vec exact counter [11]. The
second one is the exact SAT based weighted counting tool cachet [33]5. cachet
relies internally on the Zchaff SAT solver to enumerate models with non zero weight
and uses context-sensitive independence to cache intermediate counts. We also used
the ace 3.0 compiler [8], using the UAI competition executable provided in the ace
distribution (always using a pseudo-random generator seed of 0). ace computes a tree
decomposition and based on the obtained width may either perform tabular variable
elimination or encode to CNF and compile in d-DNNF using c2d. We also tested the
recent minic2d Sentential Decision Diagram (SDD) compilation package [28]. SDD
are more constrained than d-DNNF and may therefore lead to larger compiled forms
than d-DNNF, but since we do not need a compiled form and just the value of Z, we
used the -W option of minic2d that performs weighted counting without compilation
hoping to trade space for time. minic2d relies on its own internal SAT solver which
is provided as a compiled binary in the distributed minic2d package. Because some
of the compared solvers (vec, cachet) provide only a double floating representation
of Z (or its logarithm), all software has been used in double floating point mode.

All executions have been performed on one core of an Intelr Xeonr CPU E5-2680
v3 @ 2.50GHz (a Q4 2014 cpu) with a limit of 60 GB on RAM usage.

4.1 MRF to #SAT encoding

If ace uses its own internal optimized MRF to SAT encoding, both cachet and
minic2d require specific SAT encoding. Exact #SAT weighted counters use weighted
literals and define the weight of a model as the product of the weights of all literals
which are true in the model. They therefore rely on multiplicative potentials exp(−φS(t)).
To transform an MRF into a literal-weighted CNF formula with a weighted count equal
to the partition function, we use the ENC1 encoding of [8], originally described in [10].
This encoding is the CNF version of the so-called local polytope-based ILP encoding in-
troduced in [34] for MRFs and [21] for weighted CSPs [9]. For each variable i ∈ X , we
use one proposition di,r for each value r ∈ Di. This proposition is true iff variable i is
assigned the value r. We encode At Most One (AMO) with hard clauses (¬di,r ∨¬di,s)
for all i ∈ X and all r < s, r, s ∈ Di, as well as At Least One (f) with one hard

5 We thank Jean-Marie Lagniez, CRIL, France for providing us with a patched version of cachet
that can be compiled and run without any issue on recent systems.



clause (
∨
r di,r) for each i. These clauses ensure that the propositional encoding allows

exactly one value for each variable in each model. For each potential φS , and each tuple
t ∈ DS , we have a propositional variable pS,t. For non-zero energies φS(t), we have
the literal pS,t with weight exp(−φS(t)). This represents the multiplicative potential to
use if the tuple t is used. ¬pS,t is instead weighted by 1, the identity for multiplication.
For every variable i ∈ S, we have a hard clause (di,t[i] ∨ ¬pS,t). These clauses enforce
that if tuple t is used, its values t[i] must be used. Then, for each variable i ∈ S and each
value r ∈ Di, we have hard clauses (¬di,r ∨

∨
t∈DS ,t[i]=r pS,t) that enforces that if a

value r ∈ Di is used, one of the allowed tuples t ∈ DS such that t[i] = r, wS(t) < k
must be used.

It is interesting to notice that for pure Constraint Satisfaction Problems (MRFs hav-
ing only 0/∞ potentials), it is known that Unit Propagation (UP) on this encoding
enforces arc consistency in the original CSP [3].

We apply obvious optimization steps, explicitly forbidding local assignments with
zero mass (sources of determinism). This encoding can be directly fed into minic2d.
Large problems however could not be encoded because minic2d only allows to ex-
press weights in a one-line list of maximum 100,000 chars in length6.

In cachet, weighted literals l are either such that l and l̄ receive a mass of 1 that
has no effect on final mass, or such that the weights of a variable and its negation sum
to 1. This is sufficient and convenient to express Bayesian nets because of their local
normalization constraint. For arbitrary MRFs, for every pS,t corresponding to a mass
m = exp(−φS(t)) we introduce another propositional variable nS,t with weights m
(positive) and 1 − m (negative) and a simple implication clause pS,t → nS,t. This
extra variable is connected to the rest of the problem only through this clause and can
therefore easily be eliminated, leading to a multiplicative factorm in models where pS,t
is true and 1 = m+ (1−m) in models where pS,t is false, as required.

4.2 Benchmarks

Two types of benchmarks have been used. The first type of benchmark is made of in-
stances of partition function computation appearing as sub-problems of binding affinity
computations on molecular systems defined by a protein interacting with a peptide or
an amino-acid. The 3D model of these molecular systems were derived from crystallo-
graphic structures of the proteins in complex with their ligands, deposited in the Pro-
tein Data Bank. Missing heavy atoms in crystal structures as well as hydrogen atoms
were added using the tleap module of the Amber 14 software package [6]. The molec-
ular all-atom ff14SB force field was used for the proteins and the ligands (peptides and
amino-acids). The molecular systems were then subjected to 1000 steps of energy mini-
mization with the Sander module of Amber 14. Next, a portion of the proteins including
amino-acids at the interface between the protein and the ligand as well as surrounding
amino-acids with at least one atom within 8 to 12 Å (according to the molecular system)
of the interface was selected.7

6 This parameter could not be changed, being in the non open-source part on minic2d.
7 Each of these systems requires extensive molecular modeling expertise to be properly defined.

We intend to make this benchmark together with the Z∗ε implementation available.



To evaluate the effect of the strength of the upper bound on the algorithm efficiency,
we applied Z∗ε with ε = 10−3 on a series of 349 systems using the four different bounds.
For each system, the most complex partition function, defined on the compound system,
is computed. The largest problem has 22 variables and the largest domain size is 34. The
gap between our two bounds and the guaranteed approximation of Z determined by Z∗ε
is shown in Figure 2. The bound UbT is clearly stronger than Ub1, as expected.
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Fig. 2. Gap to Z: we represent log(Ub)− log(Ẑ) at the root node for Ub1 and UbT using EDAC
tightening (only negligible difference with VAC on these problems). The instances on the x axis
are sorted in increasing gap size for the strongest UbT bound.

We then compare the running times of Z∗ε using these 4 bounds in a cactus plot
in Figure 3. The best bound in terms of run-time is the lightest Ub1+EDAC bound
confirming that stronger, thus more expensive, bounds may quickly become counter
productive.

We represent the same information with the fastest Ub1+EDAC and two of the three
exact counting tools in Figure 4. We omit ace and minic2d. Indeed, ace was able
to solve only 17 problems within the time limit and failed on all remaining problems
with a memory exception (despite the explicit allocation of 60GB to the JAVA ma-
chine). minic2d was instead unable to model 294 systems out of the 349 because of
its previously mentioned limitation on the length of the weight line. On the remaining
55 problems, minic2d solved 7 problems in less than one hour.
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In the rest of the experiments we therefore use the Ub1+EDAC upper bound which
seems the most efficient bound. To see how the Z∗ε algorithm performs on other types of
problems, we used instances extracted from UAI and PIC’2011 challenge instances (PR
task)8 that use only pairwise potentials as a second set of benchmark. Using the same
value of ε = 10−3, we again compared Z∗ε with vec, cachet, ace and minic2d.

The results clearly show there is no single winner: except for cachet which is
always dominated by one of the other solvers, each algorithm may outperform oth-
ers. Specifically, the Z∗ε algorithm, despite its lack of sophisticated caching technology,
is able to outperform its competitors in various cases. Nevertheless, minic2d out-
performed Z∗ε on the Grid category (probably because of the combination of Boolean
variables and relatively small treewidth), itself outperformed by vec and further out-
performed by ace.

Instance Z∗ε minic2d ace vec cachet
smokers 10 < 0.01 0.663 < 0.01 < 0.01 0.264
smokers 20 < 0.01 312.825 < 0.01 < 0.01 332.168

rbm 20 7.46 T 3.376 16.17 941.14
rbm ferro 20 < 0.01 T 3.24 16.18 893.84

rbm 21 13.75 T 6.854 34.35 2041.64
rbm ferro 21 < 0.01 T 6.868 34.17 1975.78

rbm 22 33.75 T 14.411 72.78 T
rbm ferro 22 < 0.01 T 14.418 72.43 T

grid10x10.f10 66.32 < 0.01 < 0.01 < 0.01 T
grid20x20.f10 T T 13.316 2104.57 T
grid20x20.f15 T T 13.665 2099.24 T
grid20x20.f2 T T 13.603 2107.92 T
grid20x20.f5 T T 13.609 2102.32 T

GEOM30a 3 < 0.01 < 0.01 < 0.01 < 0.01 2.668
GEOM30a 4 7.66 78.604 < 0.01 < 0.01 43.77
GEOM30a 5 67.48 368.361 < 0.01 < 0.01 405.38
GEOM40 2 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
GEOM40 3 < 0.01 < 0.01 < 0.01 < 0.01 3.62
GEOM40 4 1.42 0.58 < 0.01 < 0.01 616.59
GEOM40 5 12.67 12.801 < 0.01 < 0.01 828.50
myciel5g 3 37.2 T M T T
myciel5g 4 M T M T T
myciel5g 5 M T M T T
queen5 5 3 367.2 T 83.004 945.20 T
queen5 5 4 2423.67 T M T T

Table 1. Time results for UAI/PIC’2011 instances. Three different categories are represented:
Boltzmann machines (rbm) with attractive (ferro) and non attractive coupling, Grids, and graph
problems. Running-times are given in seconds. M : Memory Out (60GB), T : Time out (1h).
Bold is best.

8 http://www.cs.huji.ac.il/project/PASCAL



Conclusion

Existing solvers providing deterministic guarantees for partition function computation
exploit two sources of efficiency. This first one is caching of local counts based on
context-sensitive independence [33], related to tree-decomposition. The other one is
determinism i.e., , the existence of zero probability assignments allowing to prune zero
probability mass sub-trees during search. This second source of efficiency will provide
significant speedups only when a significant fraction of the search space has 0 proba-
bility. Such distributions have very low entropy.

In this paper, motivated by the computation of statistical estimate of affinity be-
tween bio-molecules, we have proposed to build upon existing optimization technology
to provide a new source of pruning for partition function computation with determinis-
tic guarantees: a branch and bound-based schema equipped with upper bounds derived
from soft local consistencies. As existing SAT-based exact approaches, our algorithm
exploits determinism and a much simpler and less powerful form of caching than those
based on tree-decomposition. It is however able to prune regions of proven negligible
mass of probability and is therefore able to exploit relatively low entropy distributions
having a much wider support, including those with no determinism. The resulting al-
gorithm offers an adjustable deterministic guarantee on the quality of the computed
partition function and, despite its limited caching strategy, may already offer interesting
speedups compared to exact solvers.

Z∗ε includes two crucial ingredients to quickly gather large number of probability
masses: pruning based on very fast incremental upper bounds derived from optimiza-
tion bounds and on-the-fly sum-prod elimination. An important point is that these in-
gredients can be easily injected into existing SAT-based counters, including knowledge-
compilation based counters using SAT-solver traces. This could be achieved by defin-
ing counting upper bounds from existing Max-SAT bounds. These bounds have already
been related to soft arc-consistency bounds [23, 4, 24]. This should extend their range of
application to guaranteed approximate probabilistic inference on problems with limited
or no determinism.

From an affinity computation point of view, the next step is now to evaluate the ac-
tual empirical quality of the association constant estimation provided by the computed
ratio of partition functions. Beyond algorithmic approximations, the modeling may also
have important effects on the estimated value based on different rotamer discretizations,
relative positions of molecules in the complex or weights of different contributions in
the energy function. To pursue this target, we intend to use available databases that
provide experimental values of the association constant of various protein-ligand com-
plexes following various mutations on one of the partners. To keep the modeling to
a reasonable level of complexity, this will be preferably achieved on protein-protein
complexes.
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