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GENERALIZED OPERATOR-SCALING RANDOM BALL MODEL

HERMINE BIERMÉ, OLIVIER DURIEU, AND YIZAO WANG

Abstract. This article introduces the operator-scaling random ball model, generalizing
the isotropic random ball models investigated recently in the literature to anisotropic setup.
The model is introduced as a generalized random field and results on weak convergence are
established in the space of tempered distributions.

1. Introduction

In the past ten years, random ball models have appeared as a simple and yet flexible class
of random fields that characterize various types of spatial dependence structures [6, 7, 11–
13, 21, 22, 25, 36]. In particular, in several regimes, their scaling limits are self-similar and
with long-range dependence [1, 37, 39]. Such properties are desirable when modeling various
real world phenomena and thus such results have a broad range of applications.

In words, a random ball model consists in a collection of random balls in Rd with loca-
tions following a homogeneous Poisson point process and with independent and identically
distributed random radius and weights. Thus, each realization of random balls on the space
can be naturally viewed as a linear functional on an appropriate space of test functions. As-
ymptotic behaviors are then of interest, when all the balls are simultaneously rescaled by a
parameter ρ, and at the same time the intensity of balls also changes with respect to ρ. Under
mild assumption on the distribution of the radius, limit theorems can be established for ρÑ 0
or ρ Ñ 8, corresponding to the zoom-out or zoom-in cases respectively. In both cases, the
qualitative behavior of the limit random fields, whether exhibiting spatial dependence or not,
depends on whether the random balls are dense or sparse in the limit, in certain sense to be
specified below.

The random ball models can be viewed as generalizations of certain one-dimensional models
based on Poisson point processes that appeared in the study of Internet traffics, see for example
[26, 35] and references therein. However, the extension to high dimensions presents new
technical challenges, and should not be viewed as simple generalization of the one-dimensional
results. In particular, the developments until now have two main limitations. First, results
so far in the literature focus on isotropic random ball models (except for [36]). That is, the
random fields have the same distribution in each different direction. This feature, from the
application point of view, makes the model much less attractive. Second, the tightness of
the scaled random fields is difficult to establish. Usually random ball models are defined as
a random field tXpµquµPM indexed by a family of measures M on Rd. The tightness of such
random fields, after appropriate normalizations, is only established for very restricted classes
of M [12, 13].
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The goal of this paper is to establish limit theorems for a general class of random ball
models, and to remove the aforementioned two limitations.

First, we provide a general framework of random ball models exhibiting anisotropic features
and hence include all previously considered ones as special cases. It is now well understood
that a natural generalization of notion of self-similarity, widely used in stochastic processes and
time series, is the so-called operator-scaling property for random fields introduced in Biermé
et al. [9]. A random field tZtutPRd is said to be pE,Hq-operator-scaling, if

(1.1) tZcEtutPRd
d
“ cH tZtutPRd , for all c ą 0,

where E is an appropriate dˆ d matrix, cE :“
ř8
k“0pE log cqk{k! is also a matrix, and H ą 0.

Taking E to be the identity matrix, the above says that the random field Z is self-similar.
The motivation of allowing general matrix E is to generalize this notion to anisotropic random
fields. Such random fields are often of practical importance in various applications, and they
also present theoretical challenges. Families of anisotropic random fields are known, and path
properties have been investigated. See for example [8, 31, 34, 46]. At the same time, the
development of limit theorems for anisotropic random fields is still at an early stage. For some
recent results, see for example [5, 15, 30, 32, 38, 41, 45]. In this article, we also consider more
general random sets than balls, precisely sets of finite perimeter.

Second, we view the random ball models as distribution-valued random elements, also known
as generalized random fields, and establish weak convergence in the space of tempered distribu-
tions. A complete description of self-similar generalized Gaussian random fields was obtained
in [14] and allows to obtain essentially all Gaussian, translation- and rotation-invariant, H-
self-similar generalized random field as scaling limits of a random balls model in [7]. Beyond
the Gaussian framework, generalized Lévy random field, including stable generalized random
field have been investigated in [43], where they are named as sparse stochastic processes.
Distribution-valued random variables and stochastic processes are already widely used to
describe fluctuations of empirical measures of complex particle systems, including notably in-
teracting particle systems [29] and branching particle systems [10, 23, 29, 32], just to mention
a few.

The paper is organized as follows. Section 2 presents background on generalized random
fields, the precise definition of the random ball model, and the four regimes of convergence that
we investigate. The limit theorems are stated in Section 3, while their proofs are postponed
in Section 6. In Section 4, we study statistical properties of the limit random fields. To
conclude, a pointwise representation is obtained in Section 5 and some illustrations are given
in the appendix.

Throughout, C stands for real constants that may change values from line to line. Without
ambiguity, for x P Rd, |x| denotes its Euclidean norm. We write a _ b “ maxpa, bq and
a^ b “ minpa, bq for a, b P R.

2. Background and definitions

2.1. Generalized random fields. The standard references for generalized random fields
include notably [14, 16, 19, 20, 28]. In words, these fields are defined as random variables
with values in a space of distributions (or generalized functions). To this end we consider the
Schwartz space SpRdq of all real-valued infinitely differentiable rapidly decreasing functions
on Rd, and S 1pRdq its topological dual, the space of tempered distribution. As usual SpRdq is
equipped with the topology that corresponds to the following notion of convergence: fn Ñ f
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if and only if for all N P N :“ t0, 1, 2, . . . u and j “ pj1, . . . , jdq P Nd

}fn ´ f}N,j :“ sup
zPRd

p1` |z|qN
ˇ

ˇDj pfn ´ fq pzq
ˇ

ˇÑ 0, as nÑ8,

where Djfpzq “ Bj1 ¨¨¨Bjd

Bz
j1
1 ¨¨¨Bz

jd
d

fpzq denotes the partial derivative of order j.

We will actually also consider the space

S1pRdq :“

"

f P SpRdq;
ż

Rd
fpzqdz “ 0

*

.

Note that S1pRdq “ span
 

Djf ; f P SpRdq, j P t0, 1ud, j1 ` ¨ ¨ ¨ ` jd “ 1
(

. For convenience, we
also write S0pRdq “ SpRdq and thus we will be able to use SnpRdq for n P t0, 1u in the sequel.
We denote by S 1npRdq the topological dual of SnpRdq and by p ¨, ¨ q the duality bracket. We
usually consider two distinct topologies on S 1npRdq. The strong topology is induced by the
family of semi-norms

qBp¨q “ sup
fPB

|p ¨ , fq|, B bounded in SnpRdq.

The weak topology on S 1npRdq is the topology induced by the family of semi-norms |p ¨ , fq|,
f P SnpRdq. A first remark is that both topologies generate the same Borel σ-field denoted by
BpS 1npRdqq, see [4].

A generalized random field is an S 1npRdq-valued random variable, that is a measurable
mapping X from a probability space pΩ,A,Pq to pS 1npRdq,BpS 1npRdqqq. For such a generalized
random field X, we let its evaluation at f P SnpRdq be denoted by Xpfq, which is a real
random variable on the same probability space.

The law of a generalized random field X is uniquely determined by its characteristic func-
tional

LXpfq :“

ż

Ω
eiXpfq dP, f P SnpRdq.

Further, X induces a family of random variables Xpfq on pΩ,Aq indexed by f P SnpRdq, with
characteristic functions given by

E
´

eitXpfq
¯

“

ż

Ω
eitXpfqdP “ LXptfq, t P R.

By linearity, the finite-dimensional distributions of X are simply obtained with

LXpa1f1 ` ¨ ¨ ¨ ` akfkq “ E
´

eira1Xpf1q`¨¨¨`akXpfkqs
¯

,

for all k ě 1, a1, . . . , ak P R and f1, . . . , fk P SnpRdq.
In practice, however, given a family of real random variables tXpfqufPSnpRdq on a probability

space pΩ,A,Pq satisfying

(2.1) Xpaf ` bgq “ aXpfq ` bXpgq a.s. for all a, b P R, f, g P SnpRdq,
a priori it is not clear whether a corresponding S 1npRdq-valued random variable exists. When
this can be achieved, namely if there exists an S 1npRdq-valued random variable X̃, possibly
defined on another probability space pΩ̃, Ã, P̃q, such that for all k ě 1, f1, . . . , fk P SnpRdq,
A1, . . . , Ak P BpRq,

PpXpf1q P A1, . . . , Xpfkq P Akq “ P̃
´

X̃pf1q P A1, . . . , X̃pfkq P Ak

¯

,
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we say that X̃ is a version of X “ tXpfqufPSnpRdq [40, Definition 9.1.1]. Let us quote that this
notion is weaker than the notion of regularization in [24]. Actually, a regularization X̃ of X
should be defined on the same probability space pΩ,A,Pq than X and satisfies X̃pfq “ Xpfq
a.s. for all f P SnpRdq. However, when we deal with convergence in law for most of the part
of the paper, the notion of version is enough for our purpose: once the existence of a version
is proved, it suffices to work with the characteristic functionals of the original individual
random variables. At only a few occasions we shall establish results in the stronger notion of
regularization.

We recall below two fundamental theorems when working with limit theorems of generalized
random fields, both based on characteristic functionals. The following theorem is a direct
consequence of Minlos–Bochner’s theorem, see [4, Corollary 2.2].

Theorem 2.1. Let X “ tXpfqufPSnpRdq be a collection of real random variables on pΩ,A,Pq
satisfying (2.1). If LX : SnpRdq Ñ C is continuous then X admits a version that is an
S 1npRdq-valued random variable.

Recall that a sequence of generalized random fields tXmumě1 converges in distribution to
X, denoted by Xm ñ X, in S 1npRdq given the strong topology if for all ϕ : S 1npRdq Ñ R
continuous for the strong topology and bounded,

ż

S1npRdq
ϕpuqdPXmpuq ÝÑmÑ8

ż

S1npRdq
ϕpuqdPXpuq.

Similarly, Xm ñ X in S 1npRdq given the weak topology, if the above holds for all ϕ : S 1npRdq Ñ
R that is bounded and continuous with respect to the weak topology. As a consequence
of Lévy’s continuity theorem ([4, Theorem 2.3]), we can state the following result, see [4,
Corollary 2.4].

Theorem 2.2. Let tXmumě1, X be S 1npRdq-valued random variables. The following conditions
are equivalent:

‚ Xm ñ X in S 1npRdq given the strong topology,
‚ Xm ñ X in S 1npRdq given the weak topology,
‚ LXmpfq Ñ LXpfq for all f P SnpRdq.

Since both notions of convergence are equivalent, we shall just write Xm ñ X in S 1npRdq in
the sequel.

Proofs of Theorems 2.1 and 2.2. We refer to [16] for the stated results in the more general
framework in terms of nuclear spaces. For the special case S 1pRdq ” S 10pRdq, we refer to [4]
where self-contained and simplified proofs can be found. Results in [4] can then be extended
for S 11pRdq by the following idea from Dobrushin [14, Proposition 2.1]. Let us quote that fixing
a function ψ P SpRdqzS1pRdq, one can define the continuous map U : S 11pRdq Ñ S 1pRdq by
UpLqpfq “ Lpπpfqq, where for f P SpRdq,

πpfq “ f ´ cpfqψ P S1pRdq,

with cpfq “
ş

Rd fpxqdx{
ş

Rd ψpxqdx. Hence any S 11pRdq-valued random variable X coincides
with the restriction of an S 1pRdq-valued random variable Y , defined by Y pfq “ Xpπpfqq,
f P SpRdq. By using the so-defined map U and applying results on S 1pRdq, the desired results
for S 11pRdq follow. �
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2.2. A generalized random ball model. Now we define the random ball model on Rd.
Throughout, the operator-scaling is associated to a dˆd real matrix E, of which all eigenvalues
have strictly positive real parts, denoted by a1 ě ¨ ¨ ¨ ě ad ą 0. Let q “ trpEq ą 0 be the
trace of the matrix E.

We consider the kernel operator defined for px, rq P Rd ˆ p0,8q and f P SpRdq, by

(2.2) TEr fpxq :“

ż

Rd
KE
r px, yqfpyqdy with KE

r px, yq :“ 1BEpx,rqpyq.

Here and throughout, BEpx, rq is the shifted and scaled “ball” given by

BEpx, rq “ x` rEB, x P Rd, r ą 0,

based on a fixed bounded measurable set B Ă Rd with 0 P B, vB :“ LebdpBq P p0,8q and
LebdpBBq “ 0, where Lebd is the Lebesgue measure on Rd. Thus vr :“ LebdpBEpx, rqq “ rqvB.
Note that we keep the name “random ball” from the original model but here the set B can be
a much more general set than a ball. We only assume that B is a set of finite perimeter in
the sense that

(2.3) PerpBq :“ sup

"
ż

B
divϕpxq dx : ϕ P C1

c pRd,Rdq, }ϕ}8 ď 1

*

ă 8,

where C1
c pRd,Rdq is the set of continuously differentiable functions with compact support (e.g.

B can be any bounded convex set). According to [18, Theorem 14], (2.3) is equivalent to the
fact that the covariogram gB : Rd Q x ÞÑ LebdpBXpx`Bqq of the set B is Lipschitz, and thus
there exists C ą 0 such that

(2.4) LebdpB∆px`Bqq “ 2pgBp0q ´ gBpxqq ď C|x|, for all x P Rd.

We first define the model as a collection of random variables indexed by f P SpRdq, and then
prove the existence of regularizations afterwards. The rescaled random ball field is defined as

(2.5) XE
ρ pfq :“

ż

RdˆR`ˆR
mTEr fpxqNρpdx, dr, dmq, f P SpRdq,

where Nρ is a Poisson random measure on RdˆR`ˆR with intensity λpρqdxF pdr{ρqGpdmq.
Intuitively, the origins of random balls are distributed as a homogeneous Poisson process
with intensity λpρq, and each random ball is scaled with a random radius with distribution
Fρpdrq :“ F pdr{ρq, and is associated with a random weight m with distribution G. Positions,
scalings and weights are assumed to be independent. There are a few natural assumptions on
F and G. First, the expected volume of a random ball is assumed to be finite. That is,

(2.6) vB

ż

R`
rqF pdrq ă 8.

Moreover, we assume that, for some Cβ ą 0,

(2.7) F pdrq “ pprqdr with pprq „ Cβr
´1´β as r Ñ 0q´β,

with the convention, 0δ “ 0 if δ ą 0 and 0δ “ 8 if δ ă 0. This condition is introduced
in a compact form for both zoom-in/out scalings to be explained in Section 2.3. It reads as
pprq is regularly varying at 0 with index ´1 ´ β, only when β ă q; otherwise (2.6) will be
violated. Similarly, pprq is regularly varying at infinity with index ´1´ β when β ą q. Next,
for the random weights, their distribution G is assumed to be integrable and in the domain of
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attraction of certain stable distribution Sαpσ, b, 0q with α P p1, 2s, σ ą 0, b P r´1, 1s. That is,
for independent random variables Mi with common distribution G,

(2.8)
M1 ` ¨ ¨ ¨ `Mn

n1{α
ñ Sαpσ, b, 0q with α P p1, 2s.

A standard reference for stable distributions and processes is [40]. Under (2.6) and (2.8)
with α ą 1, the random field (2.5) is well-defined and integrable. This follows from the fact

E
`

|XE
ρ pfq|

˘

ď

ż

RdˆR`ˆR
|m|TEr |f |pxqλpρqdxF pdr{ρqGpdmq

ď λpρqρqEp|M |qvB}f}L1

ż

R`
rqF pdrq,

where M is a real random variable of distribution G and }f}
L1 :“

ş

Rd |fpyq|dy. Hence, a
centered rescaled random ball field can be defined by

Y E
ρ pfq :“ XE

ρ pfq ´ E
`

XE
ρ pfq

˘

, f P SpRdq.

We come to the generalized random field interpretation of XE
ρ and Y E

ρ .

Proposition 2.3. Under assumption (2.6), XE
ρ and Y E

ρ are almost surely elements of S 1pRdq
and therefore of S 11pRdq. As a consequence, they admit regularizations in S 1pRdq and therefore
in S 11pRdq.

Proof. Let us quote that f ÞÑ TEr fpxq P S 1pRdq, and moreover for all k ě 0,

|TEr fpxq| ď

˜

ż

BEpx,rq
p1` |y|q´kdy

¸

sup
zPRd

p1` |z|qk|fpzq|.

It follows that,
|XE

ρ pfq| ď CEρ,k sup
zPRd

p1` |z|qk|fpzq|,

with

CEρ,k :“

ż

RdˆR`ˆR
|m|

ż

BEpx,rq
p1` |y|q´kdyNρpdx, dr, dmq.

Note that

E
`

CEρ,k
˘

“ λpρq

ż

RdˆR`ˆR
|m|

ż

BEpx,rq
p1` |y|q´kdydxFρpdrqGpdmq

“ λpρqρqEp|M |qvB
ż

R`
rqF pdrq

ˆ
ż

Rd
p1` |y|q´kdy

˙

,

which is finite under assumption (2.6) as soon as k ą d. Hence, CEρ,k ă 8 a.s. for k ą d, so
that XE

ρ P S 1pRdq a.s. Since we also have f ÞÑ EpXE
ρ pfqq P S 1pRdq by taking expectation in

the previous computations, it follows that the centered field Y E
ρ is also in S 1pRdq a.s. The last

part of the proposition is easy since to obtain a regularization in S 1pRdq of a process X which
is almost surely element of S 1pRdq, it suffices to modify it by setting Xpωq ” 0 for the ω P Ω
such that Xpωq R S 1pRdq, see [16, p.40]. �
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The limit theorems will be based on the characteristic functionals of the centered rescaled
random fields

(2.9) LY Eρ pfq “ E exp
`

iY E
ρ pfq

˘

“ exp

˜

ż

RdˆR`
φGpT

E
r fpxqqλpρqdxFρpdrq

¸

, f P SnpRdq,

with

(2.10) φGptq :“

ż

peimt ´ 1´ imtqGpdmq “ LM ptq ´ 1´ itEpMq, t P R,

where M is a real random variable of distribution G satisfying (2.8).

2.3. Zoom-in/out scalings and four regimes. There are two scalings to be considered in
the limit theorems. Recall Fρpdrq “ F pdr{ρq. The case ρ Ñ 8 corresponds to enlarging the
size of each ball, and ρ Ñ 0 corresponds to shrinking the size of each ball. We refer to the
two scalings as the zoom-in and zoom-out scalings, respectively.

Next, for each type of scaling, there are four qualitatively different regimes. Since the
spatial dependence of the random field is essentially determined by overlaps of random balls,
heuristically we compute the expected weight of rescaled balls covering a fixed point y, denoted
by mpρq, independent from y by stationarity. It is natural to expect mpρq Ñ c P r0,8s, and
we distinguish 8, p0,8q and 0 as three different cases. Take the zoom-in scaling case first.
Clearly only small balls, say with radius less than 1 (before the ρ-scaling and the constant 1
is irrelevant) should matter, and we compute

minpρq :“ E

˜

ż

RdˆR`ˆR
1tyPBEpx,rqu1trď1uNρpdx, dr, dmq

¸

“ EpMqλpρqvB
ż 1

0
rqFρpdrq,

with

λpρq

ż 1

0
rqFρpdrq „

ˆ

Cβ

ż 1

0
rq´β´1dr

˙

λpρqρβ as ρÑ8.

Similarly for the zoom-out case, we compute for number of balls with radius larger than 1,

moutpρq :“ E

˜

ż

RdˆR`ˆR
1tyPBEpx,rqu1trą1uNρpdx, dr, dmq

¸

“ EpMqλpρqvB
ż 8

1
rqFρpdrq,

with

λpρq

ż 8

1
rqFρpdrq „

ˆ

Cβ

ż 8

1
rq´β´1dr

˙

λpρqρβ as ρÑ 0.

The calculations above made use of (2.7), and also explain why it is a reasonable assumption.
Notice that the constant is qualitatively irrelevant, only the common term λpρqρβ matters,
and both cases of scaling can be summarized in the compact form of ρÑ 0β´q.

In summary, there are naturally three regimes of interest, characterized by

λpρqρβ Ñ

$

&

%

8 (dense regime),
c P p0,8q (intermediate regime),
0 ((very-)sparse regime),

as ρÑ 0β´q,
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where within the case λpρqρβ Ñ 0 we shall further identify two sub-regimes, named as sparse
and very-sparse regimes in the sequel. We shall establish limit theorems for different regimes
separately, and in each regime our limit theorem and the proof unify both zoom-in and zoom-
out scalings (only zoom-out scaling in the very-sparse regime). Furthermore, in each regime
we specify two parameters, β on the tails of the radius of random balls, and n indicating the
zoom-in (n “ 1) and zoom-out (n “ 0) scalings.

3. Scaling limits

We will treat the four regimes separately. In each regime, we first introduce the limit
field as stochastic integral, then show the existence of its generalized random field version by
Minlos–Bochner’s theorem and then prove the weak convergence by Lévy’s continuity theorem.
For easy reading, all the proofs of this section are postponed to Section 6. The limit fields
appearing here are further investigated in the next sections.

3.1. Dense regime. In the dense regime, we consider

λpρqρβ Ñ8 as ρÑ 0β´q,

and the admissible range of parameters β and n is

(3.1) β P pq, αqq n “ 0 zoom-out scaling,
β P pq ´ ad, qq n “ 1 zoom-in scaling.

The following field appears in the limit. Let α P p1, 2s, σ ą 0 and b P r´1, 1s be given by (2.8)
and Cβ ą 0 be given by (2.7). Let Mα,β be an α-stable random measure on Rd ˆ R` with
control measure σαCβr´1´βdrdx, and constant skewness function b. For f P SnpRdq, let us
define the stochastic integral

(3.2) ZEα,βpfq :“

ż

RdˆR`
TEr fpxqMα,βpdr, dxq.

See [40] for more background on stochastic integrals with respect to α-stable random measures.

Proposition 3.1. Let α P p1, 2s. For β, n as in (3.1), the process ZEα,β :“ tZEα,βpfqufPSnpRdq
in (3.2) is well-defined, has characteristic functional

LZEα,β pfq “ exp

#

´Cβσ
α

ż

RdˆR`
|TEr fpxq|

α
´

1´ ibε
`

TEr fpxq
˘

tan
απ

2

¯

r´1´βdrdx

+

,(3.3)

where εpsq “ signpsq, and admits a version with values in S 1npRdq.
Then, we can consider weak convergence in S 1npRdq and state the limit theorem in the dense

regime.

Theorem 3.2. Suppose that the assumptions (2.7) and (2.8) on F and G hold. Under (3.1),
if n1pρq :“ ρβλpρq Ñ 8 as ρÑ 0β´q, then

1

n1pρq1{α
Y E
ρ ñ ZEα,β as ρÑ 0β´q

in S 1npRdq.
Remark 3.3. We let tZEα,βpfqufPSnpRdq denote the stochastic process indexed by f via (3.2),
and the same notation ZEα,β in Theorem 3.2 for the corresponding version taking values in
S 1npRdq. Similar notations are used for the other regimes.



GENERALIZED OPERATOR-SCALING RANDOM BALL MODEL 9

3.2. Intermediate regime. In the intermediate regime, we consider

(3.4) λpρqρβ Ñ aq´β as ρÑ 0β´q with a P p0,8q.

The admissible range of parameters β and n is the same (3.1) as in the dense regime. In this
case, the limit field is represented by a Poisson integral. For a P p0,8q and f P SpRdq, we
first define

(3.5) TEr,afpxq :“

ż

Rd
1a´EBEpx,rqpyqfpyqdy “ TEr{afpa

´Exq

and we consider the Poisson integral JEa,α,β defined, for f P SnpRdq, by

(3.6) JEa,α,βpfq :“

ż

RdˆR`ˆR`
mTEr,afpxqÑβpdr, dx, dmq,

where Ñβ is the compensated Poisson random measure on Rd ˆ R` ˆ R` with intensity
Cβr

´1´βdxdrGpdmq, with Cβ ą 0 given in (2.7). For more background on Poisson integrals,
see for example [27].

Proposition 3.4. Let a P p0,8q. For β, n as in (3.1), the process JEa,α,β in (3.6) is well-
defined on SnpRdq, has characteristic functional

(3.7) LJEa,α,β pfq “ exp

#

ż

RdˆR`
φGpT

E
r,afpxqqCβr

´1´βdrdx

+

,

where φG is defined by (2.10) and admits a version with values in S 1npRdq.

The limit theorem in the intermediate regime is the following.

Theorem 3.5. Suppose that the assumptions (2.7) and (2.8) on F and G hold. Under (3.1)
and (3.4),

Y E
ρ ñ JEa,α,β as ρÑ 0β´q

in S 1npRdq.

3.3. Sparse regime. The sparse regime correspond to

(3.8) λpρqρβ Ñ 0 as ρÑ 0β´q with λpρq Ñ 0q´β.

The admissible range of parameters of β and n is

(3.9) β P pq, αqq n “ 0 zoom-out scaling,
β P pq2{pq ` adq, qq n “ 1 zoom-in scaling.

Set γ “ β{q P pq{pq ` adq, 1q Y p1, αq. Let M
p1q
γ be a γ-stable random measure having control

measure σ1,γ dx with

σ1,γ :“ vB

˜

Cβq
´1

ż

R`
p1´ cosprqqr´1´γdr

ż

R
|m|γGpdmq

¸1{γ

,

and constant skewness function

bγ :“ ´

ş

R εpmq|m|
γGpdmq

ş

R |m|
γGpdmq

.
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We define, for f P SpRdq,

Zp1qγ pfq :“

ż

Rd
fpxqM p1q

γ pdxq.

Note that Zp1qγ pfq is well-defined since f P SpRdq Ă LγpRdq and its characteristic functional
is given by

(3.10) L
Z
p1q
γ
pfq “ exp

ˆ

´σγ1,γ

ż

Rd
|φpfpxqq|γ

´

1´ ibγεpfpxqq tan
γπ

2

¯

dx

˙

.

Proposition 3.6. For α P p1, 2s and γ P pq{pq ` adq, 1q Y p1, αq, the process Zp1qγ admits a
version with values in S 10pRdq Ă S 11pRdq.

Theorem 3.7. Suppose that the assumptions (2.7) and (2.8) on F and G hold. Under (3.8)
and (3.9) with n2pρq :“ pλpρq1{βρqq and γ “ β{q, we have

1

n2pρq
Y E
ρ ñ Zp1qγ as ρÑ 0β´q,

in S 1npRdq.

Remark 3.8. Note that the result in the case β P pq2{pq`adq, qq is also new for the isotropic
case when E “ Id (the identity matrix).

3.4. Very-sparse regime. In this regime, consider

(3.11) λpρqρβ Ñ 0, λpρq Ñ 8 as ρÑ 0.

The admissible range of parameters for the very-sparse regime is

(3.12) β P pαq,8q n “ 0 zoom-out scaling.

Let M p2q
α be a α-stable random measure having control measure σ2,αdx with

σ2,α :“ σvB

˜

ż

R`
rαqF pdrq

¸1{α

and constant skewness function b. For f P SpRdq, we set

Zp2qα pfq :“

ż

Rd
fpxqM p2q

α pdxq.

Proposition 3.9. For α P p1, 2s, the process Zp2qα admits a version with values in S 10pRdq.

Theorem 3.10. Suppose that the assumptions (2.7) and (2.8) on F and G hold. Under (3.11)
and (3.12), with n3pρq :“ λpρq1{αρq,

1

n3pρq
Y E
ρ ñ Zp2qα as ρÑ 0

in S 10pRdq.
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3.5. Summary. For comparison, we summarize in a single statement the limit theorems of
the different regimes.

Theorem 3.11. Suppose that the assumptions (2.7) and (2.8) on F and G hold. We have
the following weak convergence in S 1npRdq:

pdenseq
1

pρβλpρqq1{α
Y E
ρ ñ ZEα,β if λpρqρβ Ñ8, β, n as in (3.1),

pintermediateq Y E
ρ ñ JEa,α,β if λpρqρβ Ñ aq´β P p0,8q, β, n as in (3.1),

psparseq
1

pρβλpρqqq{β
Y E
ρ ñ Z

p1q
β{q if λpρqρβ Ñ 0, λpρq Ñ 0q´β, β, n as in (3.9),

pvery sparseq
1

ρqλpρq1{α
Y E
ρ ñ Zp2qα if λpρqρβ Ñ 0, λpρq Ñ 8, β, n as in (3.12),

where in all cases the limit is considered as ρÑ 0β´q.

4. Properties of the limit fields

In this section, we provide some properties of the limit generalized random fields. In the
dense and intermediate regimes, the limit generalized random fields explicitly depend on E,
and in particular so are their anisotropic properties. For the sparse and very-sparse regimes, all
the dependence structures in the discrete models are not observable in the limit, and thus the
limit generalized random fields have no specific anisotropic properties. Following Dobrushin
in [14], using duality, we can define the following groups of transformations on SnpRdq:

‚ the group of shift transformations T “ tτhuhPRd :
τhfptq “ fpt´ hq, f P SnpRdq, h P Rd, t P Rd;

‚ the group of E-operator-scaling transformations ∆E “ tδEc ucPp0,8q:

δEc fptq “ c´qfpc´Etq, f P SnpRdq, c P p0,8q, q “ trpEq, t P Rd.
Their analogous T , ∆E on S 1npRdq are then defined by

τhLpfq :“ Lpτhfq, and δEc Lpfq :“ LpδEc fq,

for L P S 1npRdq. Let us note that when the tempered distribution L is given by a function
g, one recovers that τhL is given by the function gp¨ ` hq and δEc L is given by the function
gpcE ¨q, thanks to the normalization term.

Proposition 4.1. Let α P p1, 2s. For β, n as in (3.1), the generalized random field ZEα,β in
(3.2) is

‚ shift-invariant: @h P Rd,
τhZ

E
α,β

d
“ ZEα,β,

‚ pE,Hq-operator-scaling for H “
q´β
α P p´qp1´ 1{αq, 0q Y p0, ad{αq: @c ą 0,

δEc Z
E
α,β

d
“ cHZEα,β.

Let us remark that in [14] the first property is called the stationary n-th increments while
the second one with E “ Id the self-similarity property.
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Proof. It suffices to compute the characteristic functional. Observe that for f P SnpRq, one
has for all h P Rd,

ZEα,βpτhfq “

ż

RdˆR`
TEr fpx´ hqMα,βpdx, drq

d
“ ZEα,βpfq,

by a change of variable, while for all c ą 0,

ZEα,βpδ
E
c fq “

ż

RdˆR`
TEr δ

E
c fpxqMα,βpdx, drq

“

ż

RdˆR
TEr{cfpc

´ExqMα,βpdx, drq

d
“ cpq´βq{α

ż

RdˆR
TEr fpxqMα,βpdx, drq “ cpq´βq{αZEα,βpfq,

where the third step also followed from a change of variable argument. �

For the intermediate case, the limit random field JEa,α,β in (3.6) is not E-operator-scaling
but it has aggregate E-operator-scaling property as described below, generalizing aggregate
similarity property introduced in [7].

Proposition 4.2. Under the assumption of Theorem 3.5,

δEk1{pq´βqJ
E
a,α,β

d
“

k
ÿ

i“1

J
E,piq
a,α,β, for all k P N,

where tJE,piqa,α,βui“1,...,k are i.i.d. copies of JEa,α,β. Furthermore,

1

apq´βq{α
JEa,α,β ñ ZEα,β as aÑ 0β´q.

Proof. The first part of the proof follows from straightforward calculation of characteristic
functionals, with a similar change of variable argument as above. The second part of the proof
follows from convergence of characteristic functionals for random variables in the domain of
attractions of Sαpσ, b, 0q. The details are omitted. �

At last, remark that in the sparse and very-sparse regimes, the limit random fields have
essentially no dependence structure, as the limit random fields are stochastic integrals with
respect to stable random measures with constant control measure on Rd. Thus they inherit
no specific anisotropic properties. Nevertheless, for any E1 satisfying the same assumption as
E with possibly different eigenvalues, writing q1 “ trpE1q, it can be shown that

δE
1

c Z
piq
θ

d
“ c

1´θ
θ
q1Z

piq
θ

for i “ 1, 2 with legitimate parameter θ.

5. Comments on pointwise representation

Given a tempered distribution L P S 1pRdq, it is a natural question to wonder if it may be
represented by a Borel measurable function g, that is

@f P SpRdq, Lpfq “

ż

Rd
fptqgptqdt.
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We say that a generalized random field X admits a pointwise reprensentation if there exists a
measurable random field t pXptqutPRd , meaning as in Definition 9.4.1 of [40] that pX : ΩˆRd Ñ R
is a jointly measurable function, such that

Xpfq “

ż

Rd
pXptqfptqdt, f P SpRdq.

Conversely, we have the following property.

Proposition 5.1. Let t pXptqutPRd be a measurable random field. If there exists k P N such
that

ż

Rd
p1` |t|q´kEp| pXptq|qdt ă 8,

then the random field X, defined on SnpRdq by Xpfq “
ş

Rd
pXptqfptqdt, admits a regularization

that is a generalized random field. Moreover, if pX is pE,Hq-operator-scaling for some H ą 0
in the sense of (1.1), then X is pE,Hq-operator-scaling in the sense of Proposition 4.1.

Proof. Under the assumption, one checks that for all f P SnpRdq,
ż

Rd
| pXptqfptq|dt ď Ck sup

zPRd
p1` |z|qk|fpzq|,

where the random constant Ck “
ş

Rdp1 ` |t|q
´k| pXptq|dt is a.s. finite. This implies that the

linear random field X is well-defined and a.s. continuous. Hence there exists a regularization
of X on S 1npRdq, see [16, p.40]. The last property of the proposition is straightforward. �

Our centered rescaled random ball field Y E
ρ defined in Section 2 clearly admits a pointwise

representation where pY E
ρ “ pXE

ρ ´ E pXE
ρ and

pXE
ρ ptq “

ż

RdˆR`ˆR
mKE

r px, tqNρpdx, dr, dmq, t P Rd,

with the same Poisson random measure Nρ than in (2.5). Let us consider the limit generalized
random field ZEα,β of the dense regime in the case of symmetric weights (b “ 0). Actually,
there are two situations that we treated separately in the following sub-sections.

5.1. The case β P pq ´ ad, qq and H “
q´β
α P p0, ad{αq. In this case, as proved in Proposi-

tion 5.2 below, ZEα,β admits a pointwise representation with

pZEα,βptq “

ż

RdˆR`
p1BEpx,rqptq ´ 1BEpx,rqp0qqMα,βpdr, dxq, t P Rd,

satisfying (1.1) and Mα,β is the same as in the representation of ZEα,β . Let us introduce
CE ptq “ tpx, rq; r´Epx´ tq P Bu and note that

pZEα,βptq “Mα,β pCE ptq X CE p0q
cq ´Mα,β pCE ptq

c X CE p0qq , t P Rd.
Until here we do not need to assume that Mα,β has skewness function b “ 0.

With the assumption that Mα,β is symmetric, one can check that

(5.1)
!

pZEα,βptq
)

tPRd
f.d.d.
“ tMα,β pVtqutPRd ,

with Vt “ CE ptq∆CE p0q. That is, the random field pZEα,β has a Chentsov’s type representation
[40, Chapter 8]. In particular, for H “

q´β
α P p0, ad{αq the random field pZEα,β generalizes
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isotropic self-similar pα,Hq-Takenaka random fields (see [40, p.405]), defined by choosing the
Euclidean unit ball for B and E “ Id, with ad “ 1.

The representation (5.1) allows us to provide several simulations of our operator-scaling
random ball model with symmetric α-stable (SαS) weights, following similar ideas as in [3].
See Figures 1–3 in the appendix.

Proposition 5.2. For β P pq´ ad, qq, there exists a measurable version of pZEα,β, also denoted
by pZEα,β, such that ZEα,β coincides in S 11pRdq with the generalized random field

(5.2) f P SpRdq ÞÑ
ż

Rd
pZEα,βptqfptqdt.

Proof. First note that
ż

Rd
|1BEpx,rqptq ´ 1BEpx,rqp0q|

αdx “ rqhpr´Etq,

with hpzq “ LdpB∆pz`Bqq. According to (2.4), h satisfies hpzq ď Cp|z|^1q for some constant
C ą 0. It follows that
ż

RdˆR`
|1BEpx,rqptq ´ 1BEpx,rqp0q|

ασαCβr
´1´βdrdx

ď CσαCβ

ż

R`
rqp|r´Et| ^ 1qr´1´βdr ď CσαCβ

ż

R`
rqp}r´E} ^ 1qr´1´βdrp1` |t|q

“ CEα,βp1` |t|q,

with CEα,β “ CσαCβ
ş

R`p}r
´E} ^ 1qrq´β´1dr ă 8 and } ¨ } the subordinated norm, since

β P pq ´ ad, qq. Hence pZEα,βptq is well-defined and is a SαS random variable with scale

parameter bounded by
´

CEα,βp1` |t|q
¯1{α

, for every t P Rd. According to [40, Theorem 11.1.1]

there exists a measurable version of pZEα,β since

(1) pt, x, rq P Rd ˆ Rd ˆ R` ÞÑ p1BEpx,rqptq ´ 1BEpx,rqp0qq P R is measurable;
(2) the control measure σαCβr´1´βdrdx is σ-finite.

Noting that by [40, Property 1.2.17], we have

(5.3) E
´

| pZEα,βptq|
¯

ď Ep|Sα|q
`

CEα,βp1` |t|q
˘1{α

,

with Sα a SαS random variable of scale parameter 1, we may define f P SpRdq ÞÑ
ş

Rd
pZEα,βptqfptqdt

that is a.s. in S 1pRdq, thanks to Proposition 5.1.
Now it remains to show that the right-hand side of (5.2) has the same stable law as ZEα,βpfq “

ş

RdˆR` T
E
r fpxqMα,βpdx, drq. For this we recall that

(5.4)
ż

pZα,βptqfptqdt
d
“

ż

RdˆR`

ˆ
ż

Rd

`

1BEpx,rqptq ´ 1BEpx,rqp0q
˘

fptqdt

˙

Mα,βpdx, drq,

provided that
ż

Rd
| pZEα,βptq|fptqdt ă 8 a.s.,
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see [40, Theorem 11.4.1]. Since f decays rapidly, the above follows from (5.3) and hence (5.4)
holds. To complete the proof, it remains to remark that for f P S1pRdq, one has

ż

Rd
p1BEpx,rqptq ´ 1BEpx,rqp0qqfptqdt “ TEr fpxq.

�

5.2. The case β P pq, αqq and H “
q´β
α P p´qp1 ´ 1{αq, 0q. In this case, H ă 0 and we

do not have direct pointwise representation, but the limit field ZEα,β can be obtained as the
derivative (in the sense of distributions) of a pointwise process. For all t P Rd, following the
same idea as for the definition of ZEα,βpfq for f P SpRdq, we can define the random variable

qZEα,βptq “ εpt1q ¨ ¨ ¨ εptdq

ż

RdˆR`
TEr 1r0,tspxqMα,βpdr, dxq,

where the random measure Mα,β is the same as in (3.2) and r0, ts “
śd
i“1r0, tis. The family

qZEα,β “ t
qZEα,βptqutPRd is a measurable random field and, by successive integrations by parts,

we can show that ZEα,β “ Dp1,...,1q qZEα,β , that is for all f P SpRdq,

ZEα,βpfq “ p´1qd
ż

Rd
qZEα,βptqD

p1,...,1qfptqdt.

This consideration is analogous to [12, Theorem 2.6 and Lemma 3.7] for E “ Id and β ą q “ d
in D1pRdq the space of distribution instead of S 1pRdq. We thus refer to [12] for technical details.

6. Proofs of the main results

6.1. Preliminary results. The proofs of our limit theorems follow the same scheme as in [7]
or [11] to establish the convergence of the characteristic functions. They use the two following
lemmas concerning conditions (2.7) and (2.8).

Lemma 6.1 (Lemma 2.4 in [7], Lemma 3.2 in [11]). Under the assumption (2.7), if tgρuρą0,
g are continuous functions on R` such that

(6.1) lim
ρÑ0β´q

|gprq ´ gρprq| “ 0,

and for some 0 ă β´ ă β ă β` there exists a constant C ą 0 such that

|gprq| ď Cprβ´ ^ rβ`q,(6.2)
|gρprq| ď Cprβ´ ^ rβ`q,(6.3)

for all r ą 0, then, for Cβ as in (2.7),
ż

R`
gρprqFρprq „ Cβρ

β

ż

R`
gprqr´1´βdr, as ρÑ 0β´q.

Lemma 6.2 (Lemma 3.1 in [11]). Suppose that M is in the domain of attraction of Sαpσ, b, 0q
for some α ą 1, σ ą 0 and b P R. Then

φGptq “ LM ptq ´ 1´ itEpMq „ ´|t|αφα,b,σptq, as tÑ 0,

with

(6.4) φα,b,σptq “ σαp1´ ibεptq tanpαπ{2qq,
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where εptq “ signptq. Furthermore, there exists C ą 0 such that for all t P R,

(6.5) |φGptq| ď C|t|α.

The key ingredients for our generalized random ball model are the precise continuity
properties of the operators TEr stated in the following proposition. Recall that we write
vr “ LebdpBEp0, rqq “ rqvB, r ą 0, and for γ ą 0, }f}γ

Lγ
“

ş

Rd |fpxq|
γdx.

Proposition 6.3. (i) For all γ P r1, 2s, r ą 0, and f P SpRdq,

(6.6) }TEr f}Lγ ď vr}f}Lγ ,

and

(6.7) }TEr f}Lγ ď v1{γ
r }f}

L1 .

As a consequence, for γ P p1, 2s and β P pq, γqq, there exists some constant C ą 0 such that

(6.8)
ż

R`
}TEr f}

γ
Lγ
r´1´βdr ď C}f}γ

L1XLγ
, f P SpRdq,

with }f}
L1XLγ

:“ }f}
L1
_ }f}

Lγ
.

(ii) For all γ P r1, 2s, r ą 1, and f P S1pRdq,

(6.9) }TEr f}
γ
Lγ
ď Crq´adp| log r| _ 1q`d´1}f}γ´1

L1

ż

Rd
|y||fpyq|dy,

where `d ď d is the number of eigenvalues of E having the minimal real part ad (counted with
multiplicities). As a consequence, for β P pq ´ ad, qq there exists a constant C such that

(6.10)
ż

R`
}TEr f}

γ
Lγ
r´1´βdr ď C}f}γ´1

L1

ż

Rd
p1` |y|q|fpyq|dy, f P S1pRdq.

Proof. (i) Note that

}TEr f}L1 :“

ż

Rd
|TEr fpxq|dx ď

ż

Rd

ż

Rd
KE
r px, yq|fpyq|dydx,

with KE
r px, yq “ 1BEpx,rqpyq by (2.2). Hence, by Fubini’s theorem,

(6.11) }TEr f}L1 ď vr}f}L1 .

Moreover,

}TEr f}
2

L2
“

ż

Rd
|TEr fpxq|

2dx ď

ż

Rd
vr

ż

Rd
KE
r px, yq|fpyq|

2dydx “ v2
r}f}

2

L2
,

where we first applied the Cauchy–Schwarz inequality, and Fubini’s theorem at the end. Ac-
cording to the Riesz–Thorin interpolation theorem (see [2]), combining this with (6.11), we
get (6.6). Moreover, since by the Cauchy–Schwarz inequality we also have

}TEr f}
2

L2
ď

ż

Rd

ż

Rd
KE
r px, yq|fpyq|dy}f}

L1
dx “ vr}f}

2

L1
,

it follows by Hölder’s inequality that, for p ą 1 such that γ “ 1{p` 2p1´ 1{pq,

}TEr f}
γ
Lγ
ď }TEr f}

1{p

L1
}TEr f}

2p1´1{pq

L2
ď v1{p

r }f}1{p
L1
v1´1{p
r }f}2p1´1{pq

L1
“ vr}f}

γ

L1
.
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Since vr “ rqvB with q “ trpEq we can conclude that for β P pq, γqq, by (6.6) and (6.7),
ż

R`
}TEr f}

γ
Lγ
r´β´1dr ď

´

pvB}f}
γ

L1
q _ pvγB}f}

γ
Lγ
q

¯

ż

R`
rq´β´1 ^ rγq´β´1dr.

Therefore we have proved (6.8).

(ii) The assumption that f P S1pRdq implies that
ş

Rd fpzqdz “ 0 so that

TEr fpxq “

ż

Rd
K̃E
r px, yqfpyqdy,

with K̃E
r px, yq “ 1BEpx,rqpyq ´ 1BEpx,rqp0q. Then, by Hölder’s inequality, one has

}TEr f}
γ
Lγ
“

ż

Rd

ˇ

ˇ

ˇ

ˇ

ż

Rd

`

1BEpy,rqpxq ´ 1BEp0,rqpxq
˘

fpyqdy

ˇ

ˇ

ˇ

ˇ

γ

dx

ď }f}γ´1

L1

ż

Rd

ˆ
ż

Rd

ˇ

ˇ1BEpy,rqpxq ´ 1BEp0,rqpxq
ˇ

ˇ

γ
|fpyq|dy

˙

dx.

Also,
ż

Rd

ˇ

ˇ1BEpy,rqpxq ´ 1BEp0,rqpxq
ˇ

ˇ

γ
dx “ LebdpBEpy, rq4BEp0, rqq “ rqhpr´Eyq

with hpzq “ LebdpBEp0, 1q4BEpz, 1qq “ LebdpB4pz ` Bqq, that does not depend on E. By
(2.4), hpyq ď C|y| for all y P Rd and it follows that,

(6.12) }TEr f}
γ
Lγ
ď C}f}γ´1

L1

ż

Rd
rq|r´Ey||fpyq|dy.

Recall that according to the Jordan decomposition theorem, given E, there exists an invertible
matrix P such that D “ P´1EP has the real canonical form

¨

˚

˝

J1 0
. . .

0 Jp

˛

‹

‚

,

where p corresponds to the number of distinct real parts of eigenvalues and each block matrix
J is either

(i) a Jordan cell matrix of size `
¨

˚

˚

˚

˝

a 0 0

1 a
. . .

. . . . . . 0
0 1 a

˛

‹

‹

‹

‚

,

with a a real eigenvalue of E, or
(ii) a 2`ˆ 2` matrix in form of

¨

˚

˚

˚

˝

Λ 0
I2 Λ

. . . . . .
0 I2 Λ

˛

‹

‹

‹

‚

with Λ “

ˆ

a b
b a

˙

and I2 “

ˆ

1 0
0 1

˙

,

with a˘ ib (b ‰ 0) being complex conjugated eigenvalues of E.
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In either case, for the subordinated norm }¨} of the Euclidean norm on Rd, for each block J
with the corresponding real part of eigenvalue denoted by a, it is shown in [8, Lemma 3.2]
that

ra ď
›

›rJ
›

› ď
?

2`erap| log r| _ 1q`´1, for all r ą 0.

(This is slightly different from [8, Lemma 3.2], but can be easily established by following
the proof carefully.) Recall that it is assumed that the real parts of eigenvalues of E satisfy
a1 ě ¨ ¨ ¨ ě ad ą 0. Let `d be the size of the Jordan block associated with ad and note that
the other Jordan blocks, if they exist, are associated with a strictly greater real part. Then,
there exists a constant C ą 0, such that

›

›rE
›

› ď Cradp| log r| _ 1q`d´1, for all r P p0, 1q.

Now, it follows from (6.12) that for f P S1pRdq one has for r ą 1,

}TEr f}
γ
Lγ
ď Crq´adp| log r| _ 1q`d´1}f}γ´1

L1

ż

Rd
|yfpyq|dy.

Hence, for β P pq´ ad, qq, f P S1pRdq, combining the above inequality for r ą 1 with (6.7) for
r ď 1, we obtain

ż

R`
}TEr f}

γ
Lγ
r´1´βdr ďC

ˆ

}f}γ´1

L1

ż

Rd
p1` |y|q|fpyq|dy

˙

ˆ

ż

R`
r´1´β`q ^

´

r´1´β`q´adp| log r| _ 1q`d´1
¯

dr,

which proves (6.10). �

6.2. Dense regime.

Proof of Proposition 3.1. First, the stochastic integral ZEα,βpfq in (3.2) is well-defined as soon
as

ż

RdˆR`
|TEr fpxq|

αr´1´βdrdx “

ż

R`
}TEr f}

α
Lα
r´1´βdr ă 8

and this condition follows from Proposition 6.3, with γ “ α, β, n as in (3.1). It is well known
(see [40, Chap. 3]) that the characteristic functional LZEα,β of ZEα,β on SnpRdq is given by (3.3).
Now, according to Theorem 2.1, to prove the existence of a generalized-random-field version
of ZEα,β , it suffices to prove that LZEα,β is continuous on SnpRdq, that is, for all tfkukPN and

f in SnpRdq such that fk Ñ f in SnpRdq, limkÑ8 LZEα,β pfkq “ LZEα,β pfq. This shall follow

from the convergence in distribution of the random variables ZEα,βpfk ´ fq to 0 as k Ñ 8, or
equivalently from

lim
kÑ8

ż

RdˆR`
}TEr pfk ´ fq}

α
Lα
r´1´βdr “ 0.

By (6.8) and (6.10) of Proposition 6.3 with γ “ α, this is straightforward, since fk´ f Ñ 0 in
SnpRdq clearly implies that the upper bounds also tend to 0. �

Proof of Theorem 3.2. Note that, by Theorem 2.2, the result follows from the pointwise con-
vergence of the characteristic functional. Further, by (2.9), we clearly have for f P SnpRdq,

Ln1pρq´1{αY Eρ
pfq “ exp

˜

ż

RdˆR`
φG

ˆ

TEr fpxq

n1pρq1{α

˙

λpρqdxFρpdrq

¸

.
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Since n1pρq Ñ 8, by Lemma 6.2,

φG

ˆ

TEr fpxq

n1pρq1{α

˙

„
1

n1pρq
|TEr fpxq|

αφα,b,σpT
E
r fpxqq, as ρÑ 0β´q,

for φα,b,σ defined in (6.4). Hence, under (2.7), one can apply Lemma 6.1 to prove that

Ln1pρq´1{αY Eρ
pfq Ñ LZEα,β pfq.

Indeed, recall the uniform bound (6.5) on φG and, thanks to Proposition 6.3, the fact that for
n “ 0,

}TEr f}
α
Lα
ď CE}f}

α

L1XLα
prq ^ rαqq,

and for n “ 1,

}TEr f}
α
Lα
ď CE}f}

α´1

L1

ˆ
ż

Rd
p1` |y|q|fpyq|dy

˙

prq ^ rq´ap | logprq|d´1q.

We can then apply Lemma 6.1 with gρprq “ n1pρq
ş

Rd φGpn1pρq
´1{αTEr fpxqqdx to both cases

β P pq, αqq and β P pq ´ ad, qq. �

6.3. Intermediate regime.

Proof of Proposition 3.4. Recall that the Poisson integral JEa,α,βpfq in (3.6) is well-defined as
soon as

ż

RdˆR`ˆR`

`

|mTEr,afpxq| ^ |mT
E
r,afpxq|

2
˘

r´1´βdxdrGpdmq ă 8.

Let us remark that
|mTEr,afpxq| ^ |mT

E
r,afpxq|

2 ď |mTEr,afpxq|
γ ,

for any γ P r1, 2s. Hence, for β P pq ´ ad, qq Y pq, αqq, choosing γ P r1, αq such that β P
pq ´ ad, γqq, one has

ż

RdˆR`ˆR`
|mTEr,afpxq|

γ r´1´βdxdrGpdmq ď Ep|M |γq
ż

R`
}TEr,af}

γ
Lγ
r´1´βdr ă 8,

in view of Proposition 6.3, since }TEr,af}γLγ “ aq}TEr{af}
γ
Lγ

(see (3.5)). It follows that the
Poisson integral JEa,α,βpfq is well-defined for all f P SnpRdq and the characteristic functional
LJEa,α,β of JEa,α,β is given by (3.7).

Again, to show the existence of a version of JEa,α,β with values in S 1npRdq, using Theorem 2.1,
it is sufficient to prove that the characteristic functional LJEa,α,β is continuous on SnpRdq. Let
β P pq ´ ad, qq Y pq, αqq and assume that fk Ñ 0 in SnpRdq. We will show that JEa,α,βpfkq
converges in Lγ to 0, which is sufficient to prove the continuity of LJEa,α,β . Actually, following
the proof of Proposition 3.1 in [12], we can bound γ-moments of the real random variable
JEa,α,βpfq for f P SnpRdq. Since JEa,α,βpfq is centered, for γ P r1, αq, following [17, p.461] and
using Lemma 2 and Lemma 4 of [44],

E
`

|JEa,α,βpfq|
γ
˘

ď Apγq

ż 8

0

ˆ

1´
ˇ

ˇ

ˇ
LJEa,α,β pθfq

ˇ

ˇ

ˇ

2
˙

θ´1´γdθ,

with Apγq :“ p
ş8

0 p1´ cosxqx´1´γdxq´1 ă 8. But
ˇ

ˇ

ˇ
LJEa,α,β pθfq

ˇ

ˇ

ˇ
ě exp

ˆ

´C|θ|α
ż

RdˆR`
|TEr,afpxq|

αCβr
´1´βdrdx

˙

,
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using the upper bound on |φG| given (6.5). It follows that for γ P r1, αq one has

E
`

|JEa,α,βpfq|
γ
˘

ď Apγq

ż 8

0
p1´ exp

ˆ

´2C|θ|α
ż

R`
}TEr,af}

α
Lα
Cβr

´1´βdr

˙

θ´1´γdθ

ď ApγqApα, γq

ˆ

C

ż

R`
}TEr,af}

α
Lα
Cβr

´1´βdr

˙γ{α

,

with Apα, γq :“
ş8

0 p1´expp´sαqqs´1´γds ă 8. Hence the result follows from Proposition 6.3
since }TEr,af}αLα “ aq}TEr{af}

α
Lα

. �

Proof of Theorem 3.5. Again, by Theorem 2.2, the result follows from the convergence of the
characteristic functionals. Observe that,

LJEa,α,β pfq “ exp

#

ż

RdˆR`
φGpT

E
r,afpxqqCβr

´1´βdrdx

+

“ exp

#

Cβ

ż

RdˆR`
φGpT

E
s fpyqqa

q´βs´1´βdsdy

+

by the changes of variables y “ a´Ex and s “ r{a. The rest of the proof can be done
similarly as for Theorem 3.2, starting from (2.9) and applying Lemma 6.1 with gprq “ gρprq “
ş

Rd φGpT
E
r fpxqqdx and the help of Proposition 6.3. �

6.4. Sparse regime.

Proof of Proposition 3.6. Using Theorem 2.1, it is sufficient to prove that Zp1qγ pfkq converges
in distribution to 0 when fk Ñ 0 in SpRdq. This last assertion is obvious since convergence in
SpRdq implies convergence in LγpRdq. �

To prove Theorem 3.7, we consider the maximal function f˚ associated to a function f of
SpRdq,

f˚pxq :“ sup
rą0

1

rqvB

ż

1BEpx,rqpyq|fpyq|dy, x P Rd,

and we shall need the following lemma.

Lemma 6.4. For all f P SpRdq and all α ą 1, f˚ P LαpRdq.

Proof. By Lemma 6.1.5 in Meerschaert and Scheffler [33], there exists a norm } ¨ }0 on Rd such
that the mapping p0,8q ˆ tx P Rd | }x}0 “ 1u Ñ Rdzt0u, pt, θq ÞÑ tEθ, is a homeomorphism.
Further, the function t ÞÑ }tEx}0 is increasing for all x P Rd. Thus, any x P Rdzt0u can
be uniquely written as x “ τpxqEθpxq with τpxq ą 0 and }θpxq}0 “ 1. The function τ is a
continuous function that can be extended to Rd by setting τp0q “ 0. By Lemma 2.2 in Biermé
et al. [9], one can find κ ě 1 such that

(6.13) τpx` yq ď κ pτpxq ` τpyqq .

Therefore we can introduce the function δpx, yq “ τpy´xq, x, y P Rd, which is a quasi-distance
on Rd. We also introduce the sets

(6.14) CEpx, rq “ ty P Rd | δpx, yq ă ru, r ą 0.

Since B is a bounded subset of Rd, we can find a real r0 ą 0 such that B Ă CEp0, r0q.
With no loss of generality we assume that r0 “ 1 and we denote C :“ CEp0, 1q. Thus
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CEpx, rq “ x` rEC for all x P Rd and r ą 0, and BEpx, rq Ă CEpx, rq. We infer that for all
x P Rd,

f˚pxq ď
vC
vB

sup
rą0

1

rqvC

ż

1CEpx,rqpyq|fpyq|dy.

The desired result is now a consequence of Theorem 1 and Example 2.4 in Stein [42]. �

Proof of Theorem 3.7. By Theorem 2.2, it is sufficient to prove the convergence of the char-
acteristic functionals. The characteristic functional of n2pρq

´1Y E
ρ is given by, recalling that

Fρpdrq “ F pdr{ρq,

Ln2pρq´1Y Eρ
pfq “ exp

#

ż

RdˆR`
λpρqφG

ˆ

TEr fpxq

n2pρq

˙

dxFρpdrq

+

“ exp

#

ż

RdˆR`
λpρqφG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dxFρn2pρq´1{qpdrq

+

.

We shall show that

(6.15)
ż

RdˆR`
λpρqφG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dxFρn2pρq´1{qpdrq

Ñ Cβ

ż

RdˆR`
φGpfpxqvBr

qqr´1´βdrdx as ρÑ 0β´q and λpρq Ñ 0q´β.

From this, we infer that

Ln2pρq´1Y Eρ
pfq Ñ exp

#

Cβ

ż

RdˆR`
φGpfpxqvBr

qqr´1´βdrdx

+

“ L
Z
p1q
γ
pfq,

for L
Z
p1q
γ
pfq given in (3.10), which completes the proof. The last equality above is obtained

by following the same lines as in [11, pages 3650–3651].
To prove (6.15), recalling that λpρqρβn2pρq

´β{q “ 1, it suffices to check the conditions of
Lemma 6.1 for

gρprq :“

ż

Rd
φG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dx and gprq :“

ż

Rd
φGpfpxqvBr

qqdx.

First, remark that for f P SnpRdq,
TE
n2pρq1{qr

fpxq

n2pρq
ÝÑ

ρÑ0β´q
vBr

qfpxq

for dx-almost all x, so that

φG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

ÝÑ
ρÑ0β´q

φGpvBr
qfpxqq

for dx-almost all x by continuity of φG. But, by Lemma 6.2,
ˇ

ˇ

ˇ

ˇ

ˇ

φG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

TE
n2pρq1{qr

fpxq

n2pρq

ˇ

ˇ

ˇ

ˇ

ˇ

α

ď CpvBr
qqαf˚pxqα.

Since f˚ belongs to LαpRdq by Lemma 6.4, Condition (6.1) follows by Lebesgue’s theorem.
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Next, for Condition (6.2), we deal with the cases n “ 0 and n “ 1 separately. Now, since
|φGpuq| ď Cp|u| ^ |u|αq and f P L1pRdq X LαpRdq,

|gprq| ď C

ż

Rd
|fpxqvBr

q| ^ |fpxqvBr
q|αdx ď Cp}f}

L1vB _ }f}
α
Lα
vαBqpr

q ^ rαqq.

This establishes Condition (6.2) for β P pq, αqq and n “ 0 with β´ “ q and β` “ αq. Next,
when f P S1pRq, remark that

gprq “

ż

Rd
φGpfpxqvBr

qqdx “

ż

Rd
φ̃GpfpxqvBr

qqdx,

with φ̃Gpuq “
ş

peimu ´ 1qGpdmq so that now |φ̃Gpuq| ď Cp1^ |u|δq for any δ P p0, 1s. Hence

|gprq| ď CvδB}f}
δ

Lδ
rqδ.

Choosing δ “ q{pq ` adq P p0, 1q and δ “ 1 respectively, we infer that for n “ 1, Condition
(6.2) holds for β P pq2{pq ` adq, qq with β´ “ q2{pq ` adq and β` “ q, respectively.

It remains to prove that (6.3) holds. We first consider β P pq, αqq. Using |φGpuq| ď C|u|
and (6.7),

(6.16) |gρprq| ď C
1

n2pρq
}TEn2pρq1{qr

f}
L1 ď C}f}

L1 r
q.

Then, using |φGpuq| ď C|u|α, we can write

|gρprq| ď Crαq
ż

Rd

ˇ

ˇ

ˇ

ˇ

ˇ

TE
n2pρq1{qr

fpxq

n2pρqrq

ˇ

ˇ

ˇ

ˇ

ˇ

α

dx ď C}f˚}α
Lα
rαq,

that finishes to prove (6.3) when β P pq, αqq. Finally, when β P pq2{pq`adq, qq and f P S1pRdq,
we write gρ “ g

p1q
ρ ` g

p2q
ρ , with

gp1qρ :“

ż

τpxqď2κn2pρq1{qr
φ̃G

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dx

and

gp2qρ :“

ż

τpxqą2κn2pρq1{qr
φ̃G

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dx,

where κ ě 1 comes from the quasi-triangular inequality given in (6.13). With this choice we
may write for any z P pn2pρq

1{qrqEB,

τpxq ď κ pτpx` zq ` τpzqq ď κ
´

τpx` zq ` n2pρq
1{qr

¯

,

where, with no loss of generality, we have again assumed that B Ă CEp0, 1q (recall (6.14)). It
follows that τpx` zq ą 1

2κτpxq for any z P pn2pρq
1{qrqEB and x such that τpxq ą 2κn2pρq

1{qr.
Since f is rapidly decreasing, we get for N ě 1,

ˇ

ˇ

ˇ

ˇ

1

n2pρq
TEn2pρq1{qr

fpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd
1rEBpzq

ˇ

ˇ

ˇ
fpx` n2pρq

E{qzq
ˇ

ˇ

ˇ
dz

ď C

ż

Rd
1rEBpzq

´

1` τpx` n2pρq
E{qzq

¯´N
dz

ď CvBr
q p1` τpxqq´N ,
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where here and below, the constant C “ Cpfq does not depend on r and ρ. Using that
|φ̃Gpuq| ď C|u|δ for δ P p0, 1s, choosing N “ Npδ, qq such that Nδ ą q ` 1, it follows that

(6.17)
ˇ

ˇ

ˇ
gp2qρ prq

ˇ

ˇ

ˇ
ď Crqδ

ż

Rd
p1` τpxqq´Nδ dx ď Crqδ.

Moreover,
ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Cn2pρq

´δ

ż

τpxqďCn2pρq1{qr

ˇ

ˇ

ˇ
TEn2pρq1{qr

fpxq
ˇ

ˇ

ˇ

δ
dx

ď Cn2pρq
´δ}TEn2pρq1{qr

f}δ
Lpδ
pn2pρqr

qq
1´1{p ,

by Hölder’s inequality for p ą 1. When n2pρq
1{qr ď 1, we use (6.7) with pδ P r1, 2s. It follows

that

(6.18)
ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Cn2pρq

´δ pn2pρqr
qq

1{p
ˆ pn2pρqr

qq
1´1{p

ď Cn2pρq
1´δrq ď Crqδ,

since n2pρq ď r´q. When n2pρq
1{qr ą 1, we use (6.9) for pδ P r1, 2s. By the assumption that

β ą q2{pq ` adq, we can choose b P p0, adq such that β ą q2{pq ` bq and

}TEn2pρq1{qr
f}δ

Lpδ
ď C

´

n2pρq
1{qr

¯pq´bq{p
,

by (6.9) since b ă ad. Hence,
ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Cn2pρq

´δ`1´b{qprq´b{p.

Now we can choose δ “ q{pq ` bq P p0, 1q and p “ p1` b{qq ą 1 such that δp “ 1 and
ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Crq´b{p1`b{qq “ Crq

2{pq`bq.

Combining with the previous bounds (6.17) and (6.18) for the same δ “ q{pq ` bq, we get

|gρprq| ď Crq
2{pq`bq,

and we have that (6.3) holds with β´ “ q2{pq` bq and β` “ q (which we have shown in (6.16)
when considering the case β P pq, αqq). We have thus proved (6.15) and the theorem. �

6.5. Very-sparse regime. Proposition 3.9 can be obtained as before using Theorem 2.1.
The proof of Theorem 3.10 is similar to the one of Theorem 3.7 (see also the proof of [11,
Theorem 2.19]). The details of this part are thus omitted.

Appendix A. Illustrations

We provide several simulations of our operator-scaling random ball model, obtained by
following similar ideas as in [3]. For the sake of simplicity we choose E “ diagpa1, a2q with
a1 ě a2 :“ 1 and β P pq ´ ad, qq “ pa1, a1 ` 1q.
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ter at University of Cincinnati.
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α “ 1.7 α “ 1.9 α “ 2

Figure 1. Operator-scaling random ball with a1 “ 1.2 and β “ 1.6: the set B is an
Euclidean ball, the weights vary according to a SαSpσq distribution with σ “ 0.1.

a1 “ 1 (isotropic) a1 “ 1.5 a1 “ 2

Figure 2. Operator-scaling random ball in high intensity with H “
1`a1´β

α
“ 0.4

and weights following a SαSpσq distribution with σ “ 0.1. Top: α “ 2 (Gaussian case).
Bottom: α “ 1.8.
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[38] Puplinskaitė, D. and Surgailis, D. (2015). Scaling transition for long-range dependent
Gaussian random fields. Stochastic Process. Appl., 125(6):2256–2271.
[39] Samorodnitsky, G. (2016). Stochastic processes and long range dependence. Springer
Series in Operations Research and Financial Engineering. Springer, Cham.
[40] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable non-Gaussian random processes.
Stochastic Modeling. Chapman & Hall, New York. Stochastic models with infinite variance.
[41] Shen, Y. and Wang, Y. (2017). Operator-scaling Gaussian random fields via aggregation.
Submitted, available at https://arxiv.org/abs/1712.07082.
[42] Stein, E. M. (1993). Harmonic analysis: real-variable methods, orthogonality, and oscil-
latory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press,
Princeton, NJ. With the assistance of Timothy S. Murphy, Monographs in Harmonic Anal-
ysis, III.
[43] Unser, M. and Tafti, P. D. (2014). An introduction to sparse stochastic processes. Cam-
bridge University Press, Cambridge.
[44] von Bahr, B. and Esseen, C. (1965). Inequalities for the rth absolute moment of a sum
of random variables, 1 ď r ď 2. Ann. Math. Statist, 36:299–303.
[45] Wang, Y. (2014). An invariance principle for fractional Brownian sheets. J. Theoret.
Probab., 27(4):1124–1139.
[46] Xiao, Y. (2009). Sample path properties of anisotropic Gaussian random fields. In
A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes in
Math., pages 145–212. Springer, Berlin.

Hermine Biermé, Laboratoire de Mathématiques et Applications UMR CNRS 7348, Univer-
sité de Poitiers, Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex,
France.

E-mail address: hermine.bierme@math.univ-poitiers.fr

Olivier Durieu, Institut Denis Poisson, UMR-CNRS 7013, Université de Tours, Parc de
Grandmont, 37200 Tours, France.

E-mail address: olivier.durieu@univ-tours.fr

Yizao Wang, Department of Mathematical Sciences, University of Cincinnati, 2815 Commons
Way, ML–0025, Cincinnati, OH, 45221-0025.

E-mail address: yizao.wang@uc.edu


