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GENERALIZED OPERATOR-SCALING RANDOM BALL MODEL

HERMINE BIERME, OLIVIER DURIEU, AND YIZAO WANG

ABsSTRACT. This article introduces the operator-scaling random ball model, generalizing
the isotropic random ball models investigated recently in the literature to anisotropic setup.
The model is introduced as a generalized random field and results on weak convergence are
established in the space of tempered distributions.

1. INTRODUCTION

In the past ten years, random ball models have appeared as a simple and yet flexible class
of random fields that characterize various types of spatial dependence structures [6, 7, 11—
13, 21, 22, 25, 36|. In particular, in several regimes, their scaling limits are self-similar and
with long-range dependence [1, 37, 39]. Such properties are desirable when modeling various
real world phenomena and thus such results have a broad range of applications.

In words, a random ball model consists in a collection of random balls in R% with loca-
tions following a homogeneous Poisson point process and with independent and identically
distributed random radius and weights. Thus, each realization of random balls on the space
can be naturally viewed as a linear functional on an appropriate space of test functions. As-
ymptotic behaviors are then of interest, when all the balls are simultaneously rescaled by a
parameter p, and at the same time the intensity of balls also changes with respect to p. Under
mild assumption on the distribution of the radius, limit theorems can be established for p — 0
or p — o0, corresponding to the zoom-out or zoom-in cases respectively. In both cases, the
qualitative behavior of the limit random fields, whether exhibiting spatial dependence or not,
depends on whether the random balls are dense or sparse in the limit, in certain sense to be
specified below.

The random ball models can be viewed as generalizations of certain one-dimensional models
based on Poisson point processes that appeared in the study of Internet traffics, see for example
[26, 35] and references therein. However, the extension to high dimensions presents new
technical challenges, and should not be viewed as simple generalization of the one-dimensional
results. In particular, the developments until now have two main limitations. First, results
so far in the literature focus on isotropic random ball models (except for [36]). That is, the
random fields have the same distribution in each different direction. This feature, from the
application point of view, makes the model much less attractive. Second, the tightness of
the scaled random fields is difficult to establish. Usually random ball models are defined as
a random field {X (1)} e indexed by a family of measures M on RY. The tightness of such
random fields, after appropriate normalizations, is only established for very restricted classes

of M [12, 13].
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The goal of this paper is to establish limit theorems for a general class of random ball
models, and to remove the aforementioned two limitations.

First, we provide a general framework of random ball models exhibiting anisotropic features
and hence include all previously considered ones as special cases. It is now well understood
that a natural generalization of notion of self-similarity, widely used in stochastic processes and
time series, is the so-called operator-scaling property for random fields introduced in Biermé
et al. [9]. A random field {Z;},cpa is said to be (E, H)-operator-scaling, if

(1.1) (Zori}yega < M {Z4} e for all ¢ > 0,

where E is an appropriate d x d matrix, & := Y% (Elog ¢)F/k! is also a matrix, and H > 0.
Taking E to be the identity matrix, the above says that the random field Z is self-similar.
The motivation of allowing general matrix FE is to generalize this notion to anisotropic random
fields. Such random fields are often of practical importance in various applications, and they
also present theoretical challenges. Families of anisotropic random fields are known, and path
properties have been investigated. See for example [8, 31, 34, 46]. At the same time, the
development of limit theorems for anisotropic random fields is still at an early stage. For some
recent results, see for example [5, 15, 30, 32, 38, 41, 45]. In this article, we also consider more
general random sets than balls, precisely sets of finite perimeter.

Second, we view the random ball models as distribution-valued random elements, also known
as generalized random fields, and establish weak convergence in the space of tempered distribu-
tions. A complete description of self-similar generalized Gaussian random fields was obtained
in [14] and allows to obtain essentially all Gaussian, translation- and rotation-invariant, H-
self-similar generalized random field as scaling limits of a random balls model in [7]. Beyond
the Gaussian framework, generalized Lévy random field, including stable generalized random
field have been investigated in [43], where they are named as sparse stochastic processes.
Distribution-valued random variables and stochastic processes are already widely used to
describe fluctuations of empirical measures of complex particle systems, including notably in-
teracting particle systems [29] and branching particle systems [10, 23, 29, 32|, just to mention
a few.

The paper is organized as follows. Section 2 presents background on generalized random
fields, the precise definition of the random ball model, and the four regimes of convergence that
we investigate. The limit theorems are stated in Section 3, while their proofs are postponed
in Section 6. In Section 4, we study statistical properties of the limit random fields. To
conclude, a pointwise representation is obtained in Section 5 and some illustrations are given
in the appendix.

Throughout, C' stands for real constants that may change values from line to line. Without
ambiguity, for x € R?, |z| denotes its Euclidean norm. We write @ v b = max(a,b) and
a A b =min(a,b) for a,b e R.

2. BACKGROUND AND DEFINITIONS

2.1. Generalized random fields. The standard references for generalized random fields
include notably [14, 16, 19, 20, 28]. In words, these fields are defined as random variables
with values in a space of distributions (or generalized functions). To this end we consider the
Schwartz space S(RY) of all real-valued infinitely differentiable rapidly decreasing functions
on RY, and &'(RY) its topological dual, the space of tempered distribution. As usual S(R?) is
equipped with the topology that corresponds to the following notion of convergence: f,, — f
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if and only if for all N e N:= {0,1,2,...} and j = (j1,...,/jq) € N?

I fr — fHN,j = SuRI?i(l + ‘ZDN ’Dj (fn—1) (Z)| — 0, as n — o0,

where D f(z) = _Lgld g (z) denotes the partial derivative of order j.

A J1 Jd
0z -0z

We will actually also consider the space
S1(RY) = {f e S(RY); f f(2)dz = o} :
R4

Note that S; (R%) = span {Dif; fe SMRY),j€{0,1}% 41 + -+ jg = 1}. For convenience, we
also write Sp(R%) = S(R?) and thus we will be able to use S, (R?) for n € {0,1} in the sequel.
We denote by S/, (R%) the topological dual of S,,(R?) and by (-,-) the duality bracket. We
usually consider two distinct topologies on S/, (R?). The strong topology is induced by the
family of semi-norms
qp(-) =sup|(-,f)|, B bounded in S,(R%).
feB

The weak topology on S/,(R?) is the topology induced by the family of semi-norms |(-, f)|,
f e Su(RY). A first remark is that both topologies generate the same Borel o-field denoted by
B(S! (RY)), see [4].

A generalized random field is an S/ (R%)-valued random variable, that is a measurable
mapping X from a probability space (2, A, P) to (S, (RY), B(S,(R%))). For such a generalized
random field X, we let its evaluation at f € S, (R?) be denoted by X(f), which is a real
random variable on the same probability space.

The law of a generalized random field X is uniquely determined by its characteristic func-
tional

Lx(f) = J ¢XU gP.  fe S, (RY.
Q
Further, X induces a family of random variables X (f) on (£, .A) indexed by f € S, (R?), with
characteristic functions given by

E (atx(f)) _ f XN GP = L (tf), teR.
Q
By linearity, the finite-dimensional distributions of X are simply obtained with
Lx(arfi+ - +apfy) =E <ei[a1X(f1)+"'+akX(fk)]) 7

forallk>1, a1,...,ar € Rand fi,..., fr € Sp(R?).
In practice, however, given a family of real random variables { X (f)} cs, (re) on a probability
space (9, A, P) satisfying

(2.1) X(af +bg) = aX(f) +bX(g) a.s. forall a,beR, f,ge S, (RY),

a priori it is not clear whether a corresponding S/,(R%)-valued random variable exists. When
this can be achieved, namely if there exists an S/,(R%)-valued random variable X, possibly
defined on another probability space (Q,.4,P), such that for all k& = 1, f1,..., fx € Sn(R%),
A1, ..., A € B(R),

P(X(f1) € Ar,oo, X(f) € Ay) =B (X(f) € Ar, o X (i) € Ar),
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we say that X is a version of X = {X(f)}ses, me) [40, Definition 9.1.1]. Let us quote that this

notion is weaker than the notion of regularization in [24]. Actually, a regularization X of X
should be defined on the same probability space (€2, A, P) than X and satisfies X (f) = X(f)
a.s. for all f € S,(RY). However, when we deal with convergence in law for most of the part
of the paper, the notion of version is enough for our purpose: once the existence of a version
is proved, it suffices to work with the characteristic functionals of the original individual
random variables. At only a few occasions we shall establish results in the stronger notion of
regularization.

We recall below two fundamental theorems when working with limit theorems of generalized
random fields, both based on characteristic functionals. The following theorem is a direct
consequence of Minlos-Bochner’s theorem, see [4, Corollary 2.2].

Theorem 2.1. Let X = {X(f)}fes, ®e) be a collection of real random variables on (2, A, P)

satisfying (2.1). If Lx : Sp(RY) — C is continuous then X admits a version that is an
S! (RY)-valued random variable.

Recall that a sequence of generalized random fields {X,,},,>1 converges in distribution to
X, denoted by X,, = X, in S/ (R%) given the strong topology if for all ¢ : S/ (R%) — R
continuous for the strong topology and bounded,

| e, = | e,

S (R) m=e Js (R

Similarly, X,, = X in S/,(R?) given the weak topology, if the above holds for all ¢ : S/, (R?) —
R that is bounded and continuous with respect to the weak topology. As a consequence
of Lévy’s continuity theorem (|4, Theorem 2.3]), we can state the following result, see [4,
Corollary 2.4].

Theorem 2.2. Let { X, }m=1, X be S, (RY)-valued random variables. The following conditions
are equivalent:

e X, = X in S/ (RY) given the strong topology,

e X, = X in S/ (R?) given the weak topology,

o Lx,(f) = Lx(f) for all f € Su(RY).

Since both notions of convergence are equivalent, we shall just write X,, = X in S/, (R?) in
the sequel.

Proofs of Theorems 2.1 and 2.2. We refer to [16] for the stated results in the more general
framework in terms of nuclear spaces. For the special case §'(R?) = Sj(RY), we refer to [4]
where self-contained and simplified proofs can be found. Results in [4] can then be extended
for S7(R%) by the following idea from Dobrushin [14, Proposition 2.1]. Let us quote that fixing
a function ¢ € S(RY)\S;(RY), one can define the continuous map U : S}(R?) — S'(RY) by
U(L)(f) = L(x(})), where for f € S(RY),

m(f) = f = e(£)v € SR,
with ¢(f) = §za f(x)dz/ §za ¥(x)dz. Hence any Sj(R?)-valued random variable X coincides
with the restriction of an S'(RY)-valued random variable Y, defined by Y(f) = X(n(f)),

f € S(RY). By using the so-defined map U and applying results on S’'(R), the desired results
for S} (R%) follow. O
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2.2. A generalized random ball model. Now we define the random ball model on R%.
Throughout, the operator-scaling is associated to a d x d real matrix E, of which all eigenvalues
have strictly positive real parts, denoted by a; > --- > aq > 0. Let ¢ = tr(E) > 0 be the
trace of the matrix F.

We consider the kernel operator defined for (z,7) € R? x (0,0) and f € S(R?), by

(2.2) TY f(z) = fRd K7 (x,9) f(y)dy  with K7 (2,) == 1p, 0 (1).
Here and throughout, Bg(z,r) is the shifted and scaled “ball” given by
Bg(z,r) =z +r*B, zeR¥ r>0,

based on a fixed bounded measurable set B < R? with 0 € B, vp := Lebg(B) € (0,0) and
Leby(0B) = 0, where Leby is the Lebesgue measure on R%. Thus v, := Leby(Bg(z,7)) = rivp.
Note that we keep the name ‘“random ball” from the original model but here the set B can be
a much more general set than a ball. We only assume that B is a set of finite perimeter in
the sense that

(2.3) Per(B) := sup {f dive(z)dz : ¢ € CLHRELRY), |¢]e < 1} < o,
B

where C}(R?, R?) is the set of continuously differentiable functions with compact support (e.g.
B can be any bounded convex set). According to [18, Theorem 14|, (2.3) is equivalent to the
fact that the covariogram gp : R? 3 2+ Lebg(B n (2 + B)) of the set B is Lipschitz, and thus
there exists C' > 0 such that

(2.4) Lebg(BA(z + B)) = 2(9p(0) — gp(x)) < Clz|, for all z € R%.

We first define the model as a collection of random variables indexed by f € S(R?), and then
prove the existence of regularizations afterwards. The rescaled random ball field is defined as

(2.5) XP(f) = f mTE f(x)N,(dz,dr,dm), fe SRY),
RAxRy xR

where N, is a Poisson random measure on R? x Ry x R with intensity A(p)dxF(dr/p)G(dm).
Intuitively, the origins of random balls are distributed as a homogeneous Poisson process
with intensity A(p), and each random ball is scaled with a random radius with distribution
F,(dr) := F(dr/p), and is associated with a random weight m with distribution G. Positions,
scalings and weights are assumed to be independent. There are a few natural assumptions on
F and G. First, the expected volume of a random ball is assumed to be finite. That is,

(2.6) vB JR riF(dr) < .

Moreover, we assume that, for some Cg > 0,
(2.7) F(dr) = p(r)dr with p(r) ~ Car 1% asr — 0177,

with the convention, 0° = 0 if § > 0 and 0° = o if § < 0. This condition is introduced
in a compact form for both zoom-in/out scalings to be explained in Section 2.3. It reads as
p(r) is regularly varying at 0 with index —1 — 3, only when § < g¢; otherwise (2.6) will be
violated. Similarly, p(r) is regularly varying at infinity with index —1 — 8 when 8 > ¢. Next,
for the random weights, their distribution G is assumed to be integrable and in the domain of
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attraction of certain stable distribution S, (c,b,0) with o € (1,2], o0 > 0, b e [—1,1]. That is,

for independent random variables M; with common distribution G,

M+ -+ M,
nl/a

A standard reference for stable distributions and processes is [40]. Under (2.6) and (2.8)
with @ > 1, the random field (2.5) is well-defined and integrable. This follows from the fact

(2.8) = S4(0,b,0)  with a € (1,2].

EIXEND < [ T @) Fdr/p)Glam)

< AP E(M s, [ ),

where M is a real random variable of distribution G' and |f| , := {za|f(y)|dy. Hence, a
centered rescaled random ball field can be defined by

YO(f) = X)) —E(X)(f), feSERY.
We come to the generalized random field interpretation of X f and YPE .

Proposition 2.3. Under assumption (2.6), Xf and YpE are almost surely elements of S'(R%)

and therefore of S} (RY). As a consequence, they admit regularizations in S'(R?) and therefore
in S (RY).

Proof. Let us quote that f +— T.F f(x) € S’(R?), and moreover for all k > 0,

TP f(x)| < <J (1+ !y\)_kdy> sup (1 + |2[)*| £ (2)].
Bg(z,r)

2€R4

It follows that,
X7 ()] < Coysup (1+[2))F1 £ ()],

zeRd
with
ka = J |m| (1+ \y|)7kdy/\/p(dx,dr, dm).
RdXR+ xR BE(:L',T)
Note that
E (C) = Ap) | ml [+ ) dydaFy(dr)Glam)
RIxRL xR Bg(z,r)

= Mp)p"E(|M|)vp LW r9F (dr) URd(l + Iy!)kdy> :

which is finite under assumption (2.6) as soon as k > d. Hence, ka < o a.s. for k > d, so
that XPE e S'(R%) a.s. Since we also have f E(Xf(f)) e S'(R%) by taking expectation in
the previous computations, it follows that the centered field YPE is also in &’ (Rd) a.s. The last
part of the proposition is easy since to obtain a regularization in S’(R?) of a process X which

is almost surely element of &'(R?), it suffices to modify it by setting X (w) = 0 for the w €
such that X (w) ¢ S’(R?), see [16, p.40]. O
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The limit theorems will be based on the characteristic functionals of the centered rescaled
random fields

(2.9) EYPE(f) = Eexp (iYPE(f)) = exp (JR

with

¢G(Tff(w))A(P)dpr(dr)> . feSaRY),

dXR+

(2.10) oa(t) == f(eimt —1—imt)G(dm) = Lp(t) — 1 —tE(M), teR,
where M is a real random variable of distribution G satisfying (2.8).

2.3. Zoom-in/out scalings and four regimes. There are two scalings to be considered in
the limit theorems. Recall F,(dr) = F(dr/p). The case p — oo corresponds to enlarging the
size of each ball, and p — 0 corresponds to shrinking the size of each ball. We refer to the
two scalings as the zoom-in and zoom-out scalings, respectively.

Next, for each type of scaling, there are four qualitatively different regimes. Since the
spatial dependence of the random field is essentially determined by overlaps of random balls,
heuristically we compute the expected weight of rescaled balls covering a fixed point gy, denoted
by m(p), independent from y by stationarity. It is natural to expect m(p) — ¢ € [0, 0], and
we distinguish 0, (0,00) and 0 as three different cases. Take the zoom-in scaling case first.
Clearly only small balls, say with radius less than 1 (before the p-scaling and the constant 1
is irrelevant) should matter, and we compute

min(p) :=E J 1{yeBE(m,r)}]—{r<1}Np(dxv dr,dm)
RIxRy xR

1

~ BODN(p)o | 17F(dr),

with . )
)\(p)J riF,(dr) ~ <C’gf rq_ﬁ_ldr> Mp)p?  asp— .
0 0
Similarly for the zoom-out case, we compute for number of balls with radius larger than 1,

Mout (P) =E (j 1{y€BE(a:,r)}1{r>1}Np(dx) dr, dm))
RIxR4 xR

0

=E(M)A\(p)vp Jl r9F,(dr),

with

Q0 00]

)\(p)f r9F,(dr) ~ (C’gf rq_ﬁ_ldr> Mp)p®  asp—0.

1 1
The calculations above made use of (2.7), and also explain why it is a reasonable assumption.
Notice that the constant is qualitatively irrelevant, only the common term )\(p)pﬁ matters,
and both cases of scaling can be summarized in the compact form of p — 0779,

In summary, there are naturally three regimes of interest, characterized by

o0 (dense regime),
Mp)p? = { ce(0,0) (intermediate regime), as p — 0779,
0 ((very-)sparse regime),



8 HERMINE BIERME, OLIVIER DURIEU, AND YIZAO WANG

where within the case A(p)p? — 0 we shall further identify two sub-regimes, named as sparse
and very-sparse regimes in the sequel. We shall establish limit theorems for different regimes
separately, and in each regime our limit theorem and the proof unify both zoom-in and zoom-
out scalings (only zoom-out scaling in the very-sparse regime). Furthermore, in each regime
we specify two parameters, 8 on the tails of the radius of random balls, and n indicating the
zoom-in (n = 1) and zoom-out (n = 0) scalings.

3. SCALING LIMITS

We will treat the four regimes separately. In each regime, we first introduce the limit
field as stochastic integral, then show the existence of its generalized random field version by
Minlos—Bochner’s theorem and then prove the weak convergence by Lévy’s continuity theorem.
For easy reading, all the proofs of this section are postponed to Section 6. The limit fields
appearing here are further investigated in the next sections.

3.1. Dense regime. In the dense regime, we consider
Ap)p” — 0 as p — 0771,
and the admissible range of parameters § and n is
B € (q,aq) n =0 zoom-out scaling,
fe(qg—aqg,q) n=1 zoom-in scaling.

The following field appears in the limit. Let « € (1,2], 0 > 0 and b € [—1, 1] be given by (2.8)
and Cz > 0 be given by (2.7). Let M, 3 be an a-stable random measure on R% x R with
control measure UaCfgrflfﬁdrdx, and constant skewness function b. For f € S,(R?), let us
define the stochastic integral

(3.2) Zofi (f):= f T,Ef(x)Maﬁ(dr, dz).
R

dxR,

(3.1)

See [40] for more background on stochastic integrals with respect to a-stable random measures.

Proposition 3.1. Let a € (1,2]. For B,n as in (3.1), the process Zfﬁ = {Zgﬂ(f)}fesn(Rd)
in (3.2) is well-defined, has characteristic functional

(3.3) LZo}iﬁ(f) = exp {—C’Baa JR |TE f(z)|® (1 — ibe (TrEf(a:)) tan %) Tlﬁdrd:z} ,

dXR+
where €(s) = sign(s), and admits a version with values in S!,(R%).

Then, we can consider weak convergence in S’ (R%) and state the limit theorem in the dense

regime.
Theorem 3.2. Suppose that the assumptions (2.7) and (2.8) on F' and G hold. Under (3.1),
if n1(p) := pPA(p) — o0 as p — 0°79, then

S, v E ~0f

nl(p)l/o‘yp = Zyp asp— 0771
in S (RY).
Remark 3.3. We let {Zgﬁ(f)}fesn(Rd) denote the stochastic process indexed by f via (3.2),
and the same notation Zf g in Theorem 3.2 for the corresponding version taking values in

S/ (R%). Similar notations are used for the other regimes.
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3.2. Intermediate regime. In the intermediate regime, we consider
(3.4) Mp)p? — at™P as p—0°79 with ae(0,0).

The admissible range of parameters § and n is the same (3.1) as in the dense regime. In this
case, the limit field is represented by a Poisson integral. For a € (0,00) and f € S(R?), we
first define

(35) TES@) = | Laenptan ) f0)dy = T, fa™P0)

and we consider the Poisson integral J fa, P defined, for f € S,(R%), by
(3.6) aras(f) = f mT, o f () Ns(dr, d, dm),
o RIxRy xR, ’

where 1\75 is the compensated Poisson random measure on R% x R, x R, with intensity
Cgr~1=PdazdrG(dm), with Cjg > 0 given in (2.7). For more background on Poisson integrals,
see for example [27].

Proposition 3.4. Let a € (0,00). For 5,n as in (3.1), the process Jfaﬁ in (3.6) is well-
defined on S,(R?), has characteristic functional

(37) Loz, () =exp {fR . ¢G<Tfaf<x>>cﬁrlﬁdrdx} ,

where g is defined by (2.10) and admits a version with values in S, (R?).
The limit theorem in the intermediate regime is the following.

Theorem 3.5. Suppose that the assumptions (2.7) and (2.8) on F' and G hold. Under (3.1)
and (3.4),
YpE = Jfa,,@’ as p — 0774
in S (RY).
3.3. Sparse regime. The sparse regime correspond to
(3.8) Mp)p® = 0asp—0°"7 with Xp) — 097",
The admissible range of parameters of 5 and n is

(3.9) B € (q,aq) n =0 zoom-out scaling,
. Be(¢*/(q+aq),q) n=1 zoom-in scaling.

Set v = B/q € (¢/(¢ +aq),1) U (1,). Let Mv(l) be a 7-stable random measure having control
measure o1 dr with

1/y
ImWG(dm)> ,
R

01~ = UB (C’gq1 J (1-— cos(r))rl'ydrj
Ry

and constant skewness function
§g €(m)|m[YG(dm)

by == [ MG (dm)
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We define, for f e S(R?),
1 . 1
20(0) = [ | flahaf i)

Note that Z,(yl)( f) is well-defined since f € S(R?) « L7(R?) and its characteristic functional
is given by

) ™
(3.10) L,0(f) = exp (—a;ﬁ J 6(f(2))] (1 — ibye(f(x)) tan %) dx) .
Y R4
Proposition 3.6. For o € (1,2] and v € (¢/(¢ + aq),1) U (1, @), the process Zgl) admits a
version with values in Sh(R?) = Sj(RY).

Theorem 3.7. Suppose that the assumptions (2.7) and (2.8) on F and G hold. Under (3.8)
and (3.9) with na(p) := (A(p)Pp)e and v = B/q, we have
1
n2(p)

YpE = Z,(Yl) as p — 0779,

in S (RY).

Remark 3.8. Note that the result in the case 3 € (¢%/(q+ aq), q) is also new for the isotropic
case when E = I; (the identity matrix).

3.4. Very-sparse regime. In this regime, consider
(3.11) Ap)p® — 0, A(p) — o0 as p — 0.
The admissible range of parameters for the very-sparse regime is

(3.12) B € (ag,0) n=0 zoom-out scaling.

Let MC(YZ) be a a-stable random measure having control measure o9 dx with

1/a
02,4 1= OUB (J ro‘qF(dT)>
Ry

and constant skewness function b. For f € S(R?), we set
280 = | fa)ME (dx).
Rd

Proposition 3.9. For a € (1,2], the process Z2 admits a version with values in SHRY).

Theorem 3.10. Suppose that the assumptions (2.7) and (2.8) on F' and G hold. Under (3.11)

and (3.12), with n3(p) := A(p)/*pq,
1

YE =23 s p—0
n3(p)

p o

in Sh(RY).
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3.5. Summary. For comparison, we summarize in a single statement the limit theorems of
the different regimes.

Theorem 3.11. Suppose that the assumptions (2.7) and (2.8) on F and G hold. We have
the following weak convergence in S!,(RY):

1 . )
(dense) WYpE = Zfﬁ if  Ap)p® — o0, B8,n as in (3.1),
(intermediate) YpE = JE wp U Ap)p? — a?P € (0,0), 8,n as in (3.1),
1 o _ :
(sparse) WYpE = Z/é/)q if  Xp)p® — 0,\(p) — 097P B, n as in (3.9),
1 _ )
(very sparse) WYPE = Z2 if Ap)p® — 0,A(p) = ©,B,n as in (3.12),

where in all cases the limit is considered as p — 0774,

4. PROPERTIES OF THE LIMIT FIELDS

In this section, we provide some properties of the limit generalized random fields. In the
dense and intermediate regimes, the limit generalized random fields explicitly depend on E,
and in particular so are their anisotropic properties. For the sparse and very-sparse regimes, all
the dependence structures in the discrete models are not observable in the limit, and thus the
limit generalized random fields have no specific anisotropic properties. Following Dobrushin
in [14], using duality, we can define the following groups of transformations on S, (R%):

e the group of shift transformations 7 = {7} pcpa:
mft) = f(t—h), feSy(RY), heR? teR%
e the group of E-operator-scaling transformations A¥ = {55}66(0700):
SPf(t) = c1f(cFt), feSu(RY), ce (0,0), q=tr(E), teRY
Their analogous 7, A” on S/ (RY) are then defined by
™L(f) = L(raf), and 8 L(f) := L8 f),

for L € 8/ (R?). Let us note that when the tempered distribution L is given by a function
g, one recovers that 7, L is given by the function g(- + h) and §FL is given by the function
g(c?"), thanks to the normalization term.
Proposition 4.1. Let a € (1,2]. For B,n as in (3.1), the generalized random field Zfﬁ in
(3.2) is

o shift-invariant: Yh € R?,

Wit s = ZE
e (E, H)-operator-scaling for H = M €(—q(1—-1/a),0) U (0,a4/c): Ve >0,
5E ZE 4 H ZE

Let us remark that in [14] the first property is called the stationary n-th increments while
the second one with E = I; the self-similarity property.
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Proof. 1t suffices to compute the characteristic functional. Observe that for f € S,(R), one
has for all h € R?,

d

ZEs(mf) = | TEfo—W)Moadn,dr) £ ZE,(p),
RdXR+

by a change of variable, while for all ¢ > 0,

ZESGED = [ TR F(a) Mo ()
Xy

_ f TE (¢ Pa) M, p(dz, dr)
R4 xR
4 (g-B)a f TF f (&) My g(da, dr) = D12 ZE (p),
RixR 7

where the third step also followed from a change of variable argument. 0

For the intermediate case, the limit random field J¥_ g in (3.6) is not E-operator-scaling
but it has aggregate E-operator-scaling property as described below, generalizing aggregate

similarity property introduced in [7].

Proposition 4.2. Under the assumption of Theorem 3.5,
k
E E d E,(i
O11/(a-8) Jasa,8 = Z Ja@(’%, for all k e N,
i=1

where {Jfé%}lzlk are i.i.d. copies of Jfa g Furthermore,

1

E E 5
W'Ja,a,ﬁ = Zoz,ﬁ as a — 0P 9,

Proof. The first part of the proof follows from straightforward calculation of characteristic
functionals, with a similar change of variable argument as above. The second part of the proof
follows from convergence of characteristic functionals for random variables in the domain of
attractions of Sy (0,b,0). The details are omitted. O

At last, remark that in the sparse and very-sparse regimes, the limit random fields have
essentially no dependence structure, as the limit random fields are stochastic integrals with
respect to stable random measures with constant control measure on R?. Thus they inherit
no specific anisotropic properties. Nevertheless, for any E’ satisfying the same assumption as
E with possibly different eigenvalues, writing ¢’ = tr(E’), it can be shown that

5F 70 & 5 70
for i = 1,2 with legitimate parameter 6.

5. COMMENTS ON POINTWISE REPRESENTATION

Given a tempered distribution L € &'(R%), it is a natural question to wonder if it may be
represented by a Borel measurable function g, that is

vFeSEY. L) = | st
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We say that a generalized random field X admits a pointwise reprensentation if there exists a
measurable random field { X (¢)},cga, meaning as in Definition 9.4.1 of [40] that X : QxRY — R
is a jointly measurable function, such that

X(f) = | XOF®dt, feSERT.
Conversely, we have the following property.
Proposition 5.1. Let {X(t)},cpe be a measurable random field. If there exists k € N such
that
| a1 EqR D < =,
R4
then the random field X, defined on S,(R?) by X (f) = {za X (¢)f(t)dt, admits a reqularization

~

that is a generalized random field. Moreover, if X is (E, H)-operator-scaling for some H > 0
in the sense of (1.1), then X is (E, H)-operator-scaling in the sense of Proposition 4.1.

Proof. Under the assumption, one checks that for all f € S, (R%),
[ 1R@s01 < Cusup 1+ D7)
R4 zeR4

where the random constant Cp = {p4(1 + t])"*| X (¢)|dt is a.s. finite. This implies that the
linear random field X is well-defined and a.s. continuous. Hence there exists a regularization
of X on &/ (R%), see [16, p.40]. The last property of the proposition is straightforward. O

Our centered rescaled random ball field YpE defined in Section 2 clearly admits a pointwise
representation where }A/pE =X f ~EX f and

XP(t) = J mKE (x, )N, (dx, dr,dm), teR?,
RIxRy xR

with the same Poisson random measure N, than in (2.5). Let us consider the limit generalized

random field ZZ s of the dense regime in the case of symmetric weights (b = 0). Actually,
there are two situations that we treated separately in the following sub-sections.

5.1. The case € (¢ — aq,q) and H = % € (0,aq4/a). In this case, as proved in Proposi-
tion 5.2 below, Z f 3 admits a pointwise representation with

2P () = f (Lpom (D) — Loy (or) (0) Mo g(dr,dz), € R,
RdXR+

satisfying (1.1) and M, s is the same as in the representation of ZZ - Let us introduce
C,(t) = {(z,7);r E(x — t) € B} and note that
Zf,ﬁ(t) = Ma»ﬁ (CE (t) N CE (O)C) - Maﬁ (CE (t)c N CE (0)) ) te Rd-
Until here we do not need to assume that M, g has skewness function b = 0.
With the assumption that M, g is symmetric, one can check that

(5.1 {2850}, " Mas (W) g

with V; = C,(¢t)AC,(0). That is, the random field 255 has a Chentsov’s type representation
[40, Chapter 8]. In particular, for H = % € (0,aq/) the random field 25 5 generalizes
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isotropic self-similar (o, H)-Takenaka random fields (see |40, p.405]), defined by choosing the
Euclidean unit ball for B and E = I, with a4 = 1.

The representation (5.1) allows us to provide several simulations of our operator-scaling
random ball model with symmetric a-stable (Sa.S) weights, following similar ideas as in [3].
See Figures 1-3 in the appendix.

Proposition 5.2. For € (¢ — aq,q), there exists a measurable version of 255, also denoted
by 255, such that Zfﬁ coincides in S} (RY) with the generalized random field

(5.2) feSE®RY JW ZE () f(t)dt.
Proof. First note that

J%d|1BECnﬂ(t)"1BE(x¢)UD\ad1:=:rqh(rEt%

with h(z) = L4(BA(2+ B)). According to (2.4), h satisfies h(z) < C(|z| A1) for some constant
C > 0. It follows that

J‘]Rd R+ |1BE(£L',7‘) (t) - 1BE(£E,T‘) (O)IQUQOBrrili'Bd'rdx

< CUQCBJ r(lr =t A 1D)r 1 Pdr < C’U“ng r(r=E| A 1)r 1 Pdr(1 + |t))
R+ R,

= Cop(L+ [t]),
with Cfﬁ = Co“Cy §: (|r~F| A 1)r7P=ldr < oo and | - | the subordinated norm, since
B € (¢ — aq,q). Hence 25 5(t) is well-defined and is a SaS random variable with scale
parameter bounded by (Cgﬁ(l + |t|)) l/a, for every t € R%. According to [40, Theorem 11.1.1]
there exists a measurable version of Z 5 3 since

(1) (t,z,7) e R x R x RY (1B, (1) — 1B, (2,)(0)) € R is measurable;
(2) the control measure 0®Cpgr—1=Pdrdz is o-finite.
Noting that by [40, Property 1.2.17|, we have

(5.3) E(1225(0]) < E(ISal) (CE5(1+ 1),

with S, a Sa.S random variable of scale parameter 1, we may define f € S(RY) — {, Egﬁ(t)f(t)dt

that is a.s. in &’(R%), thanks to Proposition 5.1.
Now it remains to show that the right-hand side of (5.2) has the same stable law as Zfﬁ(f) =

Sraxm, TE f(x)M,,g(dx,dr). For this we recall that

60 [ Zasr@a® [ ([ Ut 0) = L 0) (00 ) Mo s, ar),
RixR, \JRd
provided that
f 1ZES(1)| f(t)dt < 0 as.,
Rd
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see |40, Theorem 11.4.1]. Since f decays rapidly, the above follows from (5.3) and hence (5.4)
holds. To complete the proof, it remains to remark that for f € S;(R%), one has

| Qe (0= Lo O 01 = T 12,
g

5.2. The case 3 € (q,aq) and H = % € (—q(1 — 1/a),0). In this case, H < 0 and we
do not have direct pointwise representation, but the limit field Zg 5 can be obtained as the

derivative (in the sense of distributions) of a pointwise process. For all t € R?, following the
same idea as for the definition of Z f s(f) for feS (R9), we can define the random variable

ZE () = e(tr) - e(ta) j TF110 4 () Mo p(dr, de),
RdXR+

where the random measure M, g is the same as in (3.2) and [0,¢] = Hf;l[o,ti]. The family
zE 5= {zF 5(t)}iera is a measurable random field and, by successive integrations by parts,
we can show that Zfﬁ = D(l""’l)ZﬁB, that is for all f e S(R?),

ZE5(1) = (-1 | ZEs D0 peyar

This consideration is analogous to [12, Theorem 2.6 and Lemma 3.7] for E = [y and § > ¢ = d
in D'(R%) the space of distribution instead of S’'(R%). We thus refer to [12] for technical details.

6. PROOFS OF THE MAIN RESULTS

6.1. Preliminary results. The proofs of our limit theorems follow the same scheme as in |7]
or [11] to establish the convergence of the characteristic functions. They use the two following
lemmas concerning conditions (2.7) and (2.8).

Lemma 6.1 (Lemma 2.4 in [7], Lemma 3.2 in [11]). Under the assumption (2.7), if {g,}p>0,
g are continuous functions on Ry such that

(6.1) pqliggfq lg(r) — g,(r)| =0,

and for some 0 < B_ < B < By there exists a constant C > 0 such that
(6.2) lg(r)| < C(rP= A v,
(6.3) 190(r)] < C(r7= A1),
for all v > 0, then, for Cg as in (2.7),
JR+ Gp(r)Fy(r) ~ Cgp’g Jﬂh g(ryr=Pdr,  as p— 0°74.

Lemma 6.2 (Lemma 3.1 in [11]). Suppose that M is in the domain of attraction of So(0o,b,0)
for somea>1,0>0 and beR. Then

oc(t) = Ly(t) — 1 —itE(M) ~ _|t‘a¢a,b,a(t)’ as t — 0,
with
(6.4) bapo(t) = 0% (1 —ibe(t) tan(an/2)),
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where €(t) = sign(t). Furthermore, there exists C' > 0 such that for all t € R,
(6.5) [pc ()] < CJ[*.

The key ingredients for our generalized random ball model are the precise continuity
properties of the operators T/F stated in the following proposition. Recall that we write
v, = Lebg(Bg(0,7)) = rlvg, r > 0, and for v > 0, Hszw = S]Rd |f(x)|Vdz.

Proposition 6.3. (i) For all vy [1,2], 7 > 0, and f € S(R?),

(6.6) ITE £l < ol 1l

and

(6.7) 17 f 1 < 071 s

As a consequence, for v € (1,2] and B € (q,7q), there exists some constant C' > 0 such that
E —1- d

(6.5) fﬂh ITEFI 7 Pdr < CIFIY, L fe SR,

with |f] = 1f1, v IS,

(i) For all v € [1,2], r > 1, and f € S1(RY),
(6.9) ITEFIY, < Cri([logr| v 1)~ f7T fRd lyllf(y)ldy,

where Lq < d is the number of eigenvalues of E having the minimal real part aq (counted with
multiplicities). As a consequence, for B € (¢ — aq,q) there exists a constant C such that

©10) | ITEA T < Ol [ Il f e SR,
+
Proof. (i) Note that
5 o= [ Ef@lde < [ [ KP@w)l @),
R Re JRE
with KF(2,y) = 15, (y) by (2.2). Hence, by Fubini’s theorem,
(6.11) ITEf1,, <ol flae
Moreover,

TEAE, = [ TE @R < | o | KEGal)Pdyde = 21512,

where we first applied the Cauchy—Schwarz inequality, and Fubini’s theorem at the end. Ac-
cording to the Riesz—Thorin interpolation theorem (see [2]), combining this with (6.11), we
get (6.6). Moreover, since by the Cauchy—Schwarz inequality we also have

ITER, < [ [ KE @l @, de = vl 2,
it follows by Holder’s inequality that, for p > 1 such that v = 1/p + 2(1 — 1/p),
|21, < \TEFIVPITE PGP < ol 10y PP = 0 11D,
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Since v, = rfvp with ¢ = tr(E) we can conclude that for 5 € (g,7vq), by (6.6) and (6.7),
| 1mE st < (sl A7) v @RI, | v A,
Ry Ry

Therefore we have proved (6.8).
(i) The assumption that f € S;(RY) implies that (g, f(2)dz = 0 so that

TP f(a) f K2 (2.9)f () dy,

with KF(z,y) = 1B, (¥) — 1By (2, (0). Then, by Hélder’s inequality, one has

v
dx

ITE . = ] [ et ) = 15000 @) sy

<irr [ ( j 15200)(2) ~ Lo @] £y ) o

fRthE(y,r)( ) — 1g, (0. (@)|" dz = Lebg(Bg(y, ) ABE(0,1)) = rih(r—Fy)

with h(z) = Leby(Bg(0,1)ABg(z,1)) = Leby(BA(z + B)), that does not depend on E. By
(2.4), h(y) < Cly| for all y € R? and it follows that,

(6.12) T, < CLAT [ ool ol

Recall that according to the Jordan decomposition theorem, given F/, there exists an invertible
matrix P such that D = P~'EP has the real canonical form

J1 0

Also,

0 Jp
where p corresponds to the number of distinct real parts of eigenvalues and each block matrix
J is either

(i) a Jordan cell matrix of size £

a O 0
1 a

.. .0
0 1 a

with a a real eigenvalue of E, or
(ii) a 2¢ x 2¢ matrix in form of

A 0

I A . a b 10
with A:(b a> and[2=<0 1>,

0 Ih A

with a £+ b (b # 0) being complex conjugated eigenvalues of E.
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In either case, for the subordinated norm |- of the Euclidean norm on R%, for each block .J
with the corresponding real part of eigenvalue denoted by a, it is shown in |8, Lemma 3.2]
that
rt < Hr‘]” < V2ler®(|logr| v 1)L, for all 7 > 0.

(This is slightly different from [8, Lemma 3.2|, but can be easily established by following
the proof carefully.) Recall that it is assumed that the real parts of eigenvalues of E satisfy
a1 = --- = ag > 0. Let £; be the size of the Jordan block associated with ag and note that
the other Jordan blocks, if they exist, are associated with a strictly greater real part. Then,
there exists a constant C' > 0, such that

HT’E” < Cr%(|logr| v 1)%71, for all r € (0,1).
Now, it follows from (6.12) that for f € S;(R%) one has for r > 1,

ITEFI7, < Cri~ea(|logr| v 1) f7 fRd lyf(y)ldy.

Hence, for B € (¢ — aq,q), f € S1(R%), combining the above inequality for » > 1 with (6.7) for
r < 1, we obtain

f ITEf 1 Bar < C (£ f (1 + [y (9)ldy
R, e Jpd
X f AL N (r‘1_5+q_ad(| logr| v 1)£d_1) dr,
R+

which proves (6.10). O
6.2. Dense regime.

Proof of Proposition 3.1. First, the stochastic integral Zfﬂ(f) in (3.2) is well-defined as soon
as

[ mEswree e = [ 2P szt tar <
RIxR, R,

and this condition follows from Proposition 6.3, with v = a, 5, n asin (3.1). It is well known
(see |40, Chap. 3|) that the characteristic functional ,CZE of ZF ap o0 Sy (R%) is given by (3.3).

Now, according to Theorem 2.1, to prove the existence of a generahzed random-field version
of ZF o5 it suffices to prove that LZE is continuous on S, (R%), that is, for all {f;}ren and
f in S,(R?) such that f; — f in S, ( 4, limy o0 EZE (fx) = EZE (f). This shall follow

from the convergence in distribution of the random Varlables zb ﬁ( fe—f) to0ask— oo, or
equivalently from

lim 12 (fr = )IGar™"dr = 0.

k—o0 RIXR
By (6.8) and (6.10) of Proposition 6.3 with v = «, this is straightforward, since fx — f — 0 in
Sn(]Rd) clearly implies that the upper bounds also tend to 0. ]

Proof of Theorem 3.2. Note that, by Theorem 2.2, the result follows from the pointwise con-
vergence of the characteristic functional. Further, by (2.9), we clearly have for f € S,,(R%),

£ T
Lo () = exp (jR% oa (L0 ) A<p>dep<dr>> .
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Since ni(p) — o0, by Lemma 6.2,

Tﬁf(x)) h 1 3 " d — P4
G <n1(p)1/a nl(P) ’Tr f(flf)‘ ¢a,b,o(Tr f(;z;))7 as p 0 7

for ¢, defined in (6.4). Hence, under (2.7), one can apply Lemma 6.1 to prove that
’Cnl(p)*l/aYpE(f) - Ezfﬁ(f)’

Indeed, recall the uniform bound (6.5) on ¢ and, thanks to Proposition 6.3, the fact that for
n =0,

E
ITEFI2, < CElfI%, . (11 A1),

and for n =1,

s, < el ([ s oDlfwlar) 00 a ro-erltognft),

We can then apply Lemma 6.1 with g,(r) = n1(p) {a bc(n1(p)~VTE f(z))dz to both cases
B e (q,aq) and B € (¢ — ag, q)- O

6.3. Intermediate regime.

Proof of Proposition 3.4. Recall that the Poisson integral me 5(f) in (3.6) is well-defined as
soon as

J (ImTE, £ (2)| A |mTE, f(2)2) =P dadrG(dm) < o.
RdXR+ XR+

Let us remark that

M T f ()] A [T f(2)]? < [mT5 f ()],

for any v € [1,2]. Hence, for 8 € (¢ — aq,q) U (g, q), choosing v € [1,«) such that 8 €
(q — Qad, VQ)v one has

f ImTE, £ (@) v dedrG(dm) < E(M[) f ITEf. v B dr < o,
RIxRy xR, ' Rt

in view of Proposition 6.3, since |TZ f[7, = aqHTﬁafHZW (see (3.5)). It follows that the
Poisson integral JZ_ 5(f) is well-defined for all f € Sy (R%) and the characteristic functional
ﬁJaE,a,ﬁ of Jfaﬁ is given by (3.7).

Again, to show the existence of a version of JF_ 5 with values in S, (R%), using Theorem 2.1,
it is sufficient to prove that the characteristic functional £ ;r ; is continuous on S, (R?). Let

B € (q—agq,q) v (q,aq) and assume that fr — 0 in SH(R“}’)i We will show that JE’a’ﬂ(fk)

a
converges in L7 to 0, which is sufficient to prove the continuity of £ ;e 5 Actually, following

the proof of Proposition 3.1 in [12], we can bound y-moments of the real random variable
Jfaﬁ(f) for f € S,(RY). Since Jfaﬁ(f) is centered, for v € [1, ), following [17, p.461] and
using Lemma 2 and Lemma 4 of [44],

E (|Vaas(N) < A(W)L (1 _ ‘EJfa,ﬁ(ef)f) p—
with A(’y) = (Sgo(l — COSZL‘):L'_l_'yd:L‘)_l < . But

}EJE (Gf)‘ > exp (—C\G\O‘f Tﬁaf(x)]O‘Cgr_l_ﬁdrd:n> ,
ae,f RIxR+

dx
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using the upper bound on |¢p¢g| given (6.5). It follows that for v € [1, &) one has

o0
E (|Jfa,ﬁ(f)|7) < A(v)J (1 —exp (—2cye|af HTfafH‘za Cgr_l_BdT> 0~ 7do
0 Rt

N

v/
A (¢ [ Izt corttar)

with A(a,7y) = Sgo(l —exp(—s%))s177ds < co. Hence the result follows from Proposition 6.3

since |5, f|%, = a?| T, fI%. -

Proof of Theorem 3.5. Again, by Theorem 2.2, the result follows from the convergence of the
characteristic functionals. Observe that,

EJE

a,o, 8

() = exp { L. ¢G<Tfaf<x>>cﬁr—1—ﬂdrdx}

= exp {CBJ ¢a(TF f(y)at™Ps™7F dsdy}
RdXR+

by the changes of variables y = a~Fz and s = r/a. The rest of the proof can be done

similarly as for Theorem 3.2, starting from (2.9) and applying Lemma 6.1 with g(r) = g,(r) =

Spa @c(TF f(2))dz and the help of Proposition 6.3. O

6.4. Sparse regime.

Proof of Proposition 3.6. Using Theorem 2.1, it is sufficient to prove that Zgl)( fr) converges
in distribution to 0 when f;, — 0 in S(R?). This last assertion is obvious since convergence in
S(R%) implies convergence in LY (R?). O

To prove Theorem 3.7, we consider the maximal function f* associated to a function f of
S(RY),

f*(x) := sup
(=) r>0 TvB

and we shall need the following lemma.

Lemma 6.4. For all f € S(RY) and all o > 1, f* € LY(RY).

[t wlswlas, o er,

Proof. By Lemma 6.1.5 in Meerschaert and Scheffler [33], there exists a norm || - [|o on R? such
that the mapping (0,0) x {z € R? | |z]o = 1} — RN\{0}, (¢,0) — tF0, is a homeomorphism.
Further, the function t + |[[t¥x|q is increasing for all x € RY. Thus, any z € R?\{0} can
be uniquely written as x = 7(z)®60(z) with 7(x) > 0 and |0(z)|o = 1. The function 7 is a
continuous function that can be extended to R? by setting 7(0) = 0. By Lemma 2.2 in Biermé
et al. [9], one can find x > 1 such that

(6.13) T(@+y) <k(r(x)+7(y)).

Therefore we can introduce the function §(x,y) = 7(y —z), =,y € R%, which is a quasi-distance
on R?. We also introduce the sets

(6.14) Cp(z,r) = {y e R | é(z,y) <r}, r>0.

Since B is a bounded subset of RY we can find a real 79 > 0 such that B < Cg(0,r0).
With no loss of generality we assume that ro = 1 and we denote C' := Cg(0,1). Thus
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Cp(z,7) = 2+ rFC for all x € R? and r > 0, and Bg(z,r) < Cg(x,r). We infer that for all
zeRY,

* vc

£r(@) < s [ 1y W)y,

The desired result is now a consequence of Theorem 1 and Example 2.4 in Stein [42]. O

Proof of Theorem 3.7. By Theorem 2.2, it is sufficient to prove the convergence of the char-
acteristic functionals. The characteristic functional of ng(p)_lYpE is given by, recalling that
Fﬂ(dr) = F(d’f’/p),

£ x
Loy (f) = exp {jR Ao (121 dx&(dr)}

Tf l/qrf(x)
= exp {fRdXR+ Ap)oc (%) dean(p)*l/q (dr)} .
We shall show that

Tr e f(@)
(6.15) JRdeJr Ap)oa (%) dxF,,,, ) -1/a(dr)

— Cp ¢G(f(33)UBT’q)7“_1_’8drdx as p — 0%~ and Ap) — 047,
RdXR+
From this, we infer that

‘an(P)_IYpE (f) = exp {Cﬁ J]R

for £ Z(1)( f) given in (3.10), which completes the proof. The last equality above is obtained
Y

¢G(f($)UBTq)7“_1_ﬂd?“de} =L,0(f),

dXR+

by following the same lines as in |11, pages 3650-3651].
To prove (6.15), recalling that A(p)p®na(p)~#/¢ = 1, it suffices to check the conditions of
Lemma 6.1 for

TE o (@)
p(r) 1= fRdm; <W> doand  g(r)i= | da(f(z)vpr)do,

na(p)
First, remark that for f € S,,(R%),
TL et (@)
na(p)t/ar q
—=——— — uprif(z
na(p) p—08~d srf(@)

for dx-almost all x, so that
TF f(z)
n2(p)'/ar _ q
ote ( n3() e o (vpr!f(z))
for dz-almost all by continuity of ¢g. But, by Lemma 6.2,
T yiard (@) Ty ()
¢l ————||<C|———F~i—
n2(p) na(p)
Since f* belongs to L*(R%) by Lemma 6.4, Condition (6.1) follows by Lebesgue’s theorem.
f g ( y : y g

«

< Clogr?)® f*(x)“.
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Next, for Condition (6.2), we deal with the cases n = 0 and n = 1 separately. Now, since

|bc(w)] < C(lul A ul*) and f e L' (R?) n L*(RY),
lg(r)] < CfRd [f(@)opri| A |f(z)oprd|*de < C(|f] yvB v | fIF.0E) (r? A r9).

This establishes Condition (6.2) for 5 € (¢, aq) and n = 0 with f_ = ¢ and 84 = agq. Next,
when f € §1(R), remark that

g(r) = | dc(f(@)vprf)de = | da(f(z)vpri)de,
R4 R4

with ¢g(u) = {(e™* — 1)G(dm) so that now |pa(u)| < C(1 A [ul®) for any & € (0,1]. Hence
9(r)| < Cub LA .

Choosing 0 = q/(q + aq) € (0,1) and 0 = 1 respectively, we infer that for n = 1, Condition
(6.2) holds for B € (¢%/(q + aq),q) with B_ = ¢*/(q + aq) and B, = q, respectively.

It remains to prove that (6.3) holds. We first consider 5 € (q,aq). Using |pg(u)| < Cul
and (6.7),

1
(6.16) 90 < O I i s < U7,

Then, using |pg(u)| < Clu|®, we can write

TE )l/qrf(x)

n2(p
na2(p)r

«

l95(r)| < Croa f dx < C|f*|2, 79,

Rd

that finishes to prove (6.3) when 3 € (¢, aq). Finally, when 8 € (¢%/(¢+aq4),q) and f € S;(R9),

we write g, = ggl) + g,(f), with

~ TnE 1/qrf($)
9" 1=J bo | 2 ) dw
7(x)<2kn2(p)t/ar na(p)

- Tf 1/ rf(l")
9,(02) ::J ba _mna(p)t/ar” 177 dr,
7(x)>2kn2(p) 1 n2(p)

where £ > 1 comes from the quasi-triangular inequality given in (6.13). With this choice we
may write for any z € (na(p)/4r)EB,

and

T(z) < Kk(t(z+2)+7(2) <k (T(:L‘ +2) + nz(p)l/qr> :

where, with no loss of generality, we have again assumed that B < Cg(0,1) (recall (6.14)). It
follows that 7(z + 2) > 5=7(z) for any z € (n2(p)/97)¥ B and z such that 7(z) > 2xkna(p)/r.
Since f is rapidly decreasing, we get for N > 1,

L e < | 1een) |Fla+ malp)0s)|d:

—T
na(p) "

(p)l/qrf(iﬂ)

< C fRd 1,55(2) (1 +7(z + ng(p)E/qz)>_N dz

< Cupri(1+7()™V,
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where here and below, the constant C' = C(f) does not depend on r and p. Using that
|pc(u)| < Clul® for 6 € (0,1], choosing N = N (8, q) such that N§ > ¢ + 1, it follows that

(6.17) 92| < o J (14 7(2) ™ dz < Cr®.
]Rd
Moreover,
5
(1) -5 B
‘gp (1")‘ < Chna(p) L($)<Cn2(p)l/qr T pyviarf (X)] da

< Ona(p) °ITE s S0 5 (m2(p)r®) 2,

LpS

by Hélder’s inequality for p > 1. When ng(p)Y%r < 1, we use (6.7) with pd € [1,2]. Tt follows
that

6.18)  |gf )| < Cnalp) ™ (ma(p)r )7 x (na(p)r®)'~ P < Cma(p)' ~*r < O,

since na(p) < r~9. When na(p)/4r > 1, we use (6.9) for pé € [1,2]. By the assumption that
B> q?/(q + ag), we can choose b € (0,a,) such that 8 > ¢%/(q + b) and

(¢=b)/p
ITE ian 18, < C (map)Vor)
by (6.9) since b < aq. Hence,
’gx(Jl)(T)’ < an(p)—5+1—b/qprq—b/p_
Now we can choose § = ¢/(¢ +b) € (0,1) and p = (1 4+ b/q) > 1 such that jp = 1 and

’g/gn(r)’ < Opa=b/(+b/a) — 0a*/(atb)

Combining with the previous bounds (6.17) and (6.18) for the same § = q/(q + b), we get
19,(r)] < Cra*/(ath)

and we have that (6.3) holds with 3_ = ¢?/(¢+b) and 8} = ¢ (which we have shown in (6.16)
when considering the case 5 € (¢, aq)). We have thus proved (6.15) and the theorem. O

6.5. Very-sparse regime. Proposition 3.9 can be obtained as before using Theorem 2.1.
The proof of Theorem 3.10 is similar to the one of Theorem 3.7 (see also the proof of [11,
Theorem 2.19]). The details of this part are thus omitted.

APPENDIX A. ILLUSTRATIONS

We provide several simulations of our operator-scaling random ball model, obtained by
following similar ideas as in [3]. For the sake of simplicity we choose E = diag(a1, az) with
a1 = ag:=1and B € (q¢—aq,q) = (a1,a1 +1).

Acknowledgments. YW’s research was supported in part by NSA grant H98230-16-1-0322,
Army Research Laboratory grant W911NF-17-1-0006, and Charles Phelps Taft Research Cen-
ter at University of Cincinnati.
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FIGURE 1. Operator-scaling random ball with a; = 1.2 and 3 = 1.6: the set B is an
Euclidean ball, the weights vary according to a Sa.S(o) distribution with o = 0.1.
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FIGURE 2. Operator-scaling random ball in high intensity with H = H“a* =04
and weights following a SaS(c) distribution with o = 0.1. Top: o = 2 (Gaussian case).
Bottom: a = 1.8.
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