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Abstract

The search for hydrocarbon molecular biomarkers in Archean metasediments is
of prime importance for deciphering the early evolution of life. Suitable criteria
are required to identify promising targets for further molecular biomarkers.
Possible criteria include the Hydrogen-to-Carbon (H/C) atomic ratio used as a
proxy of the aliphatic content of the kerogen matrix. However, H/C ratio values
exhibit large variation in Archean kerogens and their significance remains poorly
understood. In this study, we thus investigate the significance of the H/C ratios of
Archean kerogens by combining elemental analyses, Nanoscale Secondary Ion
Mass Spectrometry (NanoSIMS), Rock-Eval pyrolysis and Raman spectroscopy.
First, NanoSIMS investigations show the H/C ratio of kerogen can be
compromised by residual minerals. In addition, Rock-Eval pyrolysis underlines
the fact that thermal cracking of Archean kerogens does not just release
hydrocarbon covalently linked to the macromolecular network but also a complex
mixture of organic pools distinguished by their thermal maturity. Therefore, the
H/C ratio alone cannot be used to probe the preservation of aliphatic compounds
bound to kerogen since it can be biased by the presence of (i) residual bitumen, as
well as (i1) refractory organic matter in secondary hydrothermal veins whose
syngenecity is debatable. Rock-Eval pyrolysis then provides a useful and
complementary method to check the significance of H/C atomic ratio as a proxy

for hydrocarbon preservation in Archean kerogens.
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Keywords: Bitumen, Carbonization, Early life, Kerogen, NanoSIMS,
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1. Introduction

The origin of the oldest traces of life on Earth has been investigated through
chemical and thermal degradation of organic matter (OM) from Archean silicified
sediments (Brocks et al., 1999, 2003a; Marshall et al., 2007; Ventura et al., 2007,
Derenne et al., 2008). In addition to the numerous debates about the syngenecity
of putative molecular biomarkers (Marshall et al., 2007; Rasmussen et al., 2008;
French et al., 2015), the preservation of aliphatic moieties in OM from Archean
silicified sediments remains an open issue (Bourbin et al., 2012a). Thus, French
et al. (2015) highlighted the need to identify promising targets for further
hydrocarbon biomarker investigation by combining various approaches such as

elemental analyses, Raman spectroscopy and Rock-Eval pyrolysis.

In contrast to soluble hydrocarbons thought to be highly sensitive to
contamination, hydrocarbons released through the thermal cracking of covalent
bonds of the insoluble OM, the so-called kerogen macromolecular structure, are
considered syngenetic (Brocks et al., 2003b; Marshall et al., 2007; Derenne et al.,
2008). Because of thermal alteration extending to greenschist/amphibolite facies
metamorphism in Archean metasediment (Westall et al., 2006; Sugitani et al.,
2007; 2015; Delarue et al., 2016), the macromolecular network of Archean

kerogens is often depleted in aliphatic moieties (Bourbin et al., 2012a) as
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reflected by Hydrogen-to-Carbon (H/C) atomic ratios mostly below 0.3 (Hayes et
al., 1983; Marshall et al., 2007). Nevertheless, several studies indicated that
some Archean kerogens can also be characterized by H/C atomic ratios higher
than 0.3, reaching values up to 0.6 (Hayes et al., 1983; Marshall et al., 2007;
Derenne et al., 2008; French et al., 2015; Ferralis et al., 2016). A H/C atomic ratio
up to 0.6 in kerogen from the 3.45 Gyr-old Warrawoona Formation (Derenne et
al., 2008) has been considered inconsistent with the prehnite-pumpellyite and
lower greenschist facies metamorphism undergone by the host rock (Marshall et
al., 2007). This interpretation points toward the presence of aliphatics that do not
belong to the Archean kerogen. Thus, additional H source(s) may have
compromised the use of H/C atomic ratio as an indicator of aliphatic hydrocarbon
covalently linked to the kerogen matrix. Moreover, the syngenecity of additional
hydrocarbon sources can be questioned, because only hydrocarbons linked to the

kerogen are definitely considered as syngenetic, as stressed above.

As a screening tool to depict OM quality, Rock-Eval pyrolysis provides
quantitative information about the composition of OM through the Total Organic
Carbon (TOC) content and the Hydrogen and Oxygen Indices (HI and OI), the
latter two being correlated with H/C and O/C ratios, respectively (Espitalié et al.,
1977; 1985a; 1985b; Peters, 1986). Beyond these parameters, Rock-Eval pyrolysis
also provides information to characterize source/reservoir rocks and kerogens as
part of petroleum exploration. Thus, S1 peaks (effluents released during an
isothermal heating at 300°C) are widely recognized as being related to free and

adsorbed compounds whereas S2 peaks (effluents released during pyrolysis above
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300°C) are usually attributed to the thermal cracking of insoluble OM (Romero-
Sarmiento et al.,, 2016). However, (1) solid bitumen, i.e. insoluble OM formed
during the solidification of generated bitumen (Curiale, 1986; Jacob, 1989; Sanei
et al.,, 2015), and (i1) heavy bitumen can yield significant amounts of
hydrocarbons in the S2 peak, especially in the 350-450°C range (Delvaux et al.,
1990; Grundman et al., 2012; Jarvie, 2012; Han et al., 2015; Hackley and
Cardott, 2016). Thus, an S2 peak may be produced by the thermal cracking of a
composite organic mixture consisting of kerogen, solid bitumen and heavy
bitumen which can bias HI determination but also the quantitative assessment of
the thermal maturity of kerogen through the Rock-Eval-derived TpkS2
parameter, the temperature corresponding to the maximum release of
hydrocarbons during pyrolysis of kerogen (Espitalié, 1986; Behar et al., 2001).

A large part of Archean metasediments underwent hydrothermalism leading to
their induration through early silicification, which drastically reduced rock
porosity (Ledevin et al., 2014). Silicification may have then limited OM migration
during thermal alteration provided that silicification was nearly
contemporaneous with sedimentary OM deposition on Archean seafloors. If
correct, Archean silicified metasediments should act as a source-reservoir system
possibly containing a mixture of kerogen, solid bitumen and heavy bitumen,
which may in turn explain why some Archean OM have high H/C atomic ratios
that seem at odds with their thermal alteration. However, such an issue remains
undocumented although Rock-Eval pyrolysis has been used to characterize
Archean OM, focusing on the determination of the TOC content, the HI index and

the TpkS2 (Brocks et al., 2003b, Spangenberg and Frimmel, 2004; Marshall et
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al., 2007; French et al., 2015). Thus, Brocks et al. (2003) reported that pyrolysis
of ca. 2.7 Gyr-old kerogen did not yield enough hydrocarbons to provide reliable
HI and TpkS2 values, in line with the low H/C ratio usually observed in Archean
kerogens. To date, Rock-Eval pyrolysis has not been applied to Archean kerogens
exhibiting unusually high H/C ratio (in comparison to most Archean kerogens),
although a careful analysis of the pyrograms would help in determining whether
the aliphatic hydrocarbons are covalently linked to the kerogen macromolecular

network.

Our purpose was therefore to study the significance of the H/C atomic ratio
determined on isolated Archean OM, exploring the occurrence of additional H
sources. To this end, isolated Archean OM samples were investigated by Rock-
Eval pyrolysis. In addition, Nanoscale Secondary Ion Mass Spectrometry
(NanoSIMS) was performed on selected isolated Archean OM characterized by
distinct H/C ratios to check whether H/C atomic ratios were biased by H in
remaining minerals. Finally, the syngenecity of additional H sources was

addressed using Raman spectroscopy.

2. Material and Methods

2.1. Studied sites

Organic matter was isolated from 12 Archean cherts (Table 1). Seven Farrel
Quartzite samples (GGR2, GRW10, ORW9, GFWEX1-1b, MGTKS1up, MGTKS1

and MGTKS3 samples; 3.0 Ga; Table 1) were collected from the Goldsworthy
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greenstone belt in the Pilbara Craton, Western Australia. Three samples
(GFWEX1-1b, MGTKS1 up and MGTKS1) are bedded black chert and contain
microfossils (Sugitani et al., 2007; Delarue et al., 2017; Tartese et al., 2017). They
are assumed to have been deposited in a shallow evaporitic basin with input of
hydrothermal fluids (Sugahara et al., 2010). GGR2 is a black chert interbedded
with sandstone from the lower unit of the Farrel Quartzite. ORW9 and GRW10
are laminated black cherts from the cherty succession, which conformably
overlies the Farrel Quartzite that is assigned to the Cleaverville Formation.

The 99SA07 chert (3.3 Ga; Table 1) was sampled in the Barberton greenstone
belt, Onverwacht Group, located in the upper part of the Josefsdal Valley, South
Africa. The Josefsdal chert sample consists of silicified volcaniclastic sediments.
It 1s laminated and contains phyllosilicate grains and silica veins (Westall et al.,
2006).

The 07SA22 chert (3.4 Ga; Table 1) was sampled in the Barberton greenstone
belt, South Africa. It consists of silicified detrital sediment comprising volcanic
grain, fluid inclusions, and CM floccules (Bourbin et al., 2012b).

The 4 of 03/08/85 chert (3.4 Ga; Table 1) was collected in the Warrawoona Group,
Pilbara Craton, Marble Bar Greenstone Belt, Western Australia. It mainly
consists of revealed large micro-crystalline silica grains, fractures filled with
quartz and OM floccules (Bourbin, 2012).

The microfossil-bearing Panorama chert (3.4 Ga; Table 1) has been identified in
the East Pilbara Terrane of the Pilbara Craton, Western Australia. This
formation 1s typically of 8-11 m thickness and is composed of various rocks types,

including siliciclastic sedimentary rocks such as sandstone and shale, carbonates
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(mainly bedded and stromatolitic dolomite), chert, and volcaniclastic rock
(Sugitani et al., 2015).

In addition to Archean samples, OM from the Silurian “Zalesie Nowe”’chert (Holy
Cross Mountains, Bardo Syncline, Poland) was studied as a reference for
immature kerogen (Table 1). Zalesie Nowe is representative of typical Paleozoic
primary cherts composed of cryptocrystalline and mostly homogeneous quartz
with a small admixture of phyllosilicate minerals. The Zalesie Nowe chert is
distinctly laminated and consists of well-defined, horizontally extended
undulating laminae that are 10-40 c¢cm thick and composed of amorphous dark
brown to brownish-red organic material. OM has been identified mostly as fossil
remnants of algae and benthic cyanobacterial mats. Graptolites indicate a
Llandovery (early Silurian) age for these samples (Kremer and Kazmierczak,

2005).

2.2. Organic Matter Isolation

Isolation of OM was performed on about ca. 300 g of crushed rock. Carbonates
were removed at room temperature using hydrochloric acid (HCI; 37%; reagent
grade) to minimize the formation of fluorides during hydrofluoric acid (HF)/HCl
maceration. Samples were then centrifuged and washed with distilled water until
reaching neutrality. Concentration of OM was achieved through acid maceration
at room temperature in a mixture of HF (40%, reagent grade) and HCI (2/1, v/v;
reagent grade). Samples were centrifuged and washed with distilled water to

reach neutrality. Neoformed fluorides were then degraded using HCl (37%;
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reagent grade) at 60°C (24 hours). After HCI hot acid maceration, the isolated
OM matter was centrifuged/washed with distilled water until reaching

neutrality. Finally, samples were air-dried at 60°C after final rinsing in acetone.

2.3. Elemental analyses and Rock-Eval pyrolysis

Bulk elemental analyses for carbon (= 0.4 wt.%) and hydrogen (= 0.2 wt.%)
contents were conducted by the SGS Company using thermal conductibility

according to ASTM D 5294.

Isolated OM was analyzed using Rock-Eval 6 (Vinci Technologies) following the
standard pyrolysis protocol described in Behar et al. (2001). Briefly, pyrolysis is
performed in a N2 atmosphere and comprises two steps of pyrolysis, first an
1isothermal phase held for 3 minutes followed by a rise in pyrolysis temperature
from 300 to 650 °C at a rate of 25°C.min!. After pyrolysis, the residual material
was then heated from 300 to 800 °C under purified air in an oxidation oven in
order to calculate TOC value (see Behar et al., 2001 for further details about
calculation procedure). During pyrolysis, the amounts of released effluents,
considered as hydrocarbons (HC) were continuously quantified by a flame
lonization detector [S1 and S2, for the first and second pyrolysis steps,
respectively, in mg HC/g of sample] while released CO and CO2 were
continuously and simultaneously monitored by infrared detectors during both
pyrolysis (S3CO and S3CO2) and combustion (S4CO and S4CO2). The

quantification of the amounts of effluents led to the determination of the TOC
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(wt.%) and of the Hydrogen Index (HI, defined as S2x100/TOC, in mg HC/g of
TOC). The pyrolysis temperature associated with the maximum release of
hydrocarbons, called “TpkS2” was determined. Note that we used TpkS2 rather
than Tmax (Tmax= TpkS2— ATmax; Behar et al., 2001). For comparison, a
ATmax of ca. 40 was used to turn Tmax values from the literature into TpkS2

values (Boussalfir et al., 2012).

2.4. Raman microspectroscopy

The Raman study was performed using a Renishaw inVia micro-spectrometer
equipped with a 532nm argon laser at 20 mW. The spectrometer was first
calibrated using a silicon standard before each session. For each sample analysis,
the laser was focused using a DMLM Leica microscope with a X50 objective and
the spectra were recorded in the 1000-1900 cm-! Raman shift wavenumber
range. The laser power at the sample surface was kept below 1 mW to prevent

thermal alteration of kerogens (Everall et al., 1991).

2.5. NanoSIMS microprobe

The elemental composition of isolated OM was analyzed in situ using the
CAMECA NanoSIMS 50 ion microprobe at the NanoSIMS facility of the Museum
National d’Histoire Naturelle (MNHN) in Paris, France. For NanoSIMS
measurements, isolated OM were pressed and coated with 20 nm of gold. Before

each analysis, the sample surface was pre-sputtered using a 3 nA Cs* primary
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beam current (ES3 = 30 pum; AS3 = 150 um) in order to avoid surficial
contamination and to achieve a saturation fluence of Cs*, leading to constant

secondary ion emissions (Thomen et al., 2014).

Analyses were then carried out using a ca. 300 pA Cs*primary current on 40 um
X 40 um areas (256 X 256 pixels), slightly smaller than the pre-sputtered areas in
order to avoid pre-sputtering edge artifacts. Secondary 12CH-, 12C13C- and 12C14N-
were collected simultaneously in electron multipliers. A 15 % energy filtering was
used to avoid overlapping between the 12C13C- and 2C!2CH- secondary species
peaks. All the NanoSIMS data were corrected for a 44 ns dead time on each
electron multiplier and processed using the Limage software (developed by L.

Nittler, Carnegie Institution, Washington DC, USA).

Areas where 12CH-, 12C13C- and 2C14N- ionic species are co-emitted were selected
in order to minimize any effect of residual hydrogenated minerals (that would
only emit H but no C or N in the case of hydrated silicates, for example). In each

analyzed area, 4 pm? regions of interest (ROIs) were defined.

Note that only five out of the eleven Archean kerogens were analysed by
NanoSIMS due to facility availability. These five were selected either because (1)
their bulk H/C atomic ratio values encompass values commonly reported for
Archean kerogens or (i1) their anomalously high H/C atomic ratio values were

assumed to result from the presence of hydrated minerals (Delarue et al., 2016).
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2.6. Scanning Electron Microscopy

Isolated OM from the Panorama sample was resuspended in ethanol that was
then pipetted and filtered on a polycarbonate filter (10 um pore size). The
polycarbonate filter was then directly gold coated (20 nm thick). Observations
were performed with a TESCAN VEGA II SEM operating with an accelerating

voltage of 15 kV at the Museum National d’Histoire Naturelle (MNHN) facility.

3. Results and Discussion
3.1. Hydrogen-to-Carbon ratios determined on isolated Archean organic

matter

In the present set of studied isolated OM, H/C atomic ratios determined either by
bulk analysis or using NanoSIMS range between 0.15 and 1.35 (Table 1). These
values encompass H/C values usually reported on Archean kerogens (Hayes et
al., 1983; Marshall et al., 2007; French et al., 2015; Ferralis et al., 2016). TOC
values determined through Rock-Eval pyrolysis range between 3.7 and 51.0 wt.%
(Table 1). Most of these values are close to those determined through elemental
analyses (Delarue et al., 2016) except for GRW10 and GFWEX1-1b, for which
Rock-Eval-derived TOC values are nearly half those previously determined using
elemental analysis. This may be related to the heterogeneity of isolated OM in
the test sample. In addition, the lowest TOC values (below 25%; Table 1)
exhibited by some samples indicate that the acid treatment was not always

efficient in removing the mineral matrix from the corresponding cherts. In these
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cases, H/C ratio may be biased by some contribution of H originating from
residual hydrogenated mineral(s), especially neoformed fluorides (Durand, 1980).
By excluding mineral phases using molecular ions strictly related to OM, we
obtain a linear relationship between 12CH-/12C13C- ionic ratio and H/C ratio for
the MGTKS3, 99SA07 and MGTKS1 samples (Fig. 1). This correlation suggests
that the H/C ratio (ca. 1.35) of the 07SA22 isolated OM is largely overestimated
(up to 800%) by residual hydrogenated minerals, as previously suspected
(Delarue et al., 2016). In addition, the very low H/C ratio (0.15) computed by
NanoSIMS is compatible with the very low HI determined by Rock-Eval
pyrolysis, suggesting, in turn, that the HI value is not biased by these residual

minerals.

Furthermore, based on this correlation, the measurement of the 2CH-/12C13C-
lonic ratio in the 4 of 03/08/85 i1solated OM sample leads to a H/C ratio of ca.
0.64(Fig. 1). This value is consistent with the one previously determined by bulk
elemental analysis on another sample from the Warrawoona Formation
(PPRGO006; H/C = 0.62; Derenne et al., 2008). Such a high H/C ratio has been
suggested to be related to a significant contribution of aliphatic moieties linked to
the kerogen matrix (Derenne et al., 2008). However, Marshall et al. (2007)
questioned the origin of these compounds because the metamorphic grade
undergone by the Warrawoona Formation (prehnite-pumpellyite to lower
greenschist) may be too high to preserve such large amounts of aliphatics linked
to the kerogen matrix. In the following, we used Rock-Eval pyrolysis to track the

origin of hydrocarbons released upon pyrolysis of isolated Archean OM.
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3.2. The “apparent” low thermal maturity of Isolated Archean organic

matter: an influence of residual bitumen

For 7 out of the 10 studied Archean OM, HI-values are low, ranging between 2
and 22 mg HC/g of TOC (Table 1). Such values are in the same range as those
reported by Brocks et al. (2003b) and they are in line with the low H/C ratio
commonly observed in Archean kerogens. In contrast, the isolated OM from
GRW10, MGTKS1 and 4 of 03/08/85 present rather high HI values of 65, 82 and
217 mg HC/g of TOC, respectively (Table 1). Moreover, these isolated Archean
organic matter samples are the same as those which exhibit the highest H/C
values (determined by elemental analysis and/or NanoSIMS), ranging from
between 0.55 to 0.85 (Table 1).

The Zalesie Nowe kerogen is characterized by Rock-Eval parameters (HI=240 mg
HC/g TOC and TpkS2 = 478 °C; Table 1) and an S2 Gaussian curve (Fig. 2)
commonly observed for the thermal release of hydrocarbonaceous compounds
covalently linked to the kerogen matrix of thermally-altered OM (Behar et al.,
2001; Grundman et al., 2012). Note that this TpkS2 is close to those previously
determined on this Silurian chert (TpKS2 = 482-488°C, i.e. Tmax = 442-448°C;
Bauersachs et al., 2009). In contrast to this Silurian kerogen, the isolated
Archean OM was characterized by pyrograms displaying shoulders and/or
multimodal release of hydrocarbons (Fig. 2). Most of the isolated Archean OM
exhibits a relatively high S1 peak followed by a less intense and large S2 peak

with a maximum release of hydrocarbons ranging between ca. 326 and 448°C
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(Fig. 2, Table 1). Such low TpkS2 values are at variance with the metamorphism
up to greenschist metamorphism facies undergone by the host rocks. Indeed, the
latter is associated with TpkS2 values higher than ca 475°C (Tmax = 436-464°C;
Spangenberg and Frimmel, 2004). These pyrolytic features should then be
regarded as anomalies.

Contamination by oil-based drilling mud lubricant is classically invoked to
explain large S1 and S2 shoulders (Peters, 1986). However, this cause is unlikely
to explain the high S1 peak and the release of hydrocarbons at low S2 pyrolysis
temperature in the presently studied rocks as they were sampled from outcrop.
High S1 and especially S2 shoulders at low pyrolysis temperature may also be
caused by the presence of indigenous thermolabile OM, such as residual heavy oil
(Clementz, 1979) or solid bitumen (Sanei et al., 2015). In the following, the term
“thermolabile” is used to account for the OM which is cracked at rather low
temperature but which does not belong to the macromolecular network of the
kerogen. Indeed, we cannot preclude the existence of non-volatile solid bitumen,
the existence of which cannot be addressed by studying isolated OM. Indeed,
further investigations studying OM in its mineralogical context are required (e.g.
in situ approach; Bernard et al., 2012; Sanei et al., 2015). Although the
aforementioned coexistence of solid bitumen 1s not excluded, S2 shoulders can be
assigned to the presence of residual bitumen as evidenced by SEM in the
Panorama sample. Indeed, the Panorama isolated OM is an ideal target when
looking for non-thermally degraded bitumen because it underwent a mild-
thermal alteration in comparison to other studied Archean OM, as revealed by

comparison between Raman spectra (Delarue et al., 2016).
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SEM imaging of the Panorama isolated OM reveals the existence of bitumen
droplets as revealed by surface degassing features caused by the SEM beam (Fig.
3a). Despite the high fluorescence level rendering the Raman spectra less
accurate (Fig. 3b), the bitumen droplets share a similar structural order with the
surrounding OM (Fig. 3b), consistent with previous Raman spectra acquired on
other OM samples from the Strelley Pool Formation (Lepot et al., 2013). In turn,
we interpret these elements as showing that the bitumen underwent the same
degree of thermal alteration as the host rock. It may thus be syngenetic, even
though bitumen recovered in Archean rocks i1s commonly assigned to
contamination. However, it also implies that residual bitumen and related
hydrocarbons can bias the determination of the H content of the macromolecular
structure of the Archean kerogens.

From a molecular point of view, and in contrast to previous studies stating that a
first pyrolysis step at low temperature (ca. 300 to ca. 350°C) is enough to release
thermolabile compounds (Brocks et al., 2003b; Marshall et al., 2007; Derenne et
al., 2008), Rock-Eval pyrograms show that this first pyrolysis step is not
systematically sufficient to ensure (i) the thermal desorption of the whole
residual bitumen content, which can be trapped or adsorbed within/onto the
surface of kerogen (Oehler et al. 1977), or (i1) the cracking of solid bitumen.
Indeed, release of thermolabile OM still occurs at pyrolysis temperatures up to
400°C, when using the thermal degradation program of the Rock-Eval device.
This echoes previous observations indicating that heavy fractions of petroleum
release hydrocarbons in the 350 to 450°C range (Clementz, 1979). Considering

that the study of the molecular composition of Archean hydrocarbons by
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analytical pyrolysis was performed using a faster rise in pyrolysis temperature,
we suggest that the energy provided by pyrolysis at 300-350°C was not enough to
release the entire content of thermolabile hydrocarbons. Hence, the molecular
content observed at higher pyrolysis and in a faster rise in pyrolysis temperature
can encompass hydrocarbons originating from both (i) the pyrolysis of

thermolabile compounds and (i1) the thermal cleavage of the kerogen matrix.

3.3. Evidence for multiple phases of OM by Rock-Eval pyrolysis

In addition to the presence of S2 shoulders occurring at low pyrolysis
temperature, the pyrograms from the isolated Archean OM are characterized by
the release of hydrocarbon effluents at higher pyrolysis temperature, as reflected
by one or two well-defined S2 peaks ranging from between 471 and 586°C (Fig.
2). In total, 7 out of 10 isolated Archean OM samples are characterized by the
release of hydrocarbons in a narrow pyrolysis temperature range (576 to 586°C).
Such high pyrolysis temperatures are in line with the metamorphic grade
undergone by these Archean rocks, ranging between prehnite-pumpellyite to
greenschist facies (Marshall et al., 2007; Sugitani et al., 2007). They correspond
to the thermal cleavage of kerogen-bound hydrocarbon. Nonetheless, multiple
generation of hydrocarbons upon pyrolysis has also been observed in the GRW10,
MGTKS1up, MGTKS3 and the 4 of 03/08/85 isolated OM (Fig. 2). The multimodal
release of hydrocarbons points towards the existence of two distinct pools of OM
generating hydrocarbons at high pyrolysis temperature. This interpretation is

supported by the existence of two different types of OM within the GRW10 chert,
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as revealed by both microscopy and in situ Raman spectroscopy (Figs. 3c,d)
showing that OM dispersed within the mineral matrix and that from
hydrothermal veins do not exhibit similar Raman first-order spectrum.

Indeed, in thermally-altered OM, the ratio between the intensities of the D and G
bands (In/Ig) has been shown to describe the evolution of the structural order of
OM during thermal alteration (Oberlin, 1984; Jehlicka and Bény, 1992; Jehlicka
et al.,, 2003; Rouzaud et al., 2015). The Raman spectrum determined on OM
contained within a mineral matrix is typically observed in OM that has
undergone thermal alteration up to 320-350°C (Fig. 3d; Lahfid et al., 2010) and
is, therefore, consistent with the greenschist facies metamorphism undergone by
the metasediments from the Farrel Quartzite (Sugitani et al., 2007). In
comparison to this OM, which exhibits an Ip/lg ratio of ca. 1.5, OM from a
hydrothermal vein presents a higher Ip/lg ratio (ca. 2.0; Fig. 3d). Such a Raman
spectrum is generally assigned to a metamorphic peak temperature above 400°C
(Beyssac et al., 2002), suggesting that the “hydrothermal“ OM has undergone a
higher thermal alteration than OM from the mineral matrix. Note that in the
following, we  distinguish  between primary hydrothermalism, 1i.e.
contemporaneous hydrothermal activity (Westall et al.,, 2015a, 2015b), and
secondary hydrothermalism occurring after rock formation. In addition to higher
thermal alteration possibly related to secondary hydrothermalism, other factors
may also imply changes in the structural order of OM. Studying OM from the 2.0
Gyr-old Zaonega Formation, Van Zuilen et al. (2012) showed that graphite films
along mineral surfaces can even be formed under greenschist metamorphism

facies usually associated with OM characterized by a lower structural order. For
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these authors, peculiar geological conditions, such as hydrothermal circulation,
can imply local changes in the structural order of OM. Although not fully
understood, such local processes also likely explain the observed difference in the
structural order between OM from the sedimentary matrix and from secondary
hydrothermal veins.

Since OM from hydrothermal veins does not have the same structural order as
OM from the sedimentary matrix, it is not possible to draw conclusions as to
syngenecity of the two types. In turn, and in the absence of unequivocal criteria
to determine 1its syngenecity, the occurrence of OM originating from
hydrothermal veins must be taken into account to avoid any bias in the
determination of the H/C atomic ratio of the kerogens related to OM from the
main mineral matrix, especially in hydrothermally-altered metasediments such
as Archean geological records. Therefore, characterization of the molecular
content of Archean kerogens through thermal degradation should be performed

on selected areas of the sample that are devoid of hydrothermal veins.

4. Conclusion

Rock-Eval pyrolysis of isolated OM from several Archean samples reveals the co-
occurrence of various OM pools characterized by different thermal stabilities. In
contrast to non-metamorphosed kerogen, as exemplified by the Zalesie Nowe
kerogen, pyrolysis of the Archean OMs shows that they do not consist solely of
hydrocarbons linked to the macromolecular structure of insoluble OM.
Accordingly, the H/C atomic ratios determined on isolated Archean OM do not

solely correspond to syngenetic hydrogenated organic compounds linked to the



456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

kerogen matrix. Instead, they can also reflect the H composition of minerals as
revealed by NanoSIMS, of thermally labile residual bitumen and/or solid
bitumen, and of OM from secondary hydrothermal veins generating hydrocarbons
at high pyrolysis temperature, for which syngenecity is still an open issue.
Because of the low amount of hydrocarbons linked to the syngenetic Archean
kerogen matrix, any residual trace of bitumen or OM from secondary
hydrothermal veins can bias the use of the H/C ratio associated with the
macromolecular network. This study shows that Rock-Eval pyrolysis provides a
useful tool (i) to evaluate the significance of H/C atomic ratio as a proxy for
hydrocarbon preservation in Archean kerogens, and also (ii) to better constrain
the source of hydrocarbons released during thermal analytical degradation

providing in turn, a frame for future molecular investigations.
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Figure 1: Linear relationship between the 2CH-/12C13C- ionic ratio determined
with NanoSIMS and bulk H/C atomic ratio determined with bulk analyses. Using
the linear relationship between the 12CH-/12C13C- molecular ionic ratio and bulk
H/C atomic ratio, the H/C atomic ratio values of sample 07SA22 (ca 0.15) and of
sample 4 of 03/08/85 (ca 0.64) kerogen samples were computed. Error bars
represent the standard errors related to the mean 12CH-/12C13C- ionic ratio

determined on selected regions of interest (ROI).

Figure 2: Rock Eval pyrograms of Silurian (0.42 Gyr-old) and Archean (3.0 to 3.5
Gyr-old) silicified cherts. Left column shows the whole pyrograms and the
corresponding TpkS2 values (bold character). Right column focuses on the
hydrocarbon released/generated during the second step of pyrolysis involving a
rise in pyrolysis temperatures from 300 to 650 °C at a rate of 25°C.min-1. TpkS2
values are indicated in bold character whereas other pyrolysis temperatures

associated with a release of hydrocarbons are indicated in regular character.

Figure 3: (a) SEM image of a bitumen droplet recovered within the Panorama
kerogen. (b) Raman spectra measured on the bitumen droplet presented in Fig 3a
and on surrounding OM. (¢) GRW10 thin section photography illustrating the
existence of hydrothermal veins cutting siliclastic successive deposits (mineral
matrix). (d) Raman spectra determined on OM from the mineral matrix (red
Raman spectra) and from the hydrothermal vein (blue Raman spectra) observed

within the GRW10 thin section presented in (c)
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Table 1: Rock-Eval-derived parameters (S1, S2, TpkS2, TOC and HI) and H/C atomic ratios determined on Silurian (0.42 Gyr-old) and Archean
(3.0 to 3.5 Gyr-old) silicified cherts. H/C ratios were determined with bulk elemental analysis and with NanoSIMS using the ratio between the
12C3C- and "C, molecular ionic species. “n.d.” indicates that parameter was not determined.

Sample Geological Formation  Age Sl S2 TpkS2 TOC HI H/C 2B H/C
name , country (Gyr) (mg/g) (mg/g) (°C) (w.%) (mg/g TOC) (Bulk analysis) /C,  (NanoSIMS)
ZALESIE Zalesie Nowe, Poland 0.42 2.6 122.5 478 51.1 240 0.95 n.d. n.d.
GGR2 Farrel Quartzite, Australia 3.0 0.5 0.9 386 18.5 5 0.42 n.d. n.d.
GRW10 Farrel Quartzite, Australia 3.0 12.0 19.1 326 29.5 65 0.55 n.d. n.d.
ORW9 Farrel Quartzite, Australia 3.0 0.5 1.1 433 20.7 5 0.38 n.d. n.d.
GFWEX1-1b Farrel Quartzite, Australia 3.0 1.0 3.0 368 17.1 18 0.31 n.d. n.d.
MGTKS1up Farrel Quartzite, Australia 3.0 24 5.5 586 40.8 14 0.30 n.d. n.d.
MGTKSI1 Farrel Quartzite, Australia 3.0 36.1 30.8 372 37.7 82 0.85 7.4 0.85
MGTKS3 Farrel Quartzite, Australia 3.0 0.4 0.9 582 46.9 2 0.24 1.8 0.23
99SA07 Kromberg, South Africa 33 n.d. n.d. n.d. n.d. n.d. 0.39 34 0.40
07SA22 Hoeggonoeg, South Africa 3.4 0.3 0.7 395 17.6 4 1.35 1.1 0.15
Panorama Strelley Pool, Australia 34 4.6 54 448 242 22 n.d. n.d. n.d.

4 of 03/08/85 Warrawoona, Australia 3.5 2.3 8.0 471 3.7 217 n.d. 5.5 0.64
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