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On a new conjecture about super-monochromatic factorisations and ultimate periodicity

We study a conjecture linking ultimate periodicity of infinite words to the existence of colorings on finite words avoiding monochromatic factorisation of suffixes, with the extra condition that the ordered concatenation of elements of this factorisation remains monochromatic. This type of results shows the limits of Ramsey theory in the context of combinatorics on words. We show some reductions of the problem and the example of the Zimin word. Using the new notion of consecutive length, we show that squarefree words fulfill the conjecture.

In [START_REF] Wojcik | Monochromatic factorisation of words and periodicity[END_REF], we showed the following theorem : Theorem 1. Let x be an infinite word over an alphabet A. Then x is periodic if and only if for all coloring of its set of factors, x admits a monochromatic factorisation.

The proof of this theorem consists in building a particular coloring, depending on a non-periodic word x, such that x admits no factorisation (into finite words) with all factors of the same color.

We introduce and study now a more recent conjecture, stated as follows :

Conjecture 1. Let x be an infinite word over an alphabet A. Then x is ultimately-periodic if and only if for all coloring of the set of finite words over A, x admits a suffix having a super-monochromatic factorisation.

A super-monochromatic factorisation is an expression of the form u 1 u 2 u 3 . . . where the (u i )'s are finite words and the set of words (u n1 u n2 . . . u n k ) for k ≥ 1 and n 1 < n 2 < . . . < n k is monochromatic. As for the previously stated theorem, our work will consist in building colorings forbidding the monochromaticity of certain substructures. This paper is organized as follows. In a short introduction we present some notations and basic definitions from combinatorics on words. In a first part 1 we present this conjecture in the context of Ramsey theory. Namely we use a theorem of Hindman to show that an infinite word x admits an element in its subshift having a super-monochromatic factorisation. In a second part we prove some reductions of the problem, in particular that we may freely assume that the words (u n1 u n2 . . . u n k ) are factors of our base word x. In a third part we study the Zimin word and provide an optimal construction for this word and the related period-doubling word. In a fourth part we introduce the consecutive length associated to x and show some of its properties. Finally, we build a coloring showing that squarefree words satisfy the conjecture, with three colors.

Introduction

In this part we present some basic definitions used throughout the paper.

Let A be a set, called the alphabet, which may be finite or infinite. We will be working with a fixed infinite word x, so that A will be taken countable, equal to the set of letters appearing in x.

An infinite word x is an element of A N . A finite word is an element of ∪ n≥1 A n , and we note A + the set of finite words. If u = a 1 a 2 . . . a n then we set n = |u| its length and {a 1 a 2 . . . a i | 1 ≤ i ≤ n} its set of prefixes. If x is a finite or infinite word and n ≥ 1, we note P n (x) its prefix of length n. A factor u of v is a finite word appearing in v.

Let T : x 0 x 1 x 2 . . . ∈ A N -→ x 1 x 2 x 3 . . . ∈ A N denote the shift on infinite words, depriving an infinite word of its first letter. If x is an infinite word, a suffix of x is an element of the form T k (x) for some k ≥ 0.

A factorisation of an infinite word x is an expression of the form x = u 1 u 2 u 3 u 4 . . . where the (u i ) ′ s are finite words.

Let X be any set. A coloring on X is any map : C : X -→ C where C is a finite set, making the abuse of noting the map C and its image by the same symbol (which will always be C). We will call the set C the set of colors, for example C = {red, blue}.

Suppose that a set X and a coloring C on X are given. A subset Y of X is called monochromatic if the restriction of C to Y is constant.

Definition 1 (Super-monochromatic factorisation). Let y be an infinite word over A, and C a coloring on A + . A factorisation

y = u 1 u 2 u 3 u 4 . . .
is said to be super-monochromatic if the set of finite words :

(u n1 u n2 . . . u n k ) k≥1,n1<n2<...<n k is monochromatic.

Context of Ramsey theory

In this section we put conjecture 1 in the context of Ramsey theory. We state Hindman's theorem, show the easy part of the conjecture, and show that for any coloring of A + and infinite word x there is y in the subshift of x having a super-monochromatic factorisation.

Denote by P(N) the set of finite subsets of N. Write A < B for A, B ∈ P(N) when max A < min B.

Theorem 2 (Hindman). i) For any coloring on N, there exists an infinite subset M = {m 1 < m 2 < m 3 < . . .} of N such that the set

(m n1 + m n2 + . . . + m n k ) k≥1,n1<n2<...<n k is monochromatic.
ii) For any coloring on P(N), there exists an infinite subset M = {A 1 < A 2 < A 3 < . . .} of P(N) such that the set

(A n1 ∪ A n2 ∪ . . . ∪ A n k ) k≥1,n1<n2<...<n k is monochromatic.
Hindman's theorem is known as part i), and the implication i) ⇒ ii) may be found easily in the litterature. Proposition 1. Let x be an infinite word over A, and C a coloring of A + . If x is ultimately-periodic, then x admits a suffix having a super-monochromatic factorisation.

Proof. Write x = uvvv . . . where u and v are finite words. Consider the coloring C of N * defined for i ≥ 1 by :

C(i) = C(v i ).
By Hindman's theorem, there exists an infinite subset M = {m 1 < m 2 < m 3 < . . .} such that the set of words v mn 1 +mn 2 +...+mn k k≥1,n1<n2<...<n k is monochromatic. So that the suffix v m1 v m2 v m3 . . . has a super-monochromatic factorisation.

Endow A with the discreet topology, and note

Ω(x) = {T k (x) | k ≥ 0}
the subshift of x. Recall that a factor of x is said to be recurrent if it appears an infinite number of times in x. The word x itself is said to be recurrent if every factor of x is recurrent. If y is an infinite recurrent word such that every factor of y is a factor of x, then y ∈ Ω(x). If A is finite, then Ω(x) admits a recurrent word by a compacity argument. Proposition 2. Let x be an infinite word over A such that Ω(x) admits a recurrent element, and C a coloring of A + . Then there exists y ∈ Ω(x) such that y has a super-monochromatic factorisation.

Proof. Let z ∈ Ω(x) be a recurrent word. We build a sequence (u n ) n≥1 of factors of z such that :

∀n ≥ 1 u 1 u 2 . . . u n is a suffix of u n+1 ,
a property that we call the suffix property, as follows. Take for u 1 any factor of z. Since u 1 is recurrent, there exists a finite word v such that u 1 vu 1 is a factor of z, and define

u 2 = vu 1 . If u 1 , u 2 , . . . u n are defined such that ∀k = 1 . . . n u 1 u 2 . . . u k-1 is a suffix of u k and u 1 u 2 .
. . u n is a factor of z, then there exists a finite word v such that u 1 u 2 . . . u n vu 1 u 2 . . . u n is a factor of z. In this case, we set u n+1 = vu 1 u 2 . . . u n . It is clear that (u n ) defined by this induction process satisfy the desired property.

For a finite subset A of N * , set

u A = i∈A u i
and apply Hindman's theorem to the coloring C of P(N) for A ⊂ N * a finite set by :

C(A) = C(u A )
to obtain an infinite sequence M = {A 1 < A 2 < A 3 < . . .} such that the set of words u An 1 ∪An 2 ∪...∪An k k≥1,n1<n2<...<n k is monochromatic. The suffix property implies that these words are factors of x. And since u A∪B = u A u B whenever A < B, the set of concatenations

u An 1 u An 2 . . . u An k k≥1,n1<n2<...<n k
is monochromatic and is a subset of the set of factors of x. This shows that the infinite word y = n≥1 u An belongs to Ω(x) and has a super-monochromatic factorisation.

A few reductions

Let x be an infinite word over A. Let

T k (x) = u 1 u 2 u 3 u 4 . . . (k ≥ 0)
be a factorisation of a suffix of x.

In this section we define some colorings that allow us to reduce the problem to a certain extend. We present three reductions. The first one allows us to reduce to the case where x is recurrent at the cost of one color. The second allows us to reduce to the case where all the (u n1 u n2 . . . u n k ) k≥1,n1<n2<...<n k are factors of x, at zero cost. The third one allows us to reduce to the case where the (u i ) satisfy the suffix property, namely that ∀n ≥ 1, u 1 u 2 . . . u n is a suffix of u n+1 , at the cost of one color.

In this section, every statement concerning monochromatic factorisations is made with respect to the latest coloring defined. We start by the consideration of first occurrences of factors of x.

Write x = x 0 x 1 x 2 x 3 . . . where the (x i )'s are elements of A. For u a factor of x, let :

x A(u) x A(u)+1 . . . x B(u)-1
be the first occurrence of u in x. In other words :

A(u) = min{k ≥ 0 | u = x k x k+1 . . . x k+|u|-1 } = min{k ≥ 0 | u = P |u| (T k (x))}
where we recall that P n (y) is the prefix of length n of y.

We have the obvious relation B(u) -A(u) = |u|. Moreover, if v is a prefix of u then A(v) ≤ A(u), and if v is a suffix of u then B(v) ≤ B(u). In this two functions resides the relative information between u and x, and are relevant mostly in the non-ultimately periodic case, as shows the next proposition. Proposition 3. Let x be a non-ultimately periodic word over A. Then for all k ≥ 0, there exist N ≥ 0 such that for all n ≥ N , we have

k = A(P n (T k (x)))
in other word, for any suffix y of x, a prefix of y that is long enough has its first occurrence where y starts.

Proof. The infinite word x is non-ultimately periodic if and only if

∀n, m ∈ N, n = m =⇒ T n (x) = T m (x).
For k ≥ 0, we have T k (x) = T j (x) for all j = 0 . . . k -1, so that

∀j = 0 . . . k -1, ∃N j ≥ 0, ∀n ≥ N j , P n (T k (x)) = P n (T j (x)).
This shows that for all n ≥ max{N j | j = 0 . . . k -1}, P n (T k (x)) does not appear at a place j for j < k. Hence the proposition.

Thus in an expression of the form T k (x) = u 1 u 2 u 3 . . ., if the (u i )'s are long enough, we may assume that A(u 1 ) = k, and B(u i ) = A(u i+1 ) for i ≥ 1.

Definition 2. Let C be the coloring defined on A + for u ∈ A + by :

• C(u) = red if u is a factor of x that is not recurrent, • C(u) = blue if u is not a factor of x or if u is a recurrent factor of x.
Proposition 4. Assume that no suffix of x is recurrent. Then no suffix of x has a super-monochromatic factorisation for the coloring C defined above.

Proof. Assume by contradiction that x has a suffix T k (x) = u 1 u 2 u 3 u 4 . . . (k ≥ 0) having a monochromatic factorisation. In view of the definition of a supermonochromatic factorisation, u 1 may be taken arbitrary long. Since T k (x) is not recurrent, if u 1 is long enough then it will contain a non-recurrent factor of x, and hence u 1 is red. This shows that the factorisation is red.

This implies that for all n ≥ 2, the words u 1 u n are red. In particular, they are factors of x. But since x is non-ultimately periodic (if this was the case, x would have a recurrent suffix), lim n A(u 1 u n ) = +∞ and u 1 appears an infinite number of times in x, contradicting the fact that it is non-recurrent. Definition 3. Let C N F be the coloring defined on the set of non-factors of x for u ∈ A + by :

• C N F (u) = red if u is not a factor of x and every decomposition of u as a product of factors of x has at least tree terms

• C N F (u) = blue if u is not a factor of x and may be written as the concatenation of two factors of x Notice, in this definition, that we do not specify the color of factors of x.

Proposition 5. Let T k (x) = u 1 u 2 u 3 . . . be a factorisation of a suffix of x, and for A ⊂ N * a finite subset, set u A = i∈A u i . Assume that ∀ν ≥ 0, ∃A ∈ P(N * ) such that min A ≥ ν and u A is not a factor of x.

Let C be a coloring of A + such that C(u) = C N F (u) whenever u is not a factor of x. Then the set

(u n1 u n2 . . . u n k ) k≥1,n1<n2<...<n k is not C-monochromatic.
Proof. Assume by contradiction that the set (u A ) P(N * ) is monochromatic. Take ν 1 ≥ 0 and A ≥ ν 1 such that u A is not a factor of x. Take ν 2 > max A and B ≥ ν 2 such that u B is not a factor of x, and set z = u A u B . The word z belongs to the monochromatic set, is a non-factor of x and if z = v 1 v 2 where v 1 and v 2 are factors of x, then we have : u A is a factor of v 1 or u B is a factor of v 2 , and at least one of u A or u B is a factor of x, which is impossible. This shows that any expression of z as the concatenation of factors of x must contain at least tree terms, so that z is red and the factorisation is red. Now let i, j ∈ N * be such that i + 2 ≤ j. If u i u j is not a factor of x, then it must be blue, but this is a contradiction with the monochromatic assumption. Hence u i u j is a factor of x, and actually the same proof shows that u A is a factor of x whenever A is the union of two intervals. Now if A = I 1 ∪ I 2 ∪ I 3 is the union of tree intervals, then since u I1∪I2 is a factor of x, u A is either blue or a factor of x. By the monochromatic assumption, u A is a factor of x. Proceeding by induction, we see that u A is a factor of x for all finite subset A of N, but this is a contradiction with our first hypothesis. We see in these conditions that u 1 u 2 is red, so that the factorisation is red.

Let n ≥ 1, and consider the red factor u 1 u 2 . . . u n u n+2 of x. Write u 1 u 2 . . .

u n u n+2 = v 1 v 2 with A(v 1 ) = A(u 1 u 2 . . . u n u n+2 ) and B(v 2 ) = B(u 1 u 2 . . . u n u n+2 ). If v 1 is a prefix of u 1 u 2 . . . u n , then A(v 1 ) ≤ A(u 1 u 2 . . . u n ) = A(u 1 ). Also in this case, u n+2 is a suffix of v 2 so that B(v 2 ) ≥ B(u n+2 ). This implies, with z = u 1 u 2 . . . u n u n+2 , |z| = B(z) -A(z) ≥ B(u n+2 ) -A(u 1 ) = |u 1 u 2 . . . u n u n+1 u n+2 | = |z| + |u n+1 | > |z|
wich is a contradiction. So v 2 must be a suffix of u n+2 . So we have

B(v 2 ) ≤ B(u n+2 ) ≤ B(u 1 u 2 . . . u n u n+2 ) = B(v 2 ) So that B(u 1 u 2 . . . u n u n+2 ) = B(u n+2 ). But this implies that u 1 u 2 . . . u n is a suffix of u n+1 .

The example of the Zimin word

In this section we study the Zimin word, which is an infinite word over an infinite alphabet. No knowledge of this word is required. We build a coloring answering to the conjecture that has 2 colors. In the end of this section we will present how to adapt these results to the doubling-period word, wich is a word over the alphabet {0, 1}. When the author writes these lines, these are the only fully complete examples with 2 colors available.

Definition 5. Define the Zimin word Z as the infinite word over the infinite alphabet A x = {x 1 , x 2 , x 3 , . . .} by one of the tree equivalent definitions :

1. Z = lim Z n where Z 1 = x 1 , and

Z n+1 = Z n x n+1 Z n for n ≥ 1 2. Z = n≥1 x val2(n)+1
where val 2 is the 2-adic valuation.

3. Z is the fixed point of the morphism ϕ :

x i → x 1 x i+1 (i ≥ 1) so that Z = x 1 x 2 x 1 x 3 x 1 x 2 x 1 x 4 x 1 x 2 x 1 x 3 x 1 x 2 x 1 x 5 x 1 x 2 x 1 x 3 . . .
We leave the proof of the equivalence between these definitions to the reader, and will use the first one for proofs.

For a factor u of Z, set

k(u) = max{k ≥ 0 | x k appears in u},
and notice that for k ≥ 1, k = k(u) if and only if u is a factor of Z k but is not a factor of Z k-1 . Since the letter x k appears only once in Z k , we see that the letter x k(u) appears only once in the factor u. More generaly, between two occurences of a letter x k , there must be a letter x l with l > k.

Definition 6. Define the two sequences of words (u n ) n≥1 and (v n ) n≥1 by u 1 = v 1 = x 1 and for n ≥ 1 :

u n+1 = x n+1 u 1 u 2 . . . u n and v n+1 = v n v n-1 . . . v 1 x n+1 .
For A, B ⊂ N two finite sets, let

u A = → i∈A u i = u i1 u i2 • • • u i k where A = {i 1 < . . . < i k } and v B = ← j∈B v j = v j k v j k-1 • • • v j1 where B = {j 1 < . . . < j k }. Proposition 7. Let n ≥ 1. Then 1.
The proper suffixes of u n are exactly the words u A where A ⊂ [1, n[.

For all

A ⊂ [1, n[, Z n-1 = v [1,n[\A u A and u n = x n v [1,n[\A u A Proof. From the relation |Z n+1 | = 1 + 2|Z n | and |Z 1 | = 1 one derive |Z n | = 2 n -1. Similarly we get |u n | = 2 n-1 . It is clear that each u A for A ⊂ [1, n[ are proper suffixes of u n . Since we have |u A | = i∈A 2 i-1
, we see that u A is characterized by its length, and that every length is obtained that way, proving the statement.

For the second relation, notice that u A is the reversal of v A , and use the fact that Z n is a palindrome and u n is the suffix of length 2 n-1 of Z n .

Proposition 8. Every factor u of Z writes uniquely in the form :

u = u A x k(u) v B with A, B ⊂ [1, k(u)[.
Proof. Unicity is clear by consideration of the lengths. For existence, write Z k(u) = λuρ and use the previous proposition.

Proposition 9. Let u, v be two factors of Z such that k(u) < k(v), and write :

u = u A1 x k(u) v B1 and v = u A2 x k(v) v B2 with A 1 , B 1 ⊂ [1, k(u)[ and A 2 , B 2 ⊂ [1, k(v)[. Then : 1. uv is a factor of Z if and only if k(u) / ∈ A 2 and B 1 = [1, k(u)[\(A 2 ∩ [1, k(u)[). 2. if uv is a factor of Z then uv = u A1∪{k(u)}∪(A2∩]k(u),k(v)[) x k(v) v B2 3. u is a suffix of v if and only if k(u) ∈ B 2 and B 2 ∩ [1, k(u)[= B 1
Proof. Assume that uv is a factor of Z. Then we must have k(u) / ∈ A 2 for otherwise the factor uv of Z would contain two occurences of x k(u) and no letter x l with l > k(u) between them. Now the recursive definition of Z shows that each occurrence of a letter x k is followed by the word Z k-1 . This shows that

x k(u) v B1 u A2∩[1,k(u)[ = u {k(u)} and this implies that B 1 = [1, k(u)[\(A 2 ∩ [1, k(u)[). Conversely, if B 1 = [1, k(u)[\(A 2 ∩ [1, k(u)[), then x k(u) v B1 u A2∩[1,k(u)[ = u {k(u)}
and we have :

uv = u A1 u {k(u)} u A2∩]k(u),k(v)[ x k(v) v B2
showing at once that uv is a factor of Z and the desired formula.

Since

k(u) < k(v), u is a suffix of v if and only if u is a suffix of v B2 . It is clear that u is a suffix of v k(u) v B1 so that it is enough to prove the property assuming u = v k(u) v B1 . Since v n ends with the letter x n , v k(u) v B1 is a suffix of v B2 if and only if it is a suffix of v B2∩[1,k(u)] and this shows that k(u) ∈ B 2 ∩ [1, k(u)]. A similar induction shows that B 1 ⊂ B 2 ∩ [1, k(u)[. If k ∈ B 2 ∩ [1, k(u)[ and k /
∈ B 1 , then in v the letter x k has two occurrences, without a letter x l with l > k between them, and this is a contradiction. Corollary 1. Let u, v and w be tree factors of Z with k(u) < k(v) < k(w). Then :

1. if uv and vw are factors of Z, then uvw is a factor of Z.

2. if uw and vw are factors of Z, then u is a suffix of v.

Proof. Write u = u A1 x k(u) v B1 , v = u A2 x k(v) v B2 and w = u A3 x k(w) v B3 .
From the formula obtained for uv, and the fact that vw being a factor only relies on relations between k(v), B 2 and A 3 , we see that, assuming that uv is a factor of Z, the word vw is a factor of Z if and only if uvw is a factor of Z. Moreover we have :

uvw = u A1∪{k(u)}∪(A2∩]k(u),k(v)[)∪{k(v)}∪(A3∩]k(v),k(w)[) x k(w) v B3 .
The second statement is similar : uw is a factor of Z implies k(u) / ∈ A 3 , and since

B 2 = [1, k(v)[\(A 3 ∩ [1, k(v)[) so that k(u) ∈ B 2 . Moreover, B 2 ∩ [1, k(u)[= [1, k(u)[\A 3 ∩ [1, k(u)[= B 1
showing that u is a suffix of v.

Recall that if A, B are finite subsets of N, we write 

A < B if max A < min B. We say that A ⊂ N is an interval if there are k ≤ l ∈ N such that A = [k, l].
m2 is a prefix of Y 2 , so that u m1 u m2 is a prefix of Y . If u m1 u m2 . . . u m k is a prefix of Y with m 1 < m 2 < . . . < m k
and Y k+1 is defined as the suffix of Y where u m1 u m2 . . . u m k ends, then let m k+1 be such that Y k+1 starts with the letter x m k+1 . We must have m k+1 > m k , and u m k+1 is a prefix of Y k+1 , so that u m1 u m2 . . . u m k u m k+1 w n = u An x k(wn) v Bn for all n ≥ 1. We have

Y = n≥1 u An x k(wn) v Bn = u A1 n≥1 x k(wn) v Bn u An+1 Y = u A1 n≥1 u {k(wn)}∪(An+1∩]k(wn),k(wn+1)[) .
By the Lemma, the sets {k(w n )} ∪ (A n+1 ∩]k(w n ), k(w n+1 )[) become intervals for large n. So that there exist N ≥ 1 such that for all n ≥ N ,

{k(w n )} ∪ (A n+1 ∩]k(w n ), k(w n+1 )[) = [k(w n ), k(w n+1 )[ and ∅ =]k(w n ), k(w n+1 )[⊂ A n+1 . But the fact that w n w n+1 is a factor of Z implies that k(w n ) / ∈ A n+1
, and all this shows that

η(w n+1 ) = k(w n ). Now, since w n is a suffix of w n+1 , we have B n+1 ∩ [1, k(w n )[= B n ,

and since

w n w n+1 is a factor of Z, we have

A n+1 ∩ [1, k(w n )[= [1, k(w n )[\B n = [1, k(w n )[\(B n+1 ∩ [1, k(w n )[)
and with the fact that η(w n+1 ) = k(w n ) we see that w n+1 is red. Thus the factorisation is super-monochromatic with respect to the color red. This implies that w n w n+2 is red. We have w n w n+2 = u An∪{k(wn)}∪(An+2∩]k(wn),k(wn+2)[) x k(wn+2) v Bn+2 .

But ]k(w n+1 ), k(w n+2 )[⊂ A n+2 and k(w n+1 ) / ∈ A n+2 , so that η(w n w n+2 ) = k(w n+1 ). By the red condition, we have

A n ∪ {k(w n )} ∪ (A n+2 ∩]k(w n ), k(w n+1 )[) = [1, k(w n+1 )[\(B n+2 ∩ [1, k(w n+1 )[) = [1, k(w n+1 )[\B n+1 = A n+2 ∩ [1, k(w n+1 )[
and we see that k(w n ) ∈ A n+2 . But since w n w n+2 is a factor of Z, k(w n ) / ∈ A n+2 , which is a contradiction.

We end this section by producing a coloring for the doubling-period word D, with two colors, such that D admits no suffix having a super-monochromatic factorisation. We mention [START_REF] Damanik | Local symmetries in the period-doubling sequence Discrete Applied[END_REF] for a computation of squares in the doublingperiod word.

Definition 8. The doubling-period word D is the infinite word over the alphabet A = {0, 1} defined as D = ψ(Z) where ψ is the morphism A +

x → A + defined by ψ(x n ) = 0 if n ≥ 1 is odd, and ψ(x n ) = 1 is n is even. We have :

Since v is irreducible, we see that v must be a suffix of u n . The suffix property implies that v is a suffix of u n+1 . And since B(v) = A(u n+1 ), we have v ∈ ρ + (u n+1 )

By a similar proof We obtain the other inclusions : ρ + (u n+1 ) ⊂ λ + (u n+1 ), λ -(u n+1 ) ⊂ ρ -(u n+1 ), and ρ -(u n+1 ) ⊂ λ -(u n+1 ).

This shows that u n+1 is red, so the factorisation is red.

Let v ∈ λ + (u n u n+2 ), so that L(v) = 1, and B(v) = A(u n u n+2 ). By the monochromatic hypothesis, the word u n u n+2 is red.

We have, with x = . . . u n u n+1 u n+2 . . ., v ∈ λ + (u n u n+2 ) so that v ∈ ρ + (u n u n+2 ). Since v ∈ ρ + (u n u n+2 ), we see that v is a suffix of u n u n+2 . But obviously |v| ≤ |u n+1 |, so by the suffix property, v is a suffix of u n+1 . Since v is a suffix of u n+1 , we have v ∈ ρ -(u n+2 ) = λ -(u n+2 ). But A(v) > B(u n ) and the suffix property imply that u n is a suffix of v. Now vu n is a suffix of u n+1 , so that u n u n is an arbitrary large square that is also a factor of x. Contradiction.

Definition 4 .

 4 Let C be the coloring defined on the set of factors u of x by :• C(u) = red if and only if there exists a decomposition u = v 1 v 2 with A(v 1 ) = A(u) and B(v 2 ) = B(u) • C(u) = blue otherwise.Proposition 6. If a suffix y of x has a super-monochromatic factorisation, then this suffix admits a super-monochromatic factorisation y = u 1 u 2 u 3 . . . with ∀n ≥ 1, u 1 u 2 . . . u n is a suffix of u n+1 . Proof. Write y = T k (x) = u 1 u 2 u 3 . . . a super-monochromatic factorisation with the assumption that A(u 1 ) = k and B(u i ) = A(u i+1 ) for all i ≥ 1. Assume also that ∀n ≥ 1, |u n+1 | ≥ |u 1 u 2 . . . u n |.

Lemma 1 .

 1 Let (A n ) n≥1 be a sequence of finite subsets of N * with A n < A n+1 for all n ≥ 1. Then the infinite word Y = n≥0 u An is a suffix of Z if and only if ∃N ∈ N, ∀n ≥ N , A n is an interval and min A n+1 = 1 + max A n . Proof. Notice first that Z = i≥1 u i . If M ⊂ N * is an infinite set, then the infinite word Y M = m∈M u m belongs to Ω(Z). Conversely, for Y ∈ Ω(Z), there exists M ⊂ N * such that Y = Y M . To see this, build M = {m 1 < m 2 < . . .} as follows. Let x m1 be the first letter of Y . By the recursive definition of Z we see that u m1 is a prefix of Y . Let Y 1 = Y and Y 2 be the suffix of Y starting where the prefix u m1 of Y 0 ends. If x m2 is the first letter of Y 1 , we must have m 2 > m 1 and u
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is a prefix of Y . The infinite set M = {m 1 < m 2 < m 3 < . . .} defined this way is such that Y = Y M . Moreover, this construction shows that M is uniquely determined by Y .

Since every suffix of Z is of the form Y M for some infinite M ⊂ N * such that ∃a ∈ N * with [a, +∞[⊂ M ⊂ N * , we see that if Definition 7. Let u = u A x k(u) v B be a factor of Z, and set η(u) = max( [1, k(u)[\A), with the convention that η(u) = 0 if A = [1, k(u)[. Let C be the coloring defined by :

Proposition 10. Let A ⊂ N be a finite subset. Then u A is red if and only if A is an interval.

Proof. Let k = k(u A ) = max A, and set A 0 = A\{k}. We have

Theorem 3. The Zimin word Z admits no suffix Y having a super-monochromatic factorisation.

Proof. Assume by contradiction that there exists a suffix Y of Z having a supermonochromatic factorisation

We assume that k(w n ) ≤ 2 + k(w n+1 ) for all n ≥ 1.

By proposition 5 we may assume that i∈A w i is a factor of Z for all A ⊂ N * finite. Let n ≥ 1, and consider the factor w 1 w 2 . . . w n w n+2 of Z. Since w n+1 w n+2 is a factor of Z, we have by proposition 9 that w 1 w 2 . . . w n is a suffix of w n+1 . Write D = 01000101010001000100010 . . .

For a factor u of D, define the sets ψ -1 (u) = {V factor of Z| ψ(V ) = u} and ψ -1

By minimality and existence, we have A Z (W (u)) = A(u).

Let C Z be the coloring answering the conjecture for the Zimin word. We define the coloring C on the set of factors of D by

Theorem 4. No suffix of D admits a super-monochromatic factorisation for the coloring defined above.

Proof. Let k ≥ 0 and

Let u be a factor of D such that

, then in these words the occurrences of the letter x 1 coincide. Indeed, |W (u)| ≥ 3 and it is easily seen that this inequality is optimal in order to find the possible positions of x 1 in V 1 and V 2 . We can then erase the letters x 1 from V 1 and V 2 an proceed by induction to see that each occurrences of letters x l with l ≤ k(W (u)) -2 is uniquely determined in V 1 and V 2 . So that the words V 1 and V 2 are equal to W (u) up to the occurrences of the letters x k(W (u))-1 and x k(W (u)) . But these two letters have different images through ψ, and since between two letters x l and x k all letters x j with j < l occur, we see that V 1 and W (u) are equal up to the letter x k(W (u) . This means that if

appear with this order of apparition. Write

a factor of Z, between the two letters x k(W (ui ))+2m and x k(W (uj ))+2m ′ must appear every letter x j with j ≤ min{k(W (u i )) + 2m, k(W (u j )) + 2m ′ }, we see that we me must have

This shows inductively that W (u n1 u n2 . . . u n k ) = W (u n1 )W (u n2 ) . . . W (u n k ) for all k ≥ 1, n 1 < n 2 < . . . < n k . But this implies that Z has a supermonochromatic factorisation for the coloring C Z , leading to a contradiction.

Consecutive length

Let x be a non-ultimately periodic word. In this section, we introduce and study the consecutive length L(u) of a factor u of x.

Let u be a factor of x. A decomposition u = v 1 v 2 . . . v l with l ≥ 1 terms is said to be consecutive if

Define the consecutive length L(u) of a factor u of x as : L(u) = max{l | u admits a consecutive decomposition with l terms} A factor v of x is said to be irreducible if L(v) = 1. A consecutive decomposition is said to be irreducible if every of its terms is irreducible.

Proposition 11. A consecutive decomposition of u L(u) terms is irreducible.

Proof. In such a decomposition u = v 1 v 2 . . . v L(u) , we must have L(v i ) = 1 for all i = 1 . . . L(u) by maximality of the value of L(u). Notice also that L(v i . . . v j ) = ji + 1 for all i ≤ j.

Proposition 12. Let u, v be two factors of x with B(u) = A(v). Then

is a consecutive decomposition, proving the first inequality.

On the other hand, let uv = w 1 w 2 . . . w L(uv) be a maximal decomposition of uv. Let i be such that w 1 w 2 . . . w i is a prefix of u and w i+2 . . . w L is a suffix of v. Then we have i ≤ L(u) and Li -1 ≤ L(v) by definitions of L(u) and L(v), so that L(uv) -1 ≤ L(u) + L(v) proving the second inequality.

Proposition 13. Let k ≥ 0. Then for all l ≥ 1, there exists a factor u of x with A(u) = k and L(u) = l.

Proof. We first show that the result is true for arbitrary large l ≥ 1. For any factorisation T k (x) = u 1 u 2 u 3 . . ., if the (u i )'s are long enough then this factorisation is consecutive. This shows that lim i (u 1 u 2 . . . u i ) = +∞.

For the remaining l ≥ 1, let u be a factor of x with L(u) ≥ l and A(u) = k. Let u = v 1 v 2 . . . v L(u) be a maximal consecutive decomposition of u. Then L(v 1 v 2 . . . v l ) = l, proving the statement.

Case of arbitrary large square free words

In this section we use the consecutive length to provide a coloring answering the conjecture for infinite words not containing arbitrary large squares. We mention the construction in [START_REF] Rampersad | Avoiding large squares in infinite binary words[END_REF] of a cube-free word over a 2-letter alphabet not containing arbitrary large squares.

Let u be a factor of x. Define the four sets :

We have λ + (u) = ∅ and ρ + (u) = ∅, by use of the properties of the consecutive length.

We proceed now to the definition of the coloring. We use a third color, without mentioning it, to provide us the suffix hypothesis. Namely, for a factor u of x, L(u) ≥ 2 if and only if there exist two factors v, w of x with u = vw and A(u) = A(v) and B(u) = B(w).

Let x be a non-ultimately periodic word. Define the coloring C for a factor u of x with L(u) ≥ 2 as :

• C(u) = blue otherwise.

Theorem 5. Assume that x contains no arbitrary large squares. Then no suffix of x admits a super-monochromatic factorisation for the 3-coloring defined above.

Proof. Let Y = T k (x) = u 1 u 2 u 3 . . . be a suffix of x and a super-monochromatic factorisation. We have, by the suffix hypothesis and the properties of the consecutive length : ∀n ≥ 1, u 1 u 2 . . . u n is a suffix of u n+1 ∀n ≥ 1, B(u n ) = A(u n+1 ).

We show that u n+1 is red. We show that λ + (u n+1 ) ⊂ ρ + (u n+1 ).

Let v ∈ λ + (u n+1 ) so that L(v) = 1, B(vu n+1 ) = B(u n+1 ) and B(v) = A(u n+1 ).

We have B(vu n+1 ) = B(u n+1 ) =⇒ v is a suffix of u n or u n is a suffix of v