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The interactions between the layers of double-walled carbon nanotubes induce measurable shift
of the G bands relative to the isolated layers. While experimental data on this shift in free-standing
double-walled carbon nanotubes has been reported in the past several years, comprehensive theo-
retical description of the observed shift is still lacking. The prediction of this shift is important for
supporting the assignment of the measured double-walled nanotubes to particular nanotube types.
Here, we report a computational study of the G-band shift as a function of the semiconducting inner
layer radius and interlayer separation. We find that with increasing interlayer separation, the G
band shift decreases, passes through zero and becomes negative, and further increases in absolute
value for the wide range of considered inner layer radii. The theoretical predictions are shown to
agree with the available experimental data within the experimental uncertainty.

I. INTRODUCTION

In the last few decades, the sp? carbon-based mate-
rials like fullerenes, nanotubes, graphene and few-layer
graphene have been a subject of intense experimental and
theoretical investigations because of their unique proper-
ties, originating from their zero-, one-, two-, and three-
dimensionality.! In particular, significant progress has al-
ready been achieved in the synthesis and the study of the
propertics and application of carbon nanotubes in bulk
samples as well as at the single nanotube level.2™® The
application of nanotubes in nanoelectronics requires their
precise structural characterization. For this purpose, the
Raman scattering of light by phonons is the experimen-
tal technique of choice, being a fast and nondestructive
characterization method.!©

The single-walled nanotube (SWNT) can be viewed
as obtained by wrapping up of a graphene sheet into a
seamless cylinder. It has a few intense Raman bands,
arising from the radial-breathing mode (RBM) and the
totally symmetric longitudinal and transverse G modes
(also named tangential G modes). In semiconducting
SWNT, the longitudinal G mode has higher frequency
than the transverse one and vice versa in metallic ones.
However, the observed higher-frequency G band is always
denoted as G and the lower-frequency one as G~. The
RBM frequency is found to be inversely-proportional to
the nanotube radius and is normally used for fast sam-
ple characterization.!! The G modes also depend on the
nanotube radius and can be used for supporting the as-
signment of the spectrum to particular nanotube but con-
tain additional information that allows differentiating be-
tween metallic and semiconducting nanotubes.!2714

The double-walled carbon nanotube (DWNT) is a lay-

ered structure, consisting of two nested SWNTs bound
together by weak Van der Waals interactions. The Ra-
man spectra of Cgo-derived DWNT's are found to exhibit
several intense bands due to radial-breathing like modes
(RBLMs) and G modes of the two layers.®'6 The mod-
ification of the RBLMs by interlayer interactions can be
modeled straightforwardly within continuum models'”-'®
and the derived results can be applied directly to the as-
signment of the RBLMs of DWNTs.!? Tt has also been
observed that the G bands of the inner (6,5) layers of
Cgo-derived DWNTs shift with respect to those of the
isolated layers due to interlayer interactions.'® G-band
shifts have also been measured on individual suspended
DWNTs, produced by the catalytic chemical vapor depo-
sition (CVD) method and structurally characterized us-
ing electron microscopy, electron diffraction and Raman
spectrocopy.? 29723 To our knowledge, systematic theoret-
ical investigation of the G-band shift in DWNTs has not
been reported so far, while theoretical data on this shift
can be important for supporting the characterization of
the DWNTs.

The theoretical description of G-band shift has so far
been hindered by computational difficulties. To begin
with, the calculation of the G mode of SWNTs cannot be
done accurately enough within force-constant models or
models using empirical potentials, because they do not
describe sufficiently well the electronic response to the
atomic displacements.?42% The latter response can be ac-
counted for explicitly in full electronic calculations within
the ab-initio approach.?® A major drawback of the ab-
initio models is that they become computationally very
expensive with the increase of the number of atoms in the
unit cell of the nanotube and cannot encompass the ma-
jority of the observable nanotube types. Alternatively,



with smaller but still sufficient accuracy, the G mode
can be calculated within the symmetry-adapted ab-initio-
based non-orthogonal tight-binding (NTB) model.2” Sec-
ondly, with a few exceptions, the DWNTs do not have
translational periodicity and, therefore, the all-clectron
models for periodic structures are not applicable. The
lack of translational periodicity poses a serious problem
for the estimation of the G modes, which requires special
theoretical treatment. Here, we propose a computational
scheme that uses the NTB model and relies on approxi-
mations for deriving the dependence of the G-band shift
on the inner-layer radius and interlayer separation. We
focus on the G bands of the inner layers of DWNTSs, be-
cause these layers are mostly perfect and the shifts are
predominantly due to interlayer interactions, contrary to
the outer layers, which are influenced by the environment
and often have adsorbed atoms. We constrain ourselves
to semiconducting inner layers and leave out the case
of metallic layers, where additional, computationally ex-
pensive corrections to the G mode, due to the strong
electron-phonon interactions, are mandatory.?82°

The paper is organized as follows. The theoretical
background is presented in Sec. II. The accomplished
work is given and discussed in Sec. III. The paper ends
up with conclusions, Sec. IV.

II. THEORETICAL BACKGROUND

A SWNT can be considered as obtained by cutting out
a rectangle of graphene, defined by the pair of orthogonal
lattice vectors T and C , and rolling the rectangle along c
into a seamless cylinder. This rolled-up nanotube can be
characterized by the radius R = ||C||/2x, translation pe-
riod |||, as well as the chiral angle 0, defined as the angle
between C' and the nearest zigzag of carbon atoms. All
structural parameters of the rolled-up nanotube can be
expressed by means of the nearest-neighbor interatomic
distance and the indices (n,m) of C. Therefore, the in-
dices (n,m) specify uniquely the SWNT. Normally, the
total energy of the rolled-up nanotube is not minimal and
the atomic structure of the nanotube has to be subjected
to relaxation in order to find the structure with minimum
energy, which is a necessary step before phonon calcula-
tions.

Furthermore, a DWNT is composed of two coaxially
nested SWNTs and can be labeled as (n;, m;)@Q(n,,m,),
where the indices ¢ and o denote “inner” and “outer”
layer, respectively. In the general case, the two lay-
ers of a DWNT are incommensurate. The electron and
phonon eigenvalue problems for such DWNT's cannot be
solved by the usual computational approaches for sys-
tems with translational symmetry and one has to re-
sort to approximations. Previously, for the structural
relaxation and the calculation of the RBLMs of DWNTs,
the layers were considered as elastic continuum cylin-
ders, interacting with each other via Lennard-Jones (LJ)

potential.'"1? Alternatively, in the case of commensurate
layers, the atomic structure of the layers was taken into
account and minimization of the total energy, consist-
ing of the energy of the layers within the force-constant
model and the interlayer interaction energy via LJ poten-
tials, was carried out.!'” We extend the latter approach
to the general case of incommensurate layers by relaxing
the total energy of the DWNT, expressed as the sum of
total energy of each layer per unit length, derived within
the NTB model, and the interlayer interaction energy
per unit length, averaged over a very long piece of the
DWNT.

While, in the structural relaxation step, the incom-
mensurability problem can be overcome by the proposed
approximations, this problem cannot be solved as eas-
ily for the calculation of the G mode. The straightfor-
ward approach for derivation of the shift of the G mode
would be to use quantum-mechanical perturbation the-
ory. Here, we follow a less rigorous approach, performed
in two steps. First, the DWNTs are fully relaxed and
the G-band shift is calculated for the relaxed structure
without interlayer interactions. This shift will be referred
to as the relaxation-induced shift. For the calculation of
this shift, additional external radial forces are necessary
for keeping the separate layers in equilibrium. Secondly,
the additional shift due to interlayer interactions between
the relaxed layers is a small correction and can be esti-
mated by perturbation theory. This shift will be referred
to as the interlayer interaction-induced shift. The use of
perturbation theory for estimation of this shift is com-
putationally expensive and we take this shift over from
calculations on Bernal bilayer graphene.

The straightforward calculation of the electronic band
structure and phonons for a large variety of SWNT's is ac-
companied with insurmountable computational difficul-
ties because of the very large translational unit cells of
most of the SWNTs. Fortunately, the SWNTSs have screw
symmetry that allows reducing the computational efforts
by resorting to two-atom unit cells. This symmetry-
adapted approach has been used for calculation of the
clectronic structure?” and phonon dispersion®? of several
hundred SWNTs within the NTB model. In this model,
the Hamiltonian and overlap matrix elements are derived
as a function of interatomic separation from an ab-initio
study on carbon dimers®' and the Slater-Koster scheme
is adopted for the angular dependence of the matrix ele-
ments.

III. RESULTS AND DISCUSSION
A. Relaxed DWNT structure

We consider DWNTs with semiconducting inner layers
with radii in the interval from 3.7 to 11.2 A with a step of
about 0.5 A, namely, (6,5), (8,4), (8,6), (10,5), (13,3),
(14,3), (11,9), (18,1), (12,11), (14,10), (22,4), (16,11),
(22,5), (16,14), (21,10), and (25,6) in order of increas-
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FIG. 1. Relaxation-induced change of the inner layer radius
of DWNTSs, AR;, for DWNTSs with given R; from 3.7 to 11.2
A and different R,. The upper inset shows Do=D(AR; = 0)
vs R;. The lower inset shows the dependence of AR; on R;
at D = 3.8 A. The calculated data are drawn by solid circles.
The lines are guides for the eye.

ing radius. The outer layers are all layers for which the
unrelaxed interlayer separation falls in the interval be-
tween 3 and 4 A and which corresponds to the observ-
able interlayer separations. The structural relaxation of
the DWNTs is performed within the NTB model.2” The
circular cross-section and the coaxiality of the layers is
preserved during the relaxation procedure. For calculat-
ing the average interlayer interaction energy, a 100 A-long
piece of the DWNTs is considered, for which the average
interlayer energy converges below 10~7 eV. The relaxed
radii of the isolated layers will be denoted as R;y and
R,0, while those of the relaxed layers of the DWNTs will
be denoted as R; and R,.

In Fig. 1, the calculated change of the inner layer ra-
dius AR; = R; — Rjp of the relaxed DWNTs is shown for
the considered inner layers as a function of the relaxed
interlayer separation D = R, — R; for various outer lay-
ers. It can be seen, that with increasing separation, AR;
increases from negative to positive values, changing sign
close to D ~ 3.4 A. This behavior can be explained with
the pressure on the layers due to the interlayer interac-
tions. For D < 3.4 A, the pressure is “positive” and
tends to shrink the inner layer, while for D > 3.4 A, the
pressure is “negative” and expands the inner layer.2132:33

The curves for a given inner layer and different outer
layers cross the horizontal line AR; = 0 at D ~ 3.4 A.
The separation Do=D(AR; = 0) vs R; decreases expo-
nentially from 3.40 to 3.38 A for R; increasing from 3.7
to 11.2 A (Fig. 1, upper inset). In the limiting case of
R; — 00, Dy should tend to that for graphite of &~ 3.35 A.
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FIG. 2. Relaxation-induced change of the outer layer radius
of DWNTs, AR,, for DWNTs with given R; from 3.7 to 11.2
A and different R,. The upper inset shows the linear depen-
dence of ARo/Roo vs AR;/Rio. The lower inset shows the
distance between the axes of the layers, Dy¢s vs D. The cal-
culated data are drawn by solid circles. The lines are guides
for the eye.

At a given D, the absolute value of AR; increases with
increasing R; as a second-degree power function. This is
illustrated for D = 3.8 A in the lower inset of Fig. 1.

In Fig. 2, the results for the change of the outer
radius AR, = R, — Ry are presented in a manner,
similar to these for AR;. The upper inset in Fig. 2
shows the dependence of AR,/R,0 on AR;/R;o. The
almost equal relative changes of the radii for the inner
and outer layers can be explained by a simple mechan-

ical model. Each isolated layer has a RBM with fre-
quency w = y/x/m, where m and & are layer’s mass and

spring constant, respectively. The changes of the equi-
librium radii of the two layers of a DWNT, AR, and
AR;, due to switching-on of coupling between them, sat-
isfy the relation k,AR, = —k;AR;. Bearing in mind
that w =« 1/R and m o« R, where the proportionality
coeflicients are equal for both layers,3® we arrive at the
relation AR,/Ro,0 = —AR;/Ri.

The calculations show that for interlayer separations
D > 3.8 A the DWNT structure becomes unstable with
respect to off-axial displacement of the inner layer with
respect to the outer layer and the equilibrium structure
is characterized by nonzero distance between the axes of
the two layers, D, ¢,'” (Fig.2, lower inset). Such off-axial
configurations of DWNTSs have not been observed yet,
but the proposed computational scheme can be extended
to encompass such cases as well.



FIG. 3. Relaxation-induced shift of the G~ band of the inner
layer for DWNTSs with given R; from 3.7 to 11.2 A and differ-
ent R, (solid circles). Inset: interpolation-derived relaxation-
induced shift vs R; at given values of D (open circles) and
total shift (solid circles). The lines are guides for the eye.

B. G-band shift

The relazation-induced shifts of the G~ and GT bands
of the inner layer of the relaxed DWNTs with respect
to the bands of the relaxed isolated layers are shown as
a function of D in Figs. 3 and 4. Both figures exhibit
a general trend of decreasing of the shift, changing the
sign of the shift from positive to negative at ~ 3.4 A,
and further increasing the shifts in absolute value with
increasing D. There is a correlation of this behavior with
that of AR; vs D. Namely, for D < 3.4 A, the G bands
are blue-shifted due to decreased interatomic distances in
the inner layer, while for D > 3.4 A, the G bands are red-
shifted due to increased interatomic distances in the inner
layer. Both bands have almost zero shift close to D =
3.4 A. The G-bands shifts of the outer layers undergo
opposite changes vs D (not shown). For a given DWNT,
in absolute value, the G™-band shift is larger than the
GT-band shift. The G- and G*-band shifts for the inner
layer fall in the range between —20 and 35 cm ™!, and —15
and 25 cm~!, respectively. For a given D, the G-band
shifts increase in absolute value with increasing R; (insets
of Figs. 3 and 4, open circles). The dependence of the
shifts on R; for a given D is almost linear with minor
deviations from linearity for the GT-band shift.

The interaction-induced shifts of the G bands should
be treated in perturbation theory. This approach can be
extremely computer-time consuming because it has to be
accomplished at the quantum-mechanical level. Here, we
follow an alternative route and calculate exactly the effect
of interlayer interactions on the G mode (Raman-active
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FIG. 4. Relaxation-induced shift of the GT band of the inner
layer for DWNT's with given R; from 3.7 to 11.2 A and differ-
ent R, (solid circles). Inset: interpolation-derived relaxation-
induced shift R; at given values of D (open circles) and total
shift (solid circles). The lines are guides for the eye.

Esy mode) in Bernal bilayer graphene. For this purpose,
the bilayer structure is relaxed at fixed interlayer sep-
arations and the G mode is calculated with and with-
out interlayer interactions using the NTB model. The
switching-on of the interlayer interactions lifts the de-
generacy of the two Ep, Raman-active modes of the two
layers and gives rise to two modes of Ey, and Eq, sym-
metry, shifted downwards and upwards, respectively. We
are interested in the modification of the former, which is
downshifted by the interlayer interactions. In particular,
with increasing the layer separation from D = 3.2 to 3.8
A with a step of 0.1 A, the G-mode shift decreases in ab-
solute value and has the following values: —4.87, —3.81,
—2.96, —2.19, —1.56, —1.06, and —0.67 cm™'. These
values are comparable to the ab-initio derived ones and
agree well with the available experimental data.3* The
obtained results for bilayer graphene can be transferred
to DWNTSs, because of the similar local environment of
the atoms of the two layers. Namely, an atom of a given
layer interacts with a small, almost planar portion of the
other layer. For small radius of the layers, small devia-
tions from the results for bilayer graphene, due to curva-
ture effects, can be expected.

Finally, the total G-band shift can be written as the
sum of the relaxation-induced shift and the interlayer
interaction-induced one, where the former is calculated
for the particular relaxed DWNT with switched-off in-
terlayer interactions and the latter is taken over from
bilayer graphene. The resulting total shifts are presented
as a function of the relaxed inner layer radius R; for sev-
eral values of the interlayer separation D in the insets of
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FIG. 5. Total shift (solid circles) of the G~ band of the inner
layer of DWNTSs as a function of R;, for different D,. The
lines are guides for the eye.

Figs. 3 and 4 (solid circles). For a given D, the total
G-band shifts increase in absolute value with increasing
R;. The resulting curves of these dependencies are rela-
tively smooth for the G~ band but have wiggles in the
case of the GT band. The latter can be explained with
the dependence of this mode not only on the radius but
also on the translation period, because of the longitudinal
character of this mode.

C. Comparison to experiment

The relaxed layer radii and the corresponding
interlayer separation of DWNTs are difficult to de-
termine with sufficient accuracy from experiment
(e.g.  electron diffraction).  Hence, it is a com-
mon practice in the literature to use unrelaxed
isolated layers radii R;, and R,,, which are calcu-
lated directly from (n;(o),mi(0)) by the usual relation

Ri(o)u = \/§ac_c\/mf(o) + M (0)Ni(0) + TL5(0>/27T with

ac—c=1.42 A. The unrelaxed interlayer distance is
defined as D, = R,y — R;,. For the practical purposes
of the comparison with experimental data, we now
plot, in Figs. 5 and 6, the obtained results for the
total calculated G™-band shifts and the total calculated
G*-band shifts, respectively, as a function of R;, and
for several values of D,,. These plots permit to evaluate
the shift of the G~ and G+ bands of the inner layer for
given D,, and R;,.

In Fig. 7, we compare our theoretical data for the
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FIG. 6. Total shift (solid circles) of the G* band of the inner
layer of DWNTs as a function of R, for different D,. The
lines are guides for the eye.

G~ -band shifts (solid circles) with experimental ones
obtained (i) on several Cgo-derived DWNTs!6 (green
open triangles), and (ii) on individual suspended index-
identified CVD-DWNTs?"23 (red open circles). Fig. 8
displays the comparison between the calculated G*-band
shifts (solid circles) and experimental G*-band shifts
(red open circles) measured on individual suspended
index-identified CVD-DWNTs.2%:23

Concerning the results obtained on Cgo-derived
DWNTs, all tubes are (6,5)@(n,,my). The experi-
mental G7-band shifts are directly calculated from
the frequencies of the G~ band, given in Ref.'® versus
the one measured on the (6,5) SWNT.?® The index
assignment, of the outer tubes of these DWNTs, and
hence the D, interlayer distances, was revised using a
more accurate approach (coupled-oscillator model?)
than in Ref.16 (for details, see Ref.?2). The data are
given in Table I.

Concerning the individual suspended index-identified
CVD-DWNTs, the experimental data come from
Ref.2123 and from this work (these additional DWNTs
are indicated in Table II). The experimental shifts are
estimated relative to the G-band frequencies of isolated
layers (SWNTs). For the G~ band, the SWNT reference
frequencies were calculated as the average of the values
obtained using an empirical law?® and a theoretical
law?®. In the case of the GT band, the experimental
shifts are estimated relative to the G-band frequencies
of isolated layers, calculated as the average of the values
of an empirical law® and 1592 cm~! (Ref.6). The
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FIG. 7 (color online). Comparison of calculated (solid cir-
cles) with experimental G~ -band shifts for several Cgo-derived
DWNTs'® (green open triangles) and for several index-
identified DWNTs (red open circles) (Ref.?"? and this work).

errors on the estimated shifts are set at 2.5 cm™!, by
summing the experimental uncertainty of 1 cm™! on
the measured DWNTs G-band frequencies and the
maximum difference (1.5 cm™!) between the SWNTs
G-band frequencies values deduced using the different
laws. The experimental and calculated values of the

shifts are given in Table II.

Overall, the plotted theoretical data for the G-band
shift follow rather well the trend of the experimental

TABLE 1. Comparison of experimental G~ -band shifts'®
and calculated ones in cm™' for several Cgo-derived
(6,5)@(no,m,) DWNTs. In comparison with Ref.!® the
(no, mo) used here were re-attributed accounting for the in-
terlayer interactions between the layers within a coupled-
oscillator model (without structural relaxation, see text).??

Aw(G7)

(Mo, Mo)?? D, (A)?2 Expt.'® Calc.
(13,8) 3.45 —14 12
(13,8) 3.45 —5.3 4.2
(16,4) 3.44 —0.6 —4.1
(17,2) 3.35 ~16 0.1
(14,6) 3.22 3.4 8.8
(14, 6) 3.22 7.4 8.8
(14,6) 3.22 3.7 8.8
(14,6) 3.22 4.9 8.8
(14, 6) 3.22 8.7 8.8
(14,6) 3.22 4.1 8.8
(13,7) 3.15 13.5 16.4

33 34 35 36 37 38
D, (A)

3.1 32

u

FIG. 8 (color online). Comparison of calculated (solid cir-
cles) with experimental (red open circles) GT-band shifts for
several index-identified DWNTs (Ref.>"*® and this work).

ones (Figs. 7 and 8). For the Cgo-derived DWNTs,
the deviation of the G~ -band shift and the dispersion
of the results could be due to the influence of the the
substrate which is not included in this study. For the
suspended DWNT's, the interlayer separations D,, range
from 3.35 to 3.73 A. The DWNT with D,, close to 3.35
A is almost undeformed by the interlayer interactions,
while that with D, close to 3.73 A undergoes radius
change as large as about 0.11 A. The predicted shifts
of both inner-layer G bands for the former one are
almost zero and the predicted shifts for the latter one
are —13.1 and —19.3 cm~*. All calculated shifts agree
well with the measured ones within the experimental
uncertainty except for the two DWNTs with largest

TABLE II. Experimental®®?%® and calculated G-band shifts
in cm™* for several index-identified DWNTs. Empirical and
theoretical relations are used for estimation of the G-band
frequencies of non-interacting layers (see text)).

Aw(GT) Aw(G7)
(ni, m;)@(no, m,) Dy (A) D (A) Expt. Calc. Expt. Calc.
(12,8)Q(16,14) 335 335 —16 04 —21 00
(16,12)@(27,10) 345 342 —24 —49 —45 —6.2
(14, )@(21,10)¢ 348 345 —-65 —-52 —-82 —6.5
(10,9)@(18,11) 348 345 —6.1 —49 -7.3 —6.2
(16,2)@(16,14)* 349 346 —6.1 —48 —30 —65
(13,9)@(24, 7) 352 349 —75 —6.6 —9.0 —8.6
(22,11)@(27,17)  3.65 356 —7.5 —11.6 —13.7 —16.4
(30,1)@(27,19)* 3.73 362 —144 —-13.1 — —19.3

2 This work.



D,. The origin of the deviations from the measured
values can be sought in the existence of factors, which
are not accounted for in the current calculations. For
example, due to the large radius of the latter two
DWNTs, possible non-circular deformations of the layers
could modify the G modes and produce smaller G
band shifts. More sophisticated calculations should be
performed in order to throw light on the origin of this
discrepancy and yield better agreement with experiment.

IV. CONCLUSIONS

We have presented calculations of the G-band shift of
DWNTs within a non-orthogonal tight-binding model.
The lack of translational periodicity of most of the ob-
served DWNTs predetermines the use of approximations,
namely, the shift is calculated in two feasible steps. First,

the DWNTs structure is relaxed and the shift is calcu-
lated for the relaxed structure but for switched-off inter-
layer interactions. Secondly, contribution of the inter-
layer interactions, derived for bilayer graphene, is added
to the shift. The agreement with experiment is excel-
lent in most cases, but certain discrepancy is observed
in a few cases. The latter could be resolved by future
elaborations of the computational approach.
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