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INVERSE ACOUSTIC SCATTERING USING HIGH-ORDER

SMALL-INCLUSION EXPANSION OF MISFIT FUNCTION

Marc Bonnet∗

POEMS (ENSTA ParisTech, CNRS, INRIA, Université Paris-Saclay)
91120 Palaiseau, France

Abstract. This article concerns an extension of the topological derivative
concept for 3D inverse acoustic scattering problems involving the identifica-

tion of penetrable obstacles, whereby the featured data-misfit cost function J
is expanded in powers of the characteristic radius a of a single small inhomo-

geneity. The O(a6) approximation J6 of J is derived and justified for a single

obstacle of given location, shape and material properties embedded in a 3D
acoustic medium of arbitrary shape. The generalization of J6 to multiple small

obstacles is outlined. Simpler and more explicit expressions of J6 are obtained

when the scatterer is centrally-symmetric or spherical. An approximate and
computationally light global search procedure, where the location and size of

the unknown object are estimated by minimizing J6 over a search grid, is pro-

posed and demonstrated on numerical experiments, where the identification
from known acoustic pressure on the surface of a penetrable scatterer embed-

ded in a acoustic semi-infinite medium, and whose shape may differ from that

of the trial obstacle assumed in the expansion of J, is considered.

1. Introduction. Inverse scattering has been intensively investigated over the last
quarter century, in particular due to the development of qualitative, sampling-based,
methods [14, 23, 29] that offer robust and computationally effective alternatives to
more-classical techniques based on e.g. PDE-constrained minimization or successive
linearizations. Linear sampling and factorization methods have in particular been
extensively studied. In adddition, the concept of topological derivative has been
investigated in a variety of inverse scattering situations towards defining imaging
hidden objects, see e.g. [5, 6, 7, 13, 20, 21, 24, 26]. The topological derivative of an
objective functional quantifies its perturbation resulting from the virtual creation
inside the medium of an object occupying a region Ba(z) with prescribed center
z and vanishingly small radius a. In the presently-relevant case of a small pene-
trable obstacle embedded in a three-dimensional acoustic medium, the well known
expansion

J(a) = J(0) + a3T (z) + o(a3)

holds [17, 20], where J(a) is the value of the objective functional of interest when
the medium hosts a scatterer with support Ba(z) and prescribed material param-
eters. The topological derivative field z 7→ T (z) can then be used as a means for
qualitative flaw identification (or, in other contexts, to steer topology optimization
algorithms [30]). Such studies usually involve objective functionals that depend on
Ba(z) implicitly through the acoustic field ua arising in the perturbed medium, i.e.
of the form J(a) = J(ua). The scattered field va := ua−u at any given location
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x 6= z (where u is the prescribed incident field constituting the applied excita-
tion) is known from many previous studies, e.g. [2, 8], to verify va(x) = O(a3) for
three-dimensional configurations.

The topological derivative concept can be extended towards expanding J(a) to
higher orders in a, yielding more accurate asymptotic approximations of J. Previ-
ous studies following this path include [9] for sound-hard obstacles in 3D acoustic
media, [10] for cracks in 2D conducting media, [18] for 2D electrical impedance
tomography (EIT). Elastic media are considered in [31] (expansion of the poten-
tial energy in 2D solids with small holes) and [12] (general objective functionals
for 3D solids containing small inhomogeneities). This kind of higher-order asymp-
totic approximation may be used as a surrogate of the original functional J for
minimization-based identification. This approach, which was in particular shown
in [9, 10] to be fast and quantitatively accurate, defines a sampling method insofar
as a spatial region of interest may be sampled with a large number of trial flaw sites
z, since the minimization of a polynomial approximation of J(a) with respect to a
for given z entails very little computational work.

This article, which continues work initiated in [9, 10], addresses the establishment
and use of higher-order topological expansions of objective functionals for the case
of a small penetrable obstacle embedded in a three-dimensional acoustic medium,
under time-harmonic conditions. Such expansions have the form

(1) J(a) = J(0) + a3T3(z) + a4T4(z) + a5T5(z) + a6T6(z) + o(a6) = J6(a) + o(a6),

where higher-order topological derivatives T4(z), T5(z), T6(z) appear in addition to
the previously-known topological derivative T3(z) = T (z). The salient features of
this work are as follows:
(a) The main result is an expansion of the form (1) for obstacles of arbitrary shape

and a wide class of objective functionals. The case of least-squares (LS) cost
functionals, which underpins the most common computational inversion meth-
ods, is of primary interest in this work. For this case, the adopted expansion
order O(a6) is a natural choice, because a6T6(z) is the lowest order at which
the quadratic term in va contributes to expansion (1). Evidence from numerical
experiments using LS functionals shows that we often have T6(z) > 0 (helped
by the contribution of the second-order derivative J ′′(u; va), which is positive
in this case) but T5(z) < 0, implying that the O(a6) approximation (1) of
J(a) has a minimum for a ∈ R+ whereas the O(a5) approximation does not.
We both derive the relevant high-order topological expansion (supplement-
ing previously-known results on T3(z) by complete expressions for functions
T4(z), T5(z), T6(z)) and provide its justification. By contrast, the previous re-
lated investigations [9, 10, 31] neither consider penetrable scatterers nor justify
the order of approximation achieved by the formally-derived expansions.

(b) A computationally light approximate global search procedure (previously in-
troduced in [9] for sound-hard obstacles, and also used in [18] for EIT), where
the location and size of the sought object are estimated by minimizing J6 over
a search grid, is presented and demonstrated on numerical experiments for the
identification of a penetrable scatterer embedded in a semi-infinite medium.

(c) Like in [9, 10], the asymptotic expansion exploits the adjoint solution associated
with J, which allows to establish (1) on the basis of (i) the (inner) expansion of
ua inside Ba and (ii) the leading-order (outer) expansion of ua on the support
of the objective function density.
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(d) Asymptotic expansions of ua have been the subject of previous studies. High-
order expansions for the Dirichlet problem involving penetrable objects are es-
tablished in [2] using coupled boundary integral equation formulations. Matched
expansions are used in [4] (to obtain uniform O(a3) expansions for penetrable
objects) and [8] (who give arbitrary-order expansions for impenetrable objects).
Arbitrary-order expansions are given in [3] for zero-frequency problems in con-
ducting or elastic media. To derive the required solution expansion for the
present case (bounded acoustic medium with a penetrable obstacle, Neumann
boundary conditions), this work exploits a volume integral equation (VIE) set-
ting [11, 25], which is natural for modelling many inhomogeneity problems.
The geometrical support of the VIE is Ba; this facilitates the use of coordinate
rescaling commonly used in the derivation of asymptotic models and, in com-
bination with the adjoint solution approach, makes the inner expansion in Ba
play a key role for both the derivation and the justification of the expansion of
ua. The adopted VIE setting therefore fits well the present goals, while having
broader usefulness as it is transposable to the derivation of similar asymptotic
approximations for many other physical contexts, e.g. elasticity [12].

The article is organised as follows. Section 2 introduces the acoustic forward
and inverse problems, the objective functionals and small-obstacle configurations of
interest and the adjoint solution approach. Then, the governing VIE for the for-
ward problem is expanded in Section 3, to obtain the O(a4) inner expansion of ua,
the known leading-order outer expansion of ua being recovered afterwards. These
results are used in Section 4 to formulate the topological derivatives T3, . . . , T6 and
justify the resulting expansion (1) of J(a) for a single penetrable obstacle of ar-
bitrary shape (Theorem 1). The common case of a centrally-symmetric obstacle
(Sec. 4.2) is then shown to yield simpler formulas, which become almost explicit for
spherical or ellipsoidal shapes. After briefly explaining how Theorem 1 can be gen-
eralized to the case of multiple obstacles with fixed locations, and discussing some
(e.g. computational) side issues, in Section 5, a simple approximate global search
procedure based on the expansion (1) is outlined in Section 6 and demonstrated on
numerical experiments in Section 7. Finally, Sections 8 and 9 give the proof of two
sub-results (Propositions 1) and 2) upon which Theorem 1 relies.

2. Acoustic problem and objective functional. Let Ω ⊂ R3 be a Lipschitz
domain, filled with a homogeneous acoustic medium with mass density ρ0 and
wave velocity c0; this configuration will be called the background (i.e. obstacle-
free) medium. All field quantities are assumed to be time-harmonic, with angular
frequency ω and the time-harmonic factor e−iωt omitted and implicitly understood
throughout. The main exposition is focused on the case where Ω is bounded, its
boundary ∂Ω being assumed for definiteness to support prescribed values V D of
the normal velocity (straightforward adaptations to the main development allow to
consider other types of boundary conditions, see Sec. 5.2 and also Sec. 5.3 for the
unbounded case Ω = R3). This excitation gives rise to the background (i.e. incident)
acoustic pressure field u, which solves the Neumann boundary-value problem

(2) ∆u+ k2u = 0 in Ω, ∂nu = iρ0ωV
D on ∂Ω,

where k :=ω/c0 is the background wavenumber, n is the normal on ∂Ω outward to
Ω, and ∂nw :=∇w·n is the normal derivative of a field w (the symbol ‘·’ denoting an
inner product). It is assumed that ω is not an eigenfrequency of the boundary-value
problem (2) with homogeneous data.
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2.1. Forward scattering problem. The incident field u serves to probe Ω for
hidden objects. When the medium hosts a penetrable obstacle with support B b Ω
and homogeneous material parameters (ρ, c), the same applied excitation V D gives
rise to a total field uB solving the transmission problem (with the relative material
contrasts β, η defined by β := ρ0/ρ− 1 and η := ρ0c

2
0/ρc

2 − 1):

∆uB + k2uB = 0 in Ω\B,
(β+1)∆uB + (η+1)k2uB = 0 in B,

∂nu
B = iρ0ωV

D on ∂Ω,

uB |+ = uB |− and ∂nu
B |+ = (β+1)∂nu

B |− on ∂B.

2.2. Inverse problem. We consider the inverse problem of identifying an unknown
object (B̊, ρ̊, c̊) from partial knowledge of the solution ůB of the transmission prob-

lem (3) written for (B̊, ρ̊, c̊), namely values uobs of the acoustic pressure on the
measurement surface Sobs⊂ ∂Ω (i.e. uobs = ůB |Sobs

in the absence of measurement
noise). The misfit between the observation uobs and its acoustic prediction uB for
a trial obstacle (B, ρ, c) is quantified through an objective functional J (B, β, η) to
be minimized. We consider generic objective functionals having the format

(3) J (B, β, η) = J(uB), with J(w) =

∫
∂Ω

ϕ
(
wR(x), wI(x),x

)
dS(x),

where the real-valued density ϕ is a C2 function of its first two arguments and
subscripts ‘R’, ‘I’ indicate the real and imaginary parts of a complex number, i.e.
wR = Re(w), wI = Im(w). We also denote by ∂Rϕ and ∂Iϕ the partial derivatives
of ϕ with respect to its first and second argument, respectively. The correspond-
ing second-order derivatives of ϕ, similarly denoted (e.g. ∂RIϕ), are additionally
assumed to be C0,γ functions of their first two arguments for some γ > 0. Data
uobs recorded on Sobs⊂ ∂Ω is easily accommodated in (3); for instance, for a least-
squares misfit functional that is customarily applied to inverse problems, we have
(with χA denoting the characteristic function of a set A)

(4) ϕ(wR, wI, ·) = 1
2

∣∣w − uobs
∣∣2 χSobs

= 1
2

[
(wR − uobs

R )2 + (wI − uobs
I )2

]
χSobs

,

Remark 1. The chosen nature of the data uobs is for definiteness, other types of
data requiring only straightforward adjustments to this setting and the forthcoming
main development, see Sec. 5.2.

2.3. Identification by objective functional expansion. Letting B⊂R3 denote
a fixed bounded open set containing the origin, with volume |B|, we consider a
penetrable obstacle of support Ba(z) = z + aB and size a > 0, endowed with
relative material contrasts (β, η) and centered at a given point z ∈Ω. Without loss
of generality, z is assumed to be the centroid of Ba. We then set B = Ba(z) in
the transmission problem (3) and objective functional (3). Denoting by ua(·; z) the
total field solving problem (3), we define the cost function J(a; z) in terms of J by

(5) J(a; z) = J(ua) =

∫
∂Ω

ϕ
(
uaR(x), uaI (x),x

)
dV (x)

(for notational convenience, explicit references to z will sometimes be omitted in
the sequel, e.g. by writing J(a) or ua(x) instead of J(a; z) or ua(x; z)). The
inverse scattering problem is then recast in terms of finding a, z that minimize
an asymptotic expansion of J(a; z) in powers of a, i.e. a polynomial in a with
coefficients depending on z (and also on B, β, η) that approximates J(a; z).
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2.4. Cost functional expansion using adjoint solution. The desired asymp-
totic expansion of J(a) is sought on the basis of an expansion of J(ua) to second
order about ua = u, i.e.:

(6) J(a) = J(u) + J ′(u; va) + 1
2J
′′(u; va) +R(u; va),

where va := ua−u is the scattered field caused by the small obstacle, and

J ′(u;w) =
∑
p=R,I

∫
∂Ω

∂pϕ
(
uR, uI, ·

)
wp dS,

J ′′(u;w) =
∑

p,q=R,I

∫
∂Ω

∂pqϕ
(
uR, uI, ·

)
wpwq dS,(7)

R(u;w) =

∫ t

0

(1− t)J ′′(u+ tw;w) dt− 1
2J
′′(u;w).

To evaluate J ′(u; va), it is convenient to introduce the adjoint field û, defined as
the solution of the problem

(8) ∆û+ k2û = 0 in Ω, ∂nû = −
(
∂Rϕ− i∂Iϕ

)
(uR, uI, ·) on ∂Ω,

whose boundary data is chosen such that J ′(u;w) = −Re
[(
∂nû, w

)
∂Ω

]
. Then,

J ′(u; va) can be expressed in terms of the restrictions of u and û on the small
obstacle support Ba. For convenience in this work, and in particular to express
J ′(u; va) in concise form, we introduce the bilinear forms

(9)
〈
u,w

〉R
X

:=

∫
X

R∇u·∇w dV,
(
u,w

)E
X

:=

∫
X

E uw dV,

defined on H1(X)×H1(X), for a domain X ⊆ Ω and coefficients R,E ∈ L∞(X),

and additionally set
〈
u,w

〉
X

:=
〈
u,w

〉R=1

X
and

(
u,w

)
X

:=
(
u,w

)E=1

X
, with similar

notation used for surface integrals if appropriate. Using these notations, we have:

Lemma 1. Let ua and û be the total and adjoint fields, respectively solving prob-
lems (3) with B = Ba and (8). The first-order derivative J ′(u; va) in (6) is then
given by

J ′(u; va) = Re
{ 〈

ua, û
〉β
Ba
− k2

(
ua, û

)η
Ba

}
.

Proof. Writing in weak form the adjoint problem (8) (with test function va) and
the forward problems (2) and (3) (with test function û), we have the identities〈

û, va
〉

Ω
− k2

(
û, va

)
Ω

= −
(
∂Rϕ− i∂Iϕ, v

a
)
∂Ω
, (a)〈

u, û
〉

Ω
− k2

(
u, û

)
Ω

= iρ0ω
(
V D, û

)
∂Ω
, (b)〈

ua, û
〉

Ω
− k2

(
ua, û

)
Ω

+
〈
ua, û

〉β
Ba
− k2

(
ua, û

)η
Ba

= iρ0ω
(
V D, û

)
∂Ω

(c).

The lemma results from the combination−(a)−(b)+(c) and definition (7) of J ′.

Remark 2. For the least-squares objective functional defined by (4), we have
R(u; va) = 0 and

J ′(u;w) =

∫
Sobs

Re
{

(u− uobs)w
}

dS, J ′′(u;w) =

∫
Sobs

|w|2 dS.
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2.5. Summary of previous results on topological derivative. The leading
contribution to J(ua) as a→ 0 is given by that of J ′(u, va), which has been found
in previous studies [17, 20] as

(10) J ′(u, va) = a3T3(z) + o(a3)

in terms of the topological derivative T3(z), given (for the present physical context
by

T3(z) = −Re
{
∇û·A(β)11 ·∇u− |B| k2ηûu

}
(z),

where the second-order polarization tensor A11 has been established for any obstacle
shape B in e.g. [3, 20, 1] (see e.g. equation 56 when B is an ellipsoid). Moreover,
the leading asymptotic behaviour of the total field inside Ba and on the external
surface is respectively characterized by

ua(x; z) = u(z) + aU1

(
(x− z)/a

)
+ o(a) x ∈ Ba,(11)

ua(x; z) = u(x) + a3W (x; z) + o(a3) x∈ ∂Ω,(12)

where U1,W are known functions that depend on B and β, η (see equations (39b)
and (50)).

2.6. Deriving the expansion of J(a): preliminary considerations and me-
thodology. We seek an expansion of J(ua) that includes the leading contribution
as a→ 0 of J ′′(u, va). In view of (6) and (12), the lowest expansion order meeting
this goal is O(a6). Moreover, the known outer solution expansion (12) suffices for
determining the (leading) O(a6) expansion of J ′′(u; va) through (7), so that the
main task at hand is to find the O(a6) expansion of J ′(u; va). Lemma 1 shows that
this requires expanding ua in the vanishing obstacle Ba. To this aim, we recast the
forward problem (3) as a volume integral equation (VIE) whose geometrical support
is Ba, making the restriction of ua to Ba its main unknown. Then, following the
usual approach for solution asymptotics involving a small length parameter, the
position vector x in Ba is scaled according to x = z + ax̄, and a rescaled main
unknown Ua such that Ua(x̄) := ua(z+ax̄) is introduced. An asymptotic expansion
of Ua is then sought in the form Ua = U0 + aU1 + . . ., consistently with (11). On
expressing J ′(u; va) as given by Lemma 1 in terms of Ua and integrals over B, noting
that the coordinate stretching (17) implies ∇ua(x) = a−1∇Ua(x̄), we obtain

(13) J ′(u; va) = a3 Re
{〈

û, Ua
( ·−z

a

)〉β
Ba
− k2

(
û, Ua

( ·−z
a

)η
Ba

}
.

Expanding J ′(u; va) to order O(a6) therefore entails finding the O(a4) expansion
of Ua in B. The O(1) term of the expansion of Ua will be found to be constant in
B (as physical intuition suggests), so that ∇Ua = O(a) and (13) is consistent with
the expected leading-order expansion (10).

We carry out the above-outlined plan in the next parts: the needed elements
of the expansion of ua are derived and justified next in Section 3; then, the O(a6)
expansion of J(a) is established in Section 4.

3. Inner and outer expansions of the total field. Focusing on ua in Ba as
the primary quantity, we employ a volume integral equation (VIE) formulation
(Sec. 3.1), express it using scaled coordinates (Sec. 3.2) and derive its leading as-
ymptotic form (Sec. 3.3). This reveals the essential role played by a family of
zero-frequency (Laplace) free-space transmission problems (FSTPs), surveyed in
Sec. 3.4. Finally, the inner solution expansion is carried out in Section 3.5, and the
leading outer solution expansion recalled in Sec. 3.6.
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3.1. Volume integral equation formulation for the forward problem. We
begin by stating the relevant VIE formulation. Let G be the Green’s function asso-
ciated with the domain Ω with a Neumann boundary condition, solving the BVP

(14) (a) ∆G(·,x) + k2G(·,x) = δx in Ω, (b) ∂nG(·,x) = 0 on ∂Ω

(with δx denoting the Dirac distribution supported at x). Then, the total field
ua inside Ba associated with the solution of (3) with B = Ba is governed by the
volume integral equation (VIE)

(15) (I − La)ua = u in Ba∪ (Ω\Ba)

in which I is the identity operator and the integral operator La is defined by

(16) Law(x) = k2

∫
Ba

η G(y,x)w(y) dV (y)−
∫
Ba

β∇1G(y,x)·∇w(y) dV (y)

where ∇kG denotes the gradient with respect to its k-th argument of a function G
having two (or more) arguments; likewise, ∇k`G will denote the second-order gra-
dient of G with respect to its k-th and `-th arguments. Known mapping properties
of integral operators treated as pseudodifferential operators [22, Thm. 6.1.12] imply
that La is well defined as a H1(Ba) → H1(Ba) operator. A concise derivation of
the VIE (15) is given in Appendix A; otherwise see [11] and references therein. In
the case Ω = R3, for which G = G∞k (see eq. (23)), the VIE (15) is identical (up
to notational adjustment) to that established in [25] and applied to the obstacle
configuration (Ba, β, η).

3.2. Rescaled form of VIE formulation. The integral equation (15) is now
recast in rescaled form (i.e. using integral operators defined on the fixed compact
domain B) by effecting the coordinate change

(17) x = z + ax̄ (x∈Ba, x̄∈B),

noting that this process also transforms the differential volume element according
to dVx = a3 dV̄x̄ (x ∈ Ba, x̄ ∈ B). Towards this reformulation, we introduce
the mapping Pa : H1(Ba) → H1(B) that applies the coordinate scaling (17) to
functions, and its inverse P−1

a :

(18) Pav(x̄) := v(z+ax̄) , P−1
a V (x) := V

(
(x−z)/a

)
.

The coordinate stretching exerted by (17) then implies that gradients transform
under Pa according to

(19) Pa[∇v](x̄) = a−1∇(Pav)(x̄)

Applying the scaling (17) to both arguments x,y in the VIE (15), we obtain the
governing VIE

(20) (I − La)Ua = Pau in B, with La = PaLaP−1
a .

for the rescaled unknown

(21) Ua(x̄) := Paua(x̄) = ua(z+ax̄) x̄∈B,
where the scaled version La :=PaLaP−1

a : H1(B)→ H1(B) of the integral operator
La is given by

LaU(x̄) = k2a3

∫
B
η G
(
z+aȳ, z+ax̄

)
U(ȳ) dV (ȳ)(22)

−a2

∫
B
β∇1G

(
z+aȳ, z+ax̄

)
·∇U(ȳ) dV (ȳ)
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3.3. Asymptotic behavior of the integral operator. We now seek the asymp-
totic form of the operator La as a→ 0. This entails expanding the Green’s function
G. To this aim, the decomposition

(23) G(y,x) = G∞0 (y−x) +
(
G∞k (y−x)−G∞0 (y−x)

)
+Gc(y,x)

of G is used, with G∞k and G∞0 , the singular fundamental solutions of the Helmholtz
and Laplace equations, given by

G∞k (r) =
eik|r|

4π|r|
, G∞0 (r) =

1

4π|r|
.

The complementary acoustic Green’s function Gc(·,x) is seen (using superposition)
to solve a BVP of the form (2) with boundary condition ∂nG

c = −∂nG∞k (· − x)
on ∂Ω; therefore, Gc(·,x) ∈ C∞(Ω) and is in particular bounded at x. Since both
G∞k −G∞0 and ∇G∞k −∇G∞0 are bounded at r= 0, the singular parts of G and ∇1G
are entirely contained in G∞0 and ∇G∞0 , respectively. Moreover, G∞0 is positively
homogeneous with degree -1, so that the coordinate scaling (17) implies

G∞0 (y−x) = a−1G∞0 (ȳ− x̄), ∇G∞0 (y−x) = −a−2∇G∞0 (ȳ− x̄).

The above properties, combined with (23), allow to recast the scaled integral oper-
ator La given by (22) as

(24) La = H+ a2Lc
a,

where the leading operator H and the complementary operator Lc
a are defined by

HU(x̄) =

∫
B
β∇G∞0 (x̄−·)·∇U dV

Lc
aU(x̄) = k2a

∫
B
η G
(
z+aȳ, z+ax̄

)
U(ȳ) dV (ȳ)

−
∫
B
β∇1G

c
(
z+aȳ, z+ax̄

)
·∇U(ȳ) dV (ȳ)

−
∫
B
β∇

(
G∞k −G∞0

)
(a(ȳ− x̄)

)
·∇U(ȳ) dV (ȳ),(25)

noting that H does not depend on a. The VIE (20) for Ua then takes the form

(26) (I −H − a2Lc
a)Ua = Pau in B,

where I − H is the leading term of La as a → 0. In fact, the scaled operators
I −H and Lc

a and their original (unscaled) counterparts P−1
a

(
I−H

)
Pa and Lc

a :=

a2P−1
a Lc

aPa have the following properties:

Proposition 1. Let β such that −1<β <∞.
1. The operator I −H : H1(B) → H1(B) is (a) well defined and bounded, (b)

boundedly invertible.
2. Let a0 such that Ba b Ω for any a≤ a0. Then:

(i) The operator Aa := P−1
a

(
I −H

)
Pa : H1(Ba) → H1(Ba) is well-defined,

bounded and invertible. Moreover, there exists C0 > 0 such that ‖A−1
a ‖ ≤

C0 for any a<a0.
(ii) There exists Cc > 0 such that, for any a < a0, the operator Lc

a : H1(B) →
H1(B) satisfies

∥∥Lc
a

∥∥ ≤ Cc and the operator Lc
a := a2P−1

a Lc
aPa : H1(Ba)→

H1(Ba) satisfies
∥∥Lc

a

∥∥ ≤ aCc.

Regarding item 1, (a) stems from Thm. 6.1.12 in [22] on pseudodifferential
operators, and (b) is [11, Thm. 3.1]. The proof of item 2 is given in Section 8.
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Remark 3. We note that the non-leading parts of La and La are found to have
respective orders O(a) and O(a2) (the leading order being O(1) for both the original
and the rescaled VIEs); this order disparity is due to the effect of the coordinate
stretch (17) on density gradients, see (19).

The rescaled version (26) of the VIE (15) provides the basis for formally deriving
the inner expansion of ua. Since I −H is the leading part of the integral operator
I−La (see Prop. 1), VIEs of the form (I−H)uB = u, which in fact govern (frequency-
independent) free-space transmission problems (FSTPs), will play a key role, as
coefficients of the expansion of ua will be found to satisfy such VIEs. Accordingly,
some definitions and results for FSTPs are now gathered for later use.

3.4. Free-space transmission problems. Integral equations of the form

(27) (I −H)uB = u in R3,

are known to govern a Laplace free-space transmission problem (FSTP) for an
inhomogeneity B with (e.g. conductivity) relative contrast β embedded in an infinite
medium, defined as follows (see e.g. [11]): given a background field u ∈ H1

loc(R3),
find the total field uB such that

(28)
div
[
(1+βχB)∇uB

]
= div (∇u) in R3,

uB(y)− u(y) = O(|y|−2) (|y| → ∞).

Solutions to such FSTPs satisfy the following reciprocity identity (see proof in
Appendix D.1):

Lemma 2. Let uB, u
′
B solve (28) for respective background fields u, u′. We have〈

uB, u
′ 〉β
B =

〈
u′B, u

〉β
B.

Polynomial background field. The case where the background field u is polynomial
will play an important role. Any polynomial of degree n may be set in the form

(29) u(x) = E0 +

n∑
p=1

πp[Ep](x) with πp[Ep](x) := Ep •x
⊗p,

where E0 ∈ C is a scalar and Ep are constant complex tensors of order p that are
assumed without loss of generality to be invariant under all index permutations.
In (29) and hereinafter, the notation A •B indicates, for any tensors A,B of re-
spective orders p, q, their m-fold inner product, with m := min(p, q) (i.e. the inner
product is taken over as many indices as possible), e.g. (A •B)ijk = Aijk`mnB`mn
(using Einstein’s summation convention); moreover, the notation x⊗p is a short-
hand for the tensor product x⊗ . . .⊗ x of order p (e.g. x⊗3 = x⊗ x⊗ x, i.e.
(x⊗3)ijk = xixjxk). The above definitions, and in particular this convention, imply

that ∇πp[Ep](x) = pE •x⊗(p−1). We then denote by UpB[Ep] the solution to the
FSTP (28) with u = πp[Ep], which satisfies the well-posed integral equation

(30) (I −H)UpB = πp[Ep] in B.
Since H[E0] = 0, U0

B is a constant function: U0
B = E0. Moreover, when B is an ellip-

soid, it is well known that UpB[Ep] is polynomial with degree p in B (Appendix B).
We will need cases p= 1, 2, for which

(31) ∇U1
B(y) = [ I + βS1 ]−1 ·E1, ∇U2

B(y) =
(

[I + βS2 ]−1 :E2

)
·y y ∈B

(with I and I denoting the second-order identity tensor and the fourth-order iden-
tity for symmetric second-order tensors, respectively), where S1 and S2 are constant
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tensors, respectively of order 2 and 4 (see Appendix B). Analytical expressions of
S1 and S2 are available; in particular, if B is a ball, we have (Appendix C)

(32) (a) S1 = 1
3I, (b) S2 = 2

5

(
2I + I⊗I

)
.

Polarization tensors (PTs). They appear in many asymptotic expansions involving
small inhomogeneities, see e.g. [3, 15]. For integers p, q≥ 1, let the PT Apq be the
constant tensor of order p+q such that

(33)
〈
UpB[Ep] , πq[Eq]

〉β
B = Ep •Apq •Eq

for any constant tensors Ep and Eq of respective orders p, q (equation (33) uniquely
defines Apq under the additional condition that Apq be invariant under any permu-
tation of either its first p indices or its last q indices, reflecting the assumptions pre-
viously made on Ep,Eq). The practical evaluation of tensors Apq is made easier by
applying Lemma 2 to (uB, u

′
B) =

(
UpB[Ep], U

q
B[Eq]

)
and (u, u′) =

(
πp[Ep], πq[Eq]

)
,

yielding

(34) Ep •Apq •Eq = Eq •Aqp •Ep.

Consequently, knowing the FSTP solution UmB [Em] with m := min(p, q) is sufficient
for evaluating Apq.

Remark 4. The present PT Apq can be shown to define the same bilinear form
Ep •Apq •Eq as its counterpart mij of [3] (defined in terms of layer potential
representations for UpB[Ep], and where i, j are multi-indices of respective lengths
|i|= p, |j|= q) whenever the polynomial πp[Ep] is harmonic.

3.5. Inner solution expansion.

3.5.1. Formal derivation. Recalling the rescaling (21), the desired inner expansion
of ua in Ba is assumed to have the form

ua(x) = P−1
a [U (4)

a ](x) + δa(x) (x∈Ba),(35)

with U (4)
a := U0 + aU1 + a2U2 + a3U3 + a4U4

in terms of functions U0, . . . U4 defined in B, and where the remainder δa is small
in a sense made precise later (see Prop. 2). We now seek governing equations for
U0, . . . U4 by substituting the ansatz (35) into the asymptotic expansion form (26)
of the VIE, i.e. by writing that the equation

(36)
[
I −H − a2Lc

a

]
U (4)
a = Pau in B.

is verified at orders O(1) to O(a4) included. The desired equations for U0, . . . U4

then result from term-by-term identification of the expansion of the above equation
in powers of a, starting from the lowest O(1) order. The right-hand side is expressed
by its Taylor expansion

(37) Pa[u](x̄) = uz +

4∑
p=1

ap

p!
πp[g

p
z](x̄) + o(a4) =: T4[u](x̄) + o(a4)

(having introduced the convenient shorthand notations uz := u(z) and gkz :=∇ku(z)
for the background field and its derivatives at z, and with monomials πp as defined

by (29)). Moreover, since ‖Lc
a‖ = O(1) (see Prop. 1), it is convenient to proceed

as follows: (i) state and solve the O(1) and O(a) equations, which are simple and

yield U0 and U1; (ii) compute the expansion of Lc
aU

(4)
a and use therein the known
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values of U0, U1; (iii) set up and solve for U2, U3, U4 the more-involved O(a2) to
O(a4) equations.

(i) Determination of U0, U1. The O(1) and O(a) equations arising from (36) are

(38) (a)
(
I −H

)
U0 = uz, (b)

(
I −H

)
U1 = π1[gz],

with gz := g1
z. Having the form (30), respectively with p = 0 and p = 1, their

solutions are (see Sec. 3.4)

(39) (a) U0 = uz, (b) U1 = U1
B[gz] in B.

We note in particular that ∇U0 = 0, which will bring some simplification in forth-
coming expansions and shows that the leading contribution of (13) is, as expected
(see Sec. 2.5), of order O(a3).

(ii) Expansion of Lc
aU

(4)
a . Using Taylor expansions of a 7→ Gc

(
z+aȳ, z+ax̄

)
(which is smooth in a neighbourhood of a = 0) and a 7→ eika|ȳ−x̄| in (25), the
expansion of Lc

aU for given U ∈H1(B) is

Lc
aU = Lc

0U + aLc
1U + a2Lc

2U + o(a2),(40)

Lc
0U(x̄) := k2(G−N )U −

∫
B
β∇1G

c
z ·∇U dV

Lc
1U(x̄) := k2

[ ik

4π
+Gc

z

] ∫
B
η U dV

−
∫
B
β
(
∇11G

c
z ·ȳ + ∇12G

c
z ·x̄+

ik3

12π
r̄
)
·∇U dV

Lc
2U(x̄) := −k2MU +

∫
B
η
(
∇2G

c
z ·x̄+ ∇1G

c
z ·ȳ
)
U dV

(with r̄ := x̄− ȳ) in terms of the integral operators G, N and M defined by

(41)

GU(x̄) =

∫
B

η

4π|r̄|
U dV, NU(x̄) =

∫
B

β

8π
∇|r̄|·∇U dV,

MU(x̄) =

∫
B

η

8π
|r̄|U dV.

We note that all terms in formulas (40) except those involving operators M,N ,G
yield constant or linear functions of x̄ for any U . The above definitions then result

in the following expansion of Lc
aU

(4)
a :

Lc
aU

(4)
a = Lc

0U0 + a(Lc
0U1 +Lc

1U0) + a2(Lc
0U2 +Lc

1U1 +Lc
2U0) + o(a2)

= k2uzG1 + a
[
k2(G−N )U1 +D3

z

]
+ a2

[
k2(G−N )U2 − k4uzM1 +D4

z +Ez ·x̄
]

+ o(a2),

wherein the scalar constants D3
z , D

4
z ∈ C and the constant vector Ez = C3 can

be evaluated by using (39) and expressing relevant integrals on B in terms of the
polarization tensors defined by (33) and (46a) whenever possible. Introducing for
convenience the shorthand notations Gc

z := Gc(z, z), ∇kG
c
z := ∇kG

c(z, z) and
∇k`G

c
z :=∇k`G

c(z, z), this evaluation yields

(42)
D3
z = k2uzη|B|

[ ik

4π
+Gc

z

]
− gz ·A11 ·∇1G

c
z,

Ez = k2uz η|B|∇2G
c
z − gz ·A11 ·

[
∇12G

c
z +

ik3

12π
I
]
,
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whereas the precise value of D4
z will prove irrelevant.

(iii) Determination of U2, U3, U4. The O(a2), O(a3) and O(a4) equations arising
from (36) are

(a)
(
I −H

)
U2 = 1

2π2[g2
z] + Lc

0U0,

(b)
(
I −H

)
U3 = 1

6π3[g3
z] + Lc

0U1 +Lc
1U0,(43)

(c)
(
I −H

)
U4 = 1

24π4[g4
z] + Lc

0U2 +Lc
1U1 +Lc

2U0.

Their solutions are

(44) (a) U2 = 1
2U

2
B[g2

z]+XB, (b) U3 = 1
6U

3
B[g3

z]+YB, (c) U4 = 1
24U

4
B[g4

z]+ZB

with the auxiliary H1(B) functions XB, YB, ZB defined as the solutions of the FSTPs

(a)
(
I −H

)
XB = k2uzG1

(b)
(
I −H

)
YB = k2(G−N )U1 +D3

z(45)

(c)
(
I −H

)
ZB = k2(G−N )U2 − k4uzM1 +D4

z +Ez.

As usual in asymptotic methods, the U` are defined sequentially and depend on
lower-order solutions.

The following lemma, whose proof is given in Appendix D, gathers identities
verified by XB, YB, ZB. They involve additional constant tensors Bpq and Qpq

defined, in terms of the FSTP solutions UpB, by

Ep •Bpq •Eq =
(
UpB[Ep] , πq[Eq]

)η
B,(46a)

Ep •Qpq •Eq =
(
UpB[Ep] , U

q
B[Eq]

)η
B +

〈
UpB[Ep] , NUqB[Eq]

〉β
B.(46b)

where N is the operator defined in (41). We note that B01 = 0 (due to U0
B being a

constant function and z being the centroid of B by assumption).

Lemma 3. The functions XB, YB, ZB solving the FSTPs (45) satisfy the identities〈
XB, πq[Eq]

〉β
B = k2uz

(
B0q •Eq −Eq •Bq0

)
q≥ 1〈

YB, πq[Eq]
〉β
B = k2gz ·(B1q −Q1q)·Eq q≥ 1〈

ZB, π1[ĝz]
〉β
B = k2

(
1
2g

2
z ·(B21−Q21)·ĝz +

(
XB, π1[ĝz]

)η
B

− uz
(

1, ŶB
)η
B + uzη|B|D̂3

z

)
+Ez ·A11 ·gz

with the tensors Bpq,Qpq as defined by (46a,b) and where D̂3
z and ŶB (in the last

identity) are defined by (42) and problem (45b) with uz, gz replaced with ûz, ĝz.

3.5.2. Resulting solution expansion and its justification. To assess the approxima-
tion order achieved by (35), we need to estimate the H1(Ba) norm of δa :=

ua −P−1
a U

(4)
a , and in particular to show that its order in a is higher than that

of the highest-order term P−1
a U4. We have ‖a4U4‖H1(B) = O(a4). Then, we ob-

serve that the rescaling mapping Pa (see (18)) implies

(47)
(a) ‖v‖L2(Ba) = a3/2

∥∥Pav∥∥L2(B)
,

(b) ‖∇v‖L2(Ba) = a1/2
∥∥∇(Pav)

∥∥
L2(B)

for any v ∈ H1(Ba). Consequently, u4 := P−1
a [a4U4] is such that ‖u4‖L2(Ba) =

a11/2‖U4‖L2(B) and ‖∇u4‖L2(Ba) = a9/2‖∇U4‖L2(B), and hence can be estimated
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as ‖u4‖H1(Ba) = O(a9/2). To justify the approximation (35), we therefore need to

prove that ‖δa‖H1(Ba) = o(a9/2). The following proposition fulfills this objective:

Proposition 2. Let β be such that −1<β <∞. There exists a1 > 0 and a constant

C > 0 independent of a such that the expansion error δa := ua−P−1
a U

(4)
a of the

inner expansion (35) verifies the estimate

(48) ‖δa‖H1(Ba) ≤ Ca11/2 for all a < a1.

Proof. Inserting ua given by (35) in the VIE (15), the inner expansion error δa

satisfies the VIE (I −La)δa = γa with γa = u − (I −La)
[
P−1
a U

(4)
a

]
. The proof

of estimate (48) then consists in (i) showing that the inverse of the operator (I −
La) : H1(Ba) → H1(Ba) exists and is bounded independently of a for any small
enough a and (ii) estimating ‖γa‖H1(Ba). This proof is given in Sec. 9; it rests upon

the bounded invertibility of I −H, which is ensured by the assumption on β (see
Prop. 1).

3.6. Outer expansion. We now turn to the expansion of va(x) for x /∈ Ba. In
this case, va(x) is given by (15) used as an integral representation:

(49) va(x) = La[ua](x) x∈Ω\Ba.
Since x 6∈Ba, y 7→ G(y,x) is smooth for y ∈Ba, and one therefore has ∇1G(y,x) =
∇1G(z,x)+O(a), while the inner expansion (35) truncated to its leading order gives
ua(y) = u(z) +O(a) and ∇ua(y) = gz+P−1[∇U1](ȳ) +O(a). Using this together
with the rescaling (17) in (49) yields the outer expansion

va(x) = a3W (x; z) +O(a4) x∈Ω\Ba,(50)

with W (x; z) := −∇1G(z,x)·A11 ·gz + k2η|B|G(z,x)uz

which holds pointwise and is well-known, e.g. [2, 4]. Expansion (50) holds pointwise
up to the boundary if ∂Ω is C1,1 (which ensures continuity up to ∂Ω of x 7→
G(z,x) = G(x, z), by e.g. [27, Thm. 4.18]). Such extra smoothness for ∂Ω is
avoided by the following version of the outer expansion:

Lemma 4. Let D b Ω be an open subset of Ω, independent of a, such that z ∈D,
and assume a is small enough to have Ba b D. Then: ‖va−a3W‖H1(Ω\D) = O(a4).

Proof. Let D′ b D be an open subset of D such that Ba b D′, and define w :=
(va − a3W )χ in Ω (with χ a smooth cut-off function, equal to 1 in Ω \D and

vanishing in D′). Let b := −(∆ + k2)w. Since (∆ + k2)va = (∆ + k2)W = 0 in

Ω−D, supp(b) ⊂ D \D′. Expansion (50) hold pointwise in D\D′, and so does
the corresponding expansion of ∇va by virtue of y 7→ ∇2G(y,x) being smooth in
Ba, implying that ‖b‖L2(Ω) = ‖b‖L2(D\D′) = O(a4). As w solves −(∆ + k2)w =
b in Ω and ∂nw = 0 on ∂Ω, it depends linearly and continuously on b, so that
‖w‖H1(Ω\D) = O(a4).

4. Misfit function expansion. Exploiting the results established and facts gath-
ered in Sec. 3, we now formulate and justify the O(a6) expansion of J(a). The
expansion is first given in its most general form, valid for a small obstacle of ar-
bitrary shape, in Theorem 1; this is the main result of this article. Then, the
expansion is shown to take a significantly simpler form if restricted to the sub-class
of centrally-symmetric inclusions (Sec. 4.2), which includes the important special
cases of ellipsoidal and spherical obstacles for which explicit forms of the expansion
coefficients can be given (Sec. 4.3).
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4.1. Expansion in the general case.

Theorem 1. For a single obstacle, characterized by its geometrical support Ba :=
z+aB and relative material parameters β, η and embedded in the three-dimensional
homogeneous reference medium Ω, the O(a6) expansion of any objective function
J(a) of format (5) with a density ϕ(wR, wI,x) that is twice differentiable in its first
two arguments, with C0,γ second-order derivatives for some γ > 0, is

J(a) = J(0) + a3T3(z) + a4T4(z) + a5T5(z) + a6T6(z) + o(a6)

with the topological derivatives T3, . . . T6 given by

T3(z) = Re
{
gz ·A11 ·ĝz − k2η|B|uzûz

}
(51a)

T4(z) = Re
{

1
2A12 • (gz⊗ ĝ2

z + ĝz⊗g2
z)− k2B10 ·(uzĝz + ûzgz)

}
(51b)

T5(z) = Re
{

1
6A13 • (gz⊗ ĝ3

z + ĝz⊗g3
z) + 1

4g
2
z :A22 : ĝ2

z(51c)

− 1
2k

2B20 : (uzĝ
2
z + ûzg

2
z)− k2gz ·Q11 ·ĝz − k2ûz

(
1, XB

)η
B

}
T6(z) = Re

{
1
2J
′′(u;W ) + 1

24A14 • (gz⊗ ĝ4
z + ĝz⊗g4

z)(51d)

+ 1
12A23 • (g2

z⊗ ĝ3
z + ĝ2

z⊗g3
z)

− 1
6k

2B30 • (uzĝ
3
z + ûzg

3
z)− 1

2k
2Q12 • (gz⊗ ĝ2

z + ĝz⊗g2
z)

+Ez ·A11 ·ĝz − k2ûz
(

1, YB
)η
B − k

2
(

1, ŶB
)η
B + k2|B|ηD̂3

zûz

}
.

The tensors Apq, Bpq and Qpq are respectively defined by (33), (46a) and (46b)
in terms of solutions to free-space transmission problems (FSTPs) with polynomial
background field (see Sec. 3.4), the function W is given by (50), the functions XB, YB
solve the FSTPs (45a,b), the scalar and vector constants D̂3

z, Ez are as in Lemma 3,
and the shorthand notations gkz , ĝ

k
z for derivatives at z of u, û are as in (37).

Proof. The proof results from expanding in powers of a each term of expansion (6)
of J(ua).

(a) First term of (6). Recalling Lemma 1 and eqn. (13), and effecting the
coordinate change (17) in the relevant integrals, J ′(u; va) is given by

J ′(u; va) = Re
{
a
〈
Paû, U (4)

a

〉β
B − k

2a3
(
Paû, U (4)

a

)η
B

}
(52a)

+Re
{〈

û, δa
〉β
Ba
− k2

(
û, δa

)η
Ba

}
where, inserting (39) and (44) into (35), the O(a4) approximation U

(4)
a of Ua is

given by

(52b) U (4)
a = uz + aU1

B + a2
(

1
2U

2
B +XB

)
+ a3

(
1
6U

3
B + YB

)
+ a4

(
1
24U

4
B + ZB

)
and that of ∇U

(4)
a follows straightforwardly. In (52b) and for the remainder of this

proof, we use for convenience the shorthand notations UmB := UmB [gmz ]. We first

evaluate the term
〈
Paû, U (4)

a

〉β
B. Using (52b) and a Taylor expansion in a of Paû

(i.e. (37) with u replaced with û), introducing the polarization tensors Apq and
invoking the symmetry property (34) wherever possible, we obtain

a
〈
Paû, U (4)

a

〉β
B = a3gz ·A11 ·ĝz + a4

[
1
2A12 • (gz⊗ ĝ2

z + ĝz⊗g2
z) + 2

〈
XB, π̂1

〉β
B

]



Inverse scattering using high-order misfit expansion 15

+ a5
[

1
6A13 • (gz⊗ ĝ3

z + ĝz⊗g3
z) + 1

4g
2
z :A22 : ĝ2

z

+ 1
2

〈
XB, π̂2

〉β
B +

〈
YB, π̂1

〉β
B

]
+ a6

[
1
24A14 • (gz⊗ ĝ4

z + ĝz⊗g4
z) + 1

12A23 • (g2
z⊗ ĝ3

z + ĝ2
z⊗g3

z)

+ 1
6

〈
XB, π̂3

〉β
B + 1

2

〈
YB, π̂2

〉β
B +

〈
ZB, π̂1

〉β
B

]
+O(a7),

having introduced the shorthand notation π̂m := π[ĝmz ]. Then, all terms involving
auxiliary FSTP solutions XB, YB, ZB are transformed with the help of Lemma 3, to
obtain〈
Paû, U (4)

a

〉β
B = a3gz ·A11 ·ĝz + a4

[
1
2A12 • (gz⊗ ĝ2

z + ĝz⊗g2
z)− 2k2ĝz ·B10uz

]
+ a5

[
1
6A13 • (gz⊗ ĝ3

z + ĝz⊗g3
z) + 1

4g
2
z :A22 : ĝ2

z

+ 1
2k

2uz
(
B02 : ĝ2

z − ĝ2
z :B20

)
+ k2gz ·(B11 −Q11)·ĝz

]
+ a6

[
1
24A14 • (gz⊗ ĝ4

z + ĝz⊗g4
z) + 1

12A23 • (g2
z⊗ ĝ3

z + ĝ2
z⊗g3

z)

+Ez ·A11 ·ĝz + 1
6k

2uz
(
B03 • ĝ

3
z − ĝ3

z •B30

)
− 1

2k
2Q12 • (gz⊗ ĝ2

z + ĝz⊗g2
z) + 1

2k
2 gz ·B12 : ĝ2

z

+ 1
2k

2 g2
z :B21 ·ĝz + k2

(
XB, π̂1

)η
B

− k2uz
(

1, ŶB
)η
B + k2uzη|B|D̂3

z

]
+O(a7)(52c)

Similarly evaluating the term
(
Paû, U (4)

a

)η
B by using the inner expansion (52b), we

find(
Paû, U (4)

a

)η
B = a3|B|ηuzûz + a4gz ·B10ûz

+ a5
[

1
2g

2
z :B20ûz + gz ·B11 ·ĝz + 1

2uzB02 : ĝ2
z + ûz

(
1, XB

)η
B

]
+ a6

[
1
6g

3
z •B30ûz + 1

2g
2
z :B21 ·ĝz + 1

2gz ·B12 : ĝ2
z

+ 1
6uzB03 • ĝ

3
z + ûz

(
1, YB

)η
B +

(
XB, π̂1

)η
B

]
+O(a7)(52d)

Moreover, the second term in the right-hand side of (52a) admits the following
estimate by virtue of Proposition 2 and the Cauchy-Schwarz inequality:∣∣〈 û, δa 〉β

Ba
− k2

(
û, δa

)η
Ba

∣∣(52e)

≤ |β| ‖∇û‖L2(Ba)‖∇δa‖L2(Ba) + |η| ‖û‖L2(Ba)‖δa‖L2(Ba)

≤
(
|β|+ |η|

)
‖û‖H1(Ba)‖δa‖H1(Ba) ≤ Ca3/2a11/2 = Ca7.

Combining (52c), (52d) and (52e), we finally find

J ′(u; va) = a3
[
gz ·A11 ·ĝz − k2η|B|uzûz

]
+ a4

[
1
2A12 • (gz⊗ ĝ2

z + ĝz⊗g2
z)− k2B10(uzĝz + ûzgz)

]
+ a5

[
1
6A13 • (gz⊗ ĝ3

z + ĝz⊗g3
z) + 1

4g
2
z :A22 : ĝ2

z

− 1
2k

2B20 : (uzĝ
2
z + ûzg

2
z)− k2gz ·Q11 ·ĝz − k2ûz

(
1, XB

)η
B
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+ a6
[

1
24A14 • (gz⊗ ĝ4

z + ĝz⊗g4
z) + 1

12A23 • (g2
z⊗ ĝ3

z + ĝ2
z⊗g3

z)

+Ez ·A11 ·ĝz − 1
6k

2B30 • (uzĝ
3
z + ûzg

3
z)

− 1
2k

2Q12 • (gz⊗ ĝ2
z + ĝz⊗g2

z)− k2ûz
(

1, YB
)η
B

− k2uz
(

1, ŶB
)η
B + k2uzη|B|D̂3

z

]
+O(a7)(52f)

(b) Second term of (6). It admits, as a direct consequence of the outer expan-
sion (50), the expansion

(52g) J ′′(u; va) = a6J ′′(u;W ) + o(a6)

(c) Third term of (6). The remainder R(u; va) in (6) can be put in the form

(52h) R(u; va) =
∑

a,b=R,I

∫
∂Ω

{∫ 1

0

(1− t)
[
∂abϕ

(
uR + tvaR, uI + tvaR, ·

)
− ∂abϕ

(
uR, uI, ·

)]
dt
}
vaav

a
b dS

The C0,γ assumption on the derivatives ∂abϕ then yields

(52i) |R(u; va)| ≤ C‖va‖2+γ
L2+γ(∂Ω) ≤ C‖v

a‖2+γ
H1(Ω) ≤ Ca

6+3γ = o(a6)

for some C > 0 and for all a small enough, where we have used the fact that the trace
mapping defines a continuous H1(Ω) → Lp(∂Ω) operator for 1 ≤ p ≤ 4 (e.g. [16,
Thm. 6.6-5]), and then invoked Lemma 4.

(d) End of the proof. The theorem follows by using (52f), (52g) and (52i) in (6)
and grouping all contributions of like orders. Similar arguments would apply, us-
ing (50), for components of J defined as integrals over subsets of Ω, if any.

4.2. Centrally symmetric obstacle. Many simple shapes (e.g. balls, ellipsoids
or cuboids) fall into this category, for which the following lemma allows expansions
to be significantly simpler than (51a-d):

Lemma 5. Let B be centrally symmetric, i.e. x̄ ∈ B =⇒ −x̄ ∈ B, and define
the symmetry operator S by Sw(x) = w(−x) for any function w. Then: (i) the
following properties hold for any u,w ∈H1(B;C):

(53)

(a) SH[u] = H[Su], (d)
〈
Su, Sw

〉β
B =

〈
u,w

〉β
B,

(b) SN [u] = N [Su], (e)
(
Su, Sw

)η
B =

(
u,w

)η
B,

(c) SN [u] = N [Su]

(ii) if equation (I −H)uB = u holds for some u∈H1(B;C), then (I −H)SuB = Su
also holds.

Proof. To prove (53a), let x ∈ B, implying that −x ∈ B by symmetry assumption.
Evaluating SH[u](x) by setting y = −y for the integration variable, we have

SH[u](x) =

∫
B
β∇G∞0 (−y+x)·∇uB(−y) dVy

Then, property (53a) follows from using in the above equality that (i) ∇G∞0 (−y+
x) = −∇G∞k (y−x) (see (23)) and (ii) the definition of S implies ∇(SuB)(y) =
−∇uB(−y). Similar arguments yield properties (53b,c). Then, properties (53d,e)
follow from using the above change of integration variable in definitions (9). Finally,
item (ii) is obtained at once by applying S to the equation (I − H)uB = u and
invoking property (i-a).
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If B is centrally symmetric, we have Sπm[Em] = (−1)mπm[Em] (because πm[Em]
is a homogeneous polynomial of degree m) and SUmB [Em] = (−1)mUmB [Em] (by
Lemma 5) for any integer m; in particular, U1, U3 are skew-symmetric while U2, U4

are symmetric. Moreover, S(G1) = G1 by (53b), implying that SXB = XB; sim-

ilarly, (G −N )U1 is skew-symmetric (by (53b,c), and since U1 is), implying skew-
symmetry of YB − D3

z . Using these remarks together with properties (53c,d), we
find that

(54)
Apq = 0, Bpq = 0, Qpq = 0 (p+q odd);(

1, YB
)η
B = η|B|D3

z ,
(

1, ŶB
)η
B = η|B|D̂3

z

Consequently, T3 and T5 are still given by (51a) and (51c), respectively, but (51b)
and (51d) reduce to

(55) T4(z) = 0, T6(z) = Re
{

1
2J
′′(u;W ) +Ez ·A11 ·ĝz − k2|B|ηD3

z ûz

}
4.3. Ellipsoidal obstacle. Ellipsoids are centrally-symmetric shapes for which
∇UpB[Ep] are polynomials, see (31) for the cases p = 1, 2 of relevance here. As
a result, the following closed-form expressions for the elastic moment tensors Apq

are derived from their definition (33) and using (31):

(56)
A11 = β|B|

[
I + βS1

]−1
, A13 = 3|B|−1A11⊗

(
1, ȳ⊗ ȳ

)
B,

A22 = β|B|
[
I + βS2

]−1
.

They are then used in formulass (51a), (51c) and (55) for the topological derivatives.

4.4. Spherical obstacle. If B is the unit sphere, the volume potentials appearing
in the relevant FSTPs (44a), (45a) and in the definition of tensors Qpq can be
evaluated in closed form for polynomial densities, see Appendix C; moreover, tensors
S1,S2 are given explicitly by (32) while

(
1, ȳ⊗ ȳ

)
B = (4π/15)I. As a result, we

find that the relevant FSTP solutions are given in B by

U1
B[E1](x) =

3

β+3
E1 ·x,

U2
B[E2](x) =

5

2β+5
E2 : (x⊗x) +

β

β+1

( 1

3
− x2

2β+5

)
E2 :I,

XB(x) =
η(2β+3− x2)

6(β+1)
k2uz

and the associated tensors by

A11 = 4π
β

β+3
I, B20 =

4π

45

η(5β+3)

β+1
I,

A13 =
12π

5

β

β+3
I⊗I, Q11 =

4π

5

3η+2β2

(β+3)2
I,

A22 =
16π

15

β

2β+5

(
5I − β

β+1
I⊗I

)
,

(
1, XB

)η
B =

4π

45

η2(5β+6)

β+1
k2uz.

5. Discussion.

5.1. Computational considerations. The practical evaluation of the topological
derivatives T3 to T6 rests on that of the fields u, û, G(·, z), all defined on the same
(background) configuration, and of polarization tensors. Moreover, the following
remarks apply:
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(a) Background and adjoint solutions u, û. They need to be computed only
once, irrespective of the number of obstacle sites z considered. They have the
representations

(57) u(x) = iρ0ω
(
G(· − x) , V D

)
∂Ω
, û(x) = −

(
G(· − x) , ∂Rϕ− i∂Iϕ

)
∂Ω
,

which in practice are explicit only for domains Ω simple enough for G to be known
analytically (see Sec. 5.3). As derivatives of u and û of order up to three are involved
in T5 (and orders up to four in T6 if (54) does not apply), suitable solution or post-
processing methods are needed. If G is known, formulas (57) are well suited for this
since they may be differentiated at any order.

(b) Polarization tensors. Each tensor needs to be computed only once for given
obstacle shape and material properties. This task requires the FSTP solutions
U1
B, U

2
B. The latter are known explicitly for ellipsoidal obstacles. For other shapes,

the FSTPs (30) for p= 1, 2 must be solved numerically.
(c) Derivatives of the Green’s function. Derivatives of either G(·, z) or its com-

plementary part Gc(·, z) are needed for the evaluation of T6. This warrants closer
examination. In most situations, contributions of G(·, z) or Gc(·, z) to T6 have to
be computed numerically. This requirement has implications. Firstly, the deriva-
tives ∇1G(z, ·) are involved, through (50), in J ′′(u;W ); this looks inconvenient if
G is not known analytically as the second argument spans all of ∂Ω. However, the
well-known symmetry property G(z,x) = G(x, z) implies ∇1G(z,x) = ∇2G(x, z),
allowing to evaluate J ′′(u;W ) for given z by means of G(·, z). Using the additive
decomposition (23) in (14), Gc(·, z) solves the problem

(a) ∆Gc(·, z)+k2Gc(·, z) = 0 in Ω, (b) ∂nG
c(·, z) = −∂nG∞k (·−z) on ∂Ω.

In fact, upon differentiating that problem w.r.t. the coordinates of z (which is valid
since z acts therein as a parameter), the derivatives H`(·, z) := ∇2G

c(·, z)·e` are
found to verify

(58)
∆H`(·, z)) + k2H`(·, z)) = 0 in Ω,

∂nH
`(·, z) = ∂n∂`G

∞
k (·−z) on ∂Ω

, 1≤ `≤ 3.

which are usual boundary-value problems with smooth boundary data (since z ∈Ω).
Then, T6(z) also involves ∇12G

c(z, z), which can be evaluated using first-order
derivatives of y 7→ H`(y, z) at y= z.

Secondly, evaluating the expansion of J(a; z) for a large number N of obstacle
sites z requires solving many instances of problem (58), which is impractical. A
possible remedy consists in using a (truncated) separable representation of G∞k , to
have G∞k (y−z) =

∑p
q=1 αq(y)βq(z)+εp (given by e.g. a multipole expansion [19]).

The computational work entailed by problems (58) becomes O(p) irrespective of N .

5.2. Other boundary conditions on ∂Ω. Neumann conditions on ∂Ω were as-
sumed for definiteness in Sections 2 to 4, but straightforward adaptations allow to
consider other types of boundary conditions. For example, assuming that ∂Ω is
divided into complementary subsets SN and SD supporting prescribed values V D of
the normal velocity and uD of the acoustic pressure, respectively, the Neumann con-
dition on ∂Ω in problems (2) and (3) is replaced by ∂nu= iρ0ωV

D on SN, u= uD

on SD, while the boundary condition (14b) in the definition of G is replaced by
G(·,x) = 0 on SD, ∂nG(·,x) = 0 on SN.

Due to the modification of the boundary condition setting, the nature of exper-
imental data and the objective function format (3) can also incur changes. For
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instance, we may here consider the format

J(w) =

∫
SN

ϕN

(
wR(y), wI(y),y

)
dSy +

∫
SD

ϕD

(
∂nwR(y), ∂nwI(y),y

)
dSy,

in (3), where ϕN and ϕD are C2 functions with respect to their first two arguments,
the new density ϕD allowing for instance to account for available values V obs of the
normal wall acceleration on a measurement surface Sobs

D ⊂ SD. The derivatives J ′

and J ′′ of J are then given by

J ′(u;w) =
∑
p=R,I

∫
Sα

∑
α=D,N

∂pϕα wp dS,

J ′′(u;w) =
∑

p,q=R,I

∑
α=D,N

∫
Sα

∂pqϕα wpwq dS.

instead of (7), while the adjoint field û now satisfies ∂nû = −
(
∂RϕN − i∂IϕN

)
(uR,

uI, ·) on SN and û =
(
∂RϕD−i∂IϕD

)
(∂nuR, ∂nuI, ·) on SD instead of the Neumann

condition of problem (8). With these changes, Lemma 1 still holds and all results
of Secs. 3,4, in particular Theorem 1, are unchanged.

5.3. Unbounded media. If an infinite medium is considered (Ω = R3), then of
course G = G∞k and Gc = 0, while the background field u is any field solving (∆+
k2)u in R3 (e.g. a plane wave). This significantly simplifies T6 since the constants
D3
z and Ez appearing in (51d) and (55) are then given by D3

z = η|B|ik3uz/4π and
Ez = −ik3 gz ·A11/12π. In that case, all results of Sections 3 and 4 apply with no
changes for any objective functional having the format J(w) =

∫
D
ϕ(wR, wI, ·) dV ,

where D⊂R3 is compact (e.g. D is a measurement region), the adjoint solution û
being the acoustic field created by the adjoint source distribution −χD

(
∂Rϕ−i∂Iϕ

)
,

i.e. being given by û(x) = −
(
G∞k (·−x) , ∂Rϕ− i∂Iϕ

)
D

. Alternatively, for the half-

space Ω = {y | y3 < 0} bounded by S = {y | y3 = 0}, it is well-known that

(59) Gc(y,x) = ±G∞k (y− x̃) with x̃ = (x1, x2,−x3)

where the ± sign depends on whether homogeneous Neumann or Dirichlet data is
considered on S.

5.4. Multiple trial obstacles. Having so far assumed a single a-dependent ob-
stacle Ba, we now briefly explain how Theorem 1 extends to the case of several
small obstacles with fixed locations, focusing on the case of two such obstacles (the
generalization to three or more being then straightforward). Accordingly, let a sec-
ond obstacle have support B′a := z′+ aB′ and relative material parameters β′, η′;
Ba and B′a are then scaled by the same characteristic radius a. For this setting, the
VIE (15) becomes

(60)
(
I−La

)
ua(x)− L′aua′(x) = u(x), x∈Ba,

where ua′ is the restriction of ua to B′a and the integral operator L′a : H1(B′a) →
H1(Ba) is defined by[

L′aw
]
(x) =

∫
B′
a

η′G(·,x)w dV −
∫
B′
a

β′∇1G(·,x)·∇w dV

The VIE formulation for the double-obstacle case then consists of equation (60)
together with its counterpart obtained by reversing the roles of Ba and B′a. Using
an ansatz of the form (35) for each obstacle, the coupling term L′aua′(x) has a
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O(a3) leading contribution, resulting from an outer expansion essentially identical
to that of Sec. 3.6. The lowest-order coefficients U0, U1, U2 are therefore still given
by (39a,b) and (44a) (with similar results for U ′1, U

′
2 on B′), and are not influenced

by the added obstacle B′a. The expansion of L′au′ is in fact formally identical to
that of Lc

au
a, replacing Gc(y,x) with G(y,x) and with all other quantities therein

now referring to B′a, so that we have

Pa
[
L′aua′

]
(x̄) = a3D3

z′,z + a4
[
D4
z′,z +Ez′,z ·x̄

]
+ o(a4)

where D3
z′,z, D

4
z′,z are scalar constants, whose expressions are similar to those of

D3
z , D

4
z , and with

Ez′,z = k2uz′ η
′|B|∇2G(z′, z)− gz′ ·A′11 ·∇12G(z′, z)

The effect of the coupling on Ua thus manifests itself through replacing D3
z with

D3
z +D3

z′,z in (43b) and D4
z , Ez with D4

z +D4
z′,z, Ez +Ez′,z in (43c) (and the

symmetric replacements to obtain governing equations for U ′3, U
′
4). The expan-

sion of objective functionals is insensitive to the new constant D4
z′,z appearing in

Ua. By suitable modifications to the derivation of (52c) and (52d), the topological
derivatives Tp(z, z′) for the dual-obstacle configuration are obtained in terms of the
topological derivatives Tp(z) and T ′p (z′) for a single obstacle located at z or z′, as
given by Theorem 1, as

T3(z, z′) = T3(z) + T ′3 (z′), T4(z, z′) = T4(z) + T ′4 (z′) = 0,

T5(z, z′) = T5(z) + T ′5 (z′),

T6(z, z′) = T6(z) + T ′6 (z′) + J ′′(u;W,W ′)

+Ez,z′ ·A′11 ·ĝ′z +Ez′,z ·A11 ·ĝz − k2|B|ηD3
z,z′ û

′
z − k2|B′|η′D3

z′,zûz

(for centrally-symmetric B,B′, and with self-explanatory notation in the expression
of T6(z, z′)). In particular, coupling between obstacles does not occur at orders
below O(a6) in the expansion of J(a).

6. A simple approximate global search procedure. Let J6(a; z) be the O(a6)
approximation of J(a; z) provided by its high-order topological expansion (Theo-
rem 1), given by

(61) J6(a; z) := J(0) + a3T3(z) + a4T4(z) + a5T5(z) + a6T6(z).

We seek the unknown obstacle (assumed to be unique, see discussion in Sec. 5.4)
by minimizing the polynomial approximation J6(a; z) for sampling points z chosen
a priori. This task is, for each z, simple and computationally very light. It can
therefore be performed for locations z spanning a fine search grid G, thereby defining
an approximate global search procedure over the spatial region sampled using G.
The best estimate of the unknown scatterer B̊ yielded by this procedure is defined
by the location z = xest and size a = Rest that minimize J6(a; z) for a ≥ 0 and
z ∈G, i.e. given by

(62) xest = arg min
z∈G

Ĵ6(z), Rest = R(xest),

with functions z 7→ Ĵ6(z) and z 7→ R(z) defined through partial minimization of
J6(a; z) w.r.t. a, i.e.:

(63) Ĵ6(z) = min
a≥0

J6(a; z), R(z) = arg min
a≥0

J6(a; z).
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In all numerical examples to follow, the “asymptotic surrogate” J6 of J is set up on
the assumption of a spherical trial scatterer Ba. We note in addition that a similar
procedure is developed and implemented for 2D EIT problems in [18].

7. Numerical experiments. To demonstrate the above approximate search pro-
cedure, we consider the identification of a penetrable object (B̊, ρ̊, c̊) embedded in
an acoustic medium occupying the half-space Ω = {x |x3 ≤ 0} (Fig. 1). A homoge-
neous Neumann condition is assumed on the surface S = {x |x3 = 0}. The relevant
Green’s function G is then given in closed form by (23) and (59).

Three synthetic limited-aperture testing configurations (labelled 2×2, 5×5 and
10× 10 in the sequel) are defined, where the square region {x | − 5d ≤ x1, x2 ≤
5d, x3 = 0} of S is divided into 2× 2, 5× 5 and 10× 10, respectively (d being

an arbitrary reference length). Point sources xe and sensors xm are located at
all centers and vertices, respectively, of the above-defined square grids, so that
configurations 2× 2, 5× 5 and 10× 10 feature N = 4, 25, 100 sources and M =
9, 36, 121 sensors, respectively. A set of N synthetic experiments is defined, each
consisting in activating one of the N sources. The identification is formulated in
terms of the cumulative least-squares cost functional

(64) J (B, β, η) =
1

2

N∑
e=1

M∑
m=1

∣∣uBe (xm)− uobs
e (xm)

∣∣2
where uobs

e and uBe are the acoustic fields induced by point source xe for the ‘true’

and ‘trial’ objects (B̊, β̂, η̂) and (B, β, η). The polynomial approximation J6(a) of
J(a) := J (Ba, β, η) defined by (61) has been set up for the functional (64) and a
spherical trial scatterer, i.e. using (55) and the formulas of Sec. 4.4 to evaluate
the coefficients T3(x̂), . . . , T6(x̂) given by Theorem 1. The background and adjoint
fields for the e-th experiment are given by

ue = G(·,xe), ûe =

M∑
m=1

(
uBe (xm)− uobs

e (xm)
)
G(·,xm)

where the overbar indicates complex conjugation. The synthetic data uobs
e are

computed by means of a coupled system of boundary integral equations (BIEs), the

boundary of B̊ being meshed using 600 eight-noded boundary elements, leading to
3604 nodal unknowns for the BIE system.

z

x

u

uobs

Ω(ρ, c)

G

B̂, ρ̂, ĉ

Figure 1. Identification of a penetrable scatterer (B̊, ρ̊, c̊) in a
acoustic half-space: geometry and notation (the dark shaded part
is the search region S).
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Table 1. Relative error R(x̂)/R̂ − 1 on obstacle radius, for ob-
stacles (S), (E) and (B) of known location, testing configurations
2×2, 5×5 and 10×10, and noise-free synthetic data.

kd= 1 kd= 2 kd= 5

(S) 2×2 −1.1e−02 −4.7e−02 −2.1e−01

5×5 −1.1e−02 −4.9e−02 −2.2e−01
10×10 −1.1e−02 −5.0e−02 −2.3e−01

(E) 2×2 −1.8e−03 −3.7e−02 −2.1e−01

5×5 −5.0e−03 −4.1e−02 −2.2e−01

10×10 −5.8e−03 −4.2e−02 −2.2e−01

(B) 2×2 −4.4e−03 −4.0e−02 −2.1e−01
5×5 −8.2e−03 −4.4e−02 −2.2e−01

10×10 −9.2e−03 −4.5e−02 −2.3e−01

The true obstacle B̊ (Fig. 1) is centered at x̂= (2.05d, 1.25d,−2.05d), its material

contrasts being β̂ = 1, η̂ = −0.5. Three geometries are considered for B̊: a sphere
(S) of radius d/5, a horizontally elongated ellipsoid (E) whose semiaxes (aligned
with the (x1, x2, x3) axes) are (A, 1

2A,
1
2A) with A = 22/3d/5, and a banana shape

(B) obtained by applying the transformation x3 −→ x3 − 0.15d× (x1 − x̂1)2/A2

to (E). For ease of comparison, the ‘true’ radius R̂ is defined as that of the sphere

having the same volume as B̊, so that R̂= d/5 for the three cases. Three frequencies
are considered, such that kd= 1, 2, 5. Note that x̂ 6∈G: four sampling points z ∈G
are closest to x̂, with |z− x̂| =

√
5d/20 ≈ .1118d. Except in the last paragraph (e)

of this section, the relative contrasts of the trial obstacle Ba are β= β̂, η= η̂.

(a) Obstacle size estimation (known location, noise-free data). In this preliminary
numerical experiment, the size of an obstacle whose location is known is estimated
by computing R(x̂) defined by (63). Results for the relative error R(x̂)/R̂ − 1 on
the obstacle radius found using noise-free synthetic data are given in Table 1 for all
of the above-defined scatterer configurations, testing configurations and frequencies.

Table 2. Relative error R(x̂)/R̂ − 1 on obstacle radius for obsta-
cles (S), (E) and (B) of unknown location: testing configurations
5× 5, 10× 10 and 20× 20, noise-free synthetic data. A distance
|xest− x̂|= d

√
5/20 is found for all cases.

kd= 1 kd= 2 kd= 5

(S) 2×2 −1.9e−02 −5.6e−02 −2.3e−01

5×5 −2.1e−02 −6.0e−02 −2.4e−01
10×10 −2.2e−02 −6.2e−02 −2.5e−01

(E) 2×2 −4.7e−03 −4.6e−02 −2.3e−01

5×5 −3.5e−03 −5.2e−02 −2.4e−01
10×10 −3.4e−03 −3.5e−02 −2.4e−01

(B) 2×2 −2.2e−03 −3.5e−02 −2.1e−01
5×5 −1.2e−03 −3.7e−02 −2.2e−01

10×10 −1.1e−03 −3.9e−02 −2.2e−01
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Figure 2. Iso-surfaces of Ĵ6(z) for Ĵ6 = ζJmin
6 , with ζ = 0.6 (top

left), ζ = 0.7 (top right), ζ = 0.8 (bottom left) and ζ = 0.9 (bot-
tom right): obstacle (E), testing configuration 5×5 and noise-free
data. The iso-surfaces and true obstacle location are emphasized
by projections on coordinate planes.

The size estimation accuracy is seen to decrease as the frequency increases, and to
be relatively insensitive to the density of the measurement and testing grids.

(b) Approximate global search, noise-free data. The approximate global search pro-
cedure outlined in Section 6 has then been performed on a search grid G of NG =
51×51×51 regularly spaced sampling points spanning the 3-D box-shaped search
region S defined by −5d ≤ x1, x2 ≤ 5d,−5.5d ≤ x3 ≤ −0.5d. The polynomial
approximation J6(a; z) of J has been set up for all NG sampling points of G and
using the explicit Green’s function.

The estimated obstacle radius Rest defined by (62) obtained for all obstacle ge-
ometries, testing configurations and frequencies and using noise-free synthetic data
is compared to R̂ in Table 2. The size estimation accuracy again decreases as the
frequency increases, and is relatively insensitive to the density of sources and sen-
sors: even the 2×2 testing configuration, which has only 4 sources and 9 sensors,
yields good results. For all cases displayed in Table 2, the identified obstacle lo-
cation xest is closest to x̂ among the available grid points. For cases (E) and (B)
involving ‘true’ scatterer shapes that increasingly deviate from the trial spherical
shape, the accuracy for the ‘equivalent radius’ R̂ (i.e for the obstacle volume) is
nonetheless similar to that achieved for case (S).

Additionally, values of Ĵ6(z) close to the minimum Jmin
6 := Ĵ6(xest) are found to

occur only at grid points close to xest (with R(z) ≈ Rest at those locations). This is

illustrated in Figure 2, where iso-surfaces Ĵ6(z) = ζJmin
6 , with ζ = 0.6 , 0.7 , 0.8 , 0.9,
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depicted for obstacle configuration (E) and testing configuration 5×5, are seen to

shrink to a small neighbourhood of x̂ as Ĵ6 approaches Jmin
6 .

(c) Approximate global search, noisy data. Then, the influence of data noise on the
search procedure is considered, by replacing the (synthetically) measured total field
uobs
e entering the cost functional (64) with a perturbed version ũobs

e such that

Re
[
ũobs
e (xm)

]
= (1 + η′e,m)Re

[
uobs
e (xm)

]
,

Im
[
ũobs
e (xm)

]
= (1 + η′′e,m)Im

[
uobs
e (xm)

]
,

η′e,m, η
′′
e,m being uniform random numbers with zero mean and standard deviation σ.

The measurement residuals uBe −uobs
e , which carry the useful information for obstacle

identification, are severely affected by even small perturbations of uobs
e since their

magnitude is much smaller than that of the measurement uobs, especially at the
lower frequency kd = 1. Estimations Rest and xest have been computed for cases
(S), (E) and (B), using the same sampling grid G, for all testing configurations and
frequencies. The relative errors on Rest and offsets |xest− x̂| achieved are shown in
Table 3 for noise level σ = 0.02. On comparing these results with those for error-
free data (Table 2), the accuracy deterioration remains moderate in most cases
with kd = 2 or kd = 5, while being unacceptable for the lower frequency kd = 1.
In the former case, the scarcest testing configuration 2× 2 also no longer yields
satisfactory results. These trends are, unsurprisingly, more pronounced still for
stronger data corruption σ = 0.05 (Table 4), where reasonable values are obtained
only for kd= 2 and kd= 5 with testing configurations 5×5 or 10×10. On the other
hand, identification results given in Table 5 for case (S) using synthetic data with
20% relative noise on scattered field are quite similar to those obtained using noise-
free data (Table 3), suggesting robustness of the search method against significant
perturbation of the essential data.

Table 3. Offset |xest− x̂| and relative error εR := Rest/R̂ −1 on
obstacle radius for obstacles (S), (E) and (B): testing configurations
2× 2, 5× 5 and 10× 10, synthetic data with 2% relative noise on
total field. Where |xest− x̂| is unacceptably large, εR is deemed
irrelevant and not shown.

ka= 1 ka= 2 ka= 5
|xest− x̂| εR |xest− x̂| εR |xest− x̂| εR

2×2 6.5e+00 —– 4.9e+00 —– 1.1e−01 −2.1e−01

(S) 5×5 4.3e+00 —– −8.3e−02 5.6e−01 1.1e−01 −2.3e−01

10×10 4.2e+00 —– −5.2e−03 1.1e−01 1.1e−01 −2.4e−01

2×2 5.4e+00 —– 6.0e+00 —– 1.1e−01 −1.8e−01
(E) 5×5 4.2e+00 —– 1.1e−01 −3.5e−02 1.1e−01 −2.4e−01

10×10 4.8e+00 —– 2.3e−01 −6.7e−02 1.1e−01 −2.5e−01

2×2 2.8e+00 —– 6.7e+00 —– 1.1e−01 −1.8e−01

(B) 5×5 4.4e+00 —– 3.1e−01 −4.2e−02 1.1e−01 −2.2e−01
10×10 2.4e+00 —– 2.3e−01 −3.7e−02 1.1e−01 −2.3e−01
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Table 4. Offset |xest− x̂| and relative error εR := Rest/R̂ −1 on
obstacle radius for obstacles (S), (E) and (B): testing configurations
2× 2, 5× 5 and 10× 10, synthetic data with 5% relative noise on
total field. Where εR is unacceptably large, Rest/R̂ − 1 is deemed
irrelevant and not shown.

ka= 1 ka= 2 ka= 5

|xest− x̂| εR |xest− x̂| εR |xest− x̂| εR

2×2 3.5e+00 —– 6.9e+00 —– 3.9e+00 −2.4e−01
(S) 5×5 3.7e+00 —– 7.2e+00 —– 1.1e−01 −2.3e−01

10×10 5.6e+00 —– 8.5e+00 —– 1.1e−01

2×2 5.1e+00 —– 5.0e+00 —– 4.2e+00 —–
(E) 5×5 6.4e+00 —– 3.7e+00 —– 1.1e−01 −1.9e−01

10×10 4.9e+00 —– 5.4e+00 —– 1.1e−01 −2.1e−01

2×2 5.9e+00 —– 3.8e+00 —– 6.1e+00 —–

(B) 5×5 4.8e+00 —– 5.1e+00 —– 1.1e−01 −2.1e−01
10×10 3.8e+00 —– 6.0e+00 —– 1.1e−01 −2.1e−01

Table 5. Offset |xest− x̂| and relative error εR := Rest/R̂ −1 for
obstacle (S) of unknown location: testing configurations 2×2, 5×5
and 10× 10, synthetic data with 20% relative noise on scattered
field.

ka= 1 ka= 2 ka= 5
|xest− x̂| εR |xest− x̂| εR |xest− x̂| εR

2×2 1.1e−01 6.7e−03 1.1e−01 −5.3e−02 1.1e−01 −2.3e−01

5×5 1.1e−01 −2.1e−02 1.1e−01 −6.6e−02 1.1e−01 −2.4e−01

10×10 1.1e−01 −2.1e−02 1.1e−01 −6.3e−02 1.1e−01 −2.5e−01

(d) High-order expansion vs. topological derivative. As seen in previous examples,
the accuracy of the obstacle size estimation using the high-order expansion J6 de-
creases as the probing frequency is increased. On the other hand, the qualitative
imaging provided by the usual topological derivative T3 is known to deteriorate as
the probing frequency decreases, see e.g. [17, 20]. These differing trends are further
exemplified in Figures 3 and 4, which show contour plots of mappings z 7→ T3(z)

and z 7→ Ĵ6(z) treated as imaging functions. The image given by Ĵ6(z) at low
frequencies is less smeared and better pinpoints the true location of the unknown
object. Both images get sharper as frequency increases.

(e) Varying the physical parameters of the trial obstacle. The higher-order topo-
logical expansion J6 depends on the assumed shape B and material parameters
ρ?, c? of the trial obstacle Ba. This dependence has not been exploited so far, and
in-depth analysis of its effect and potential benefits on the proposed search proce-
dure is left to future work. As a preliminary illustration of whether that procedure
is sensitive to the choice of trial material parameters, Figure 5 shows a contour
plot of (β, η) 7→ Ĵ6(x̂;β, η) for obstacle configuration (B), testing configuration
5× 5, probing frequency kd = 2 and noise-free data (the true material param-

eters being (β̂, η̂) = (1, −0.5)). A significant proportion of the possible choices
of (β, η) (the dark blue region of the contour plot) were found to be such that
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Figure 3. Contour plots of z 7→ T3(z) (left column) and z 7→
Ĵ6(z) (right column) in the horizontal plane containing the true
obstacle center x̂, for obstacle (B), testing configuration 5×5 and
noise-free data. Testing frequencies are kd = 1 (top row), kd = 2
(middle row) and kd= 5 (bottom row).

Ĵ6(x̂;β, η) = J6(0; x̂) ≈ 3.6 10−6 (i.e. a 7→ J6(a; x̂) has no strictly positive mini-

mizer). The sensitivity of Ĵ6(x̂;β, η) to (β, η) in the vicinity of (β̂, η̂) is moreover
seen to be rather mild, which suggests that accurate simultaneous determination of
the obstacle size and material parameters might not be easy.

8. Proof of Proposition 1, part 2. Regarding item (i), the boundedness and
invertibility of Aa result from part 1 and the definition (18) of the scaling oper-
ator Pa. To estimate ‖A−1

a ‖, we consider the equation Aaua = u for some given
background field u ∈ H1(Ba). This equation is equivalent to (I − H)Ua = Pa[u]
with Ua :=Pa[ua]. It can be solved for Ua in two steps. Step (i) consists in solving
for ∇Ua the singular VIE ∇Ua − ∇HUa = ∇Pa[u], which is known [11] to be
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Figure 4. Contour plots of z 7→ T3(z) (left column) and z 7→
Ĵ6(z) (right column) in a vertical plane containing the true obstacle
center x̂, for obstacle (B), testing configuration 5×5 and noise-free
data. Testing frequencies are kd= 1 (top row), kd= 2 (middle row)
and kd= 5 (bottom row).

Figure 5. Sensitivity of search procedure to trial physical param-
eters: contour map of (β, η) 7→ Ĵ6(x̂;β, η) (actual obstacle param-

eters are β̂= 1, η̂=−0.5)

well-posed, its solution satisfying ‖∇Ua‖L2(B) ≤C‖∇Pa[u]‖L2(B). Using (47), this
implies

(65a) ‖∇ua‖L2(Ba) ≤ C‖∇u‖L2(Ba)

Step (ii) then uses the representation Ua = HUa+Pa[u] in B, yielding ‖Ua‖L2(B) ≤
‖Pau‖L2(B) + C‖∇(Pau)‖L2(B) and thus ‖ua‖L2(Ba) ≤ ‖u‖L2(Ba) + Ca‖∇u‖L2(Ba)

(again invoking (47)). Choosing a0 such that Ba b Ω for any a≤ a0, we therefore
have

(65b) ‖ua‖L2(Ba) ≤ max(1, a0C)‖u‖H1(Ba) for any a≤ a0.
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Summing inequalities (65a) and (65b), we have that ‖∇ua‖H1(Ba)≤C0‖∇u‖H1(Ba)

for some C0 > 0, which completes the proof of item (i).
Regarding item (ii), the integral operator Lc

a (given by (25)) has kernels that
are either bounded or weakly singular over B ×B; it is therefore a bounded (in
fact, compact) H1(B) → H1(B) operator by e.g. [22, Thm. 6.1.12]. Moreover,
these kernels being O(1) as a → 0 (see the kernel expansions given after (39) in
Sec. 3.5.1), there exists Cc > 0 such that

∥∥Lc
a

∥∥ ≤ Cc for a small enough, as claimed.
Then, using equalities (47), we have

(66)
∥∥Lc

au
∥∥
H1(Ba)

= a2
∥∥P−1

a Lc
aPau

∥∥
H1(Ba)

≤ a5/2
∥∥Lc

aPau
∥∥
H1(B)

≤ a5/2Cc
∥∥Pau∥∥H1(B)

≤ aCc
∥∥u∥∥

H1(Ba)

Therefore, there exists Cc such that
∥∥Lc

a

∥∥ ≤ Cc for any a< a0. The proof of item
(ii) is complete.

9. Proof of Proposition 2. As a consequence of equation (15) satisfied by ua, the

inner expansion error δa := ua− [P−1
a U

(4)
a ] ∈ H1(Ba) solves the integral equation

(67) (I − La)δa = γa, with γa := u− (I − La)[P−1
a Ua]

Proposition 2 follows directly from the following two lemmas.

Lemma 6. Let β such that −1<β <∞. The integro-differential operator I −La :
H1(Ba)→ H1(Ba) is invertible. Moreover, there exists a1 > 0 such that (I −La)−1

is bounded uniformly in a for all a≤ a1.

Lemma 7. The right-hand side γa of equation (67) satisfies ‖γa‖H1(Ba) = O(a11/2).

Proof of Lemma 6. The decomposition I−La = Aa−Lc
a holds, with Aa and Lc

a as
in Proposition 1. Since Aa is invertible (part 2(i) of Prop. 1), we write I −La =
Aa
(
I−A−1

a Lc
a

)
. Now, since

∥∥Lc
a

∥∥ ≤ aCc for any a< a0 (part 2(ii) of Prop. 1), there

exists for any c> 1 an inhomogeneity size a1 such that ‖A−1
a Lc

a‖H1(Ba) ≤ c < 1 for

any a≤ a1, namely a1 = min
(
a0, (C0C

c)−1c
)

with C0 as in Prop 1. For all a< a1,

I−A−1
a Lc

a is then invertible by Neumann series, so has a bounded inverse:∥∥(I − A−1
a Lc

a

)−1∥∥
H1(Ba)

≤
(

1− ‖A−1
a Lc

a‖H1(Ba)

)−1 ≤ (1−c)−1

Concluding, I − La is invertible and its inverse, given by (I − La)−1 =
(
I −

A−1
a Lc

a

)−1A−1
a , is bounded uniformly in a for all a < a1.

Proof of Lemma 7. We first derive an explicit expression of γa, given by (67),

recalling the definition (35) of U
(4)
a . First, using the rescaled form (24) of La, we

have

Pa(I − La)[P−1
a U (4)

a ] =
(
I −H)U (4)

a − a2Lc
aU

(4)
a .

Then, effecting the combination (38a)+a(38b)+a2(43a)+a3(43b)+a4(43c) of the VIEs

governing the coefficients U0, . . . , U4,
(
I −H)U

(4)
a is found to be given by

(I −H)U (4)
a = T4[u] + a2Lc

0U0 + a3(Lc
0U1 +Lc

1U0) + a4(Lc
0U2 +Lc

1U1 +Lc
2U0)

with the Taylor polynomial T4[u] as defined in (37). Substituting this into the above

expression of Pa(I −La)[P−1
a U

(4)
a ], using the resulting formula for evaluating Paγa
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with γa as given by (67), and rearranging terms, we obtain

Paγa = Pau− T4[u](68)

+ a2
(
Lc
a−Lc

0−aLc
1−a2Lc

2

)
U0 + a3

(
Lc
a−Lc

0−aLc
1

)
U1

+ a4(Lc
a−Lc

0)U2 + a5Lc
a(U3 +aU4)

We now estimate ‖Paγa‖L2(B) and ‖∇(Paγa)‖L2(B). Firstly, the kernel functions

of the integral operators Lc
a−Lc

0, Lc
a−Lc

0−aLc
1 and Lc

a−Lc
0−aLc

1−a2Lc
2 can be

shown to be bounded for (ȳ, x̄) ∈ B×B and (using Taylor expansions in a about
a= 0) to have respective leading orders O(a), O(a2) and O(a3). Therefore, they are
continuous H1(B) → H1(B) operators with O(a2) continuity constants for a < a1,
and we have∥∥a2

(
Lc
a−Lc

0−aLc
1−a2Lc

2

)
U0 + a3

(
Lc
a−Lc

0−aLc
1

)
U1(69a)

+ a4(Lc
a−Lc

0)U2

∥∥
H1(B)

≤ a5C

for some C > 0. Then, since U3, U4 solve FSTPs whose definition does not depend
on a and whose data has H1(B) regularity while Lc

a is (by Prop. 1) a bounded
H1(B) → H1(B) operator there exists a constant C > 0 depending only on B and
β such that, for any a<a1

(69b)
∥∥Lc

a(U3 +aU4)
∥∥
H1(B)

≤ C.

Finally, provided u has sufficient (at least C5) local regularity at z, we have

(69c)
∥∥Pau− T4[u]

∥∥
H1(B)

= O(a5)

Using estimates (69a), (69b) and (69c) in (68) therefore yields
∥∥Paγa∥∥H1(B)

≤ a5C

for some C > 0. Lemma 7 finally follows from applying relations (47) to the latter
estimate of Paγa.

Appendix A. Concise derivation of VIE (15). Testing equation (14a) by any
function v ∈ H1(Ω)∩C1(Dx), where Dx is a neighbourhood of x, and applying
the first Green’s identity to the resulting integral over Ω yields the identity (I):〈
v,G(·,x)

〉
Ω
− k2

(
v,G(·,x)

)
Ω

= w(x) (the domain integrals being well defined

since ∇G(·,x) ∈ C∞(Ω \ {x};C3) ∩ L1(Ω;C3)). Then, noting that both u and
ua have the requisite local regularity at x for any x ∈ Ba ∪ (Ω \Ba), we write
problems (3) with B = Ba and (2) in weak form (both with test function G(·,x))
and use (I) with w= ua and w= u, respectively, to obtain

(a) ua(x) = iρ0ω
(
V D, G(·,x)

)
∂Ω
−
〈
v,G(·,x)

〉β
Ba

+ k2
(
v,G(·,x)

)η
Ba

(b) u(x) = iρ0ω
(
V D, G(·,x)

)
∂Ω

(with x∈Ba∪(Ω\Ba)). Then, the VIE (15) is obtained by subtracting (b) from (a)
and expressing the integrals over Ba in terms of the operator La introduced in (16).

Appendix B. FSTP solutions for ellipsoidal inhomogeneities. Let B be an
ellipsoid. Explicit derivations (by methods given in e.g. [28] for elastic inclusions)
then show that if U is polynomial with degree m in B and vanishes outside of B,
the restriction to B of HU is polynomial with degree m. In particular, for densities
U of the form U =

[
π1[B1] + 1

2π2[B2] ·x)
]
χB, with B1 ∈ R3 and B2 ∈ R3×3, we

have

(70) ∇HU(x) = −βS1(B)·B1 − β
(
S2(B) :B2

)
·x x∈B,
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where S1(B) and S2(B) are constant tensors (respectively of order 2 and 4) for which
analytical expressions are available, known for the case of elastic inhomogeneities
as Eshelby tensors; moreover, they depend only on the shape (i.e. aspect ratios) of

B, not on its size (i.e. Si(λB) = Si(B) for i= 1, 2 and any λ> 0). If B is a ball, S1

and S2 are given by (32), as shown in Appendix C.
It is then a simple matter to check, using (70), that the solution uB = U1

B[E1]+
U2
B[E2] of the FSTP for the polynomial background field u(x) = E1·x+E2 : (x⊗x)

verifies formulas (31).

Appendix C. Analytical evaluation of volume potentials. Exact solutions of
FSTPs for the unit ball B can be derived from analytical expressions of the volume
potential U [g], defined by

U [g](x) :=
1

8π

∫
B
|y−x|g(y) dVy,

for polynomial densities g. First, setting y = x+r and R(z) = −z ·x+
[
(z ·x)2 +

1− x2
]1/2

, we have

U [g](x) =
1

8π

∫
Ŝ

{ ∫ R(r̂)

0

r̄3g
(
x+rr̂

)
dr
}

dS(r̂),

with r := |r|, r̂ = r/r, and Ŝ being the unit sphere in R3. Let g0(y) = 1, g1(y) = y,
g2(y) = y⊗y. Then:

U [g0](x) =
1

4

∫
Ŝ

R4(r̂) dS,

U [g1](x) =
1

4

∫
Ŝ

R4(r̂)
(
x+

4

5
R(r̂)r̂

)
dS,

U [g2](x) =
1

4

∫
Ŝ

R4(r̂)
(
x⊗x+

4

5
R(r̂)(r̂⊗x+ x⊗ r̂) +

2

3
R2(r̂)r̂⊗ r̂

)
dS, ,

Elementary integrations and rearrangements yield (with x := |x|)

U [g0](x) = − 1
120x

4 + 1
12x

2 + 1
8 ,

U [g1](x) =
[
− 1

280x
4 + 1

60x
2 − 1

24

]
x,(71)

U [g2](x) = 1
12

[
1

315x
6 − 1

35x
4 + 1

5x
2 + 1

3

]
I +

[
− 1

504x
4 + 1

140x
2 − 1

120

]
x⊗x,

and the same treatment is applicable to polynomial densities g of higher degree.
Then, the volume integral operator H evaluates as HU = div ∆U [β∇U ]. In partic-
ular, for U = π1[B1] + π2[B2], we obtain

∇HU = ∇div ∆U
(
βB1g0 + 2βB2 ·g1

)
= − 1

3βB1 ·x− 2
5βB2 :I)x− 4

5B2 ·x.

Identification of the above expression with (70) then provides the values (32) of
S1 and S2. Formulas (71) also allow to evaluate volume potentials introduced
in Sec. 3.4, noting that M[g] = U [ηg], N [g] = divU [β∇g], G[g] = ∆M[g] and
H[g] = ∆N [g]. In particular, the FSTP solution XB given in Sec. 4.4 is found (or
checked) with the help of those formulas.
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Appendix D. Auxiliary proofs. Operators G,H and M,N verify the following
interrelations and symmetry properties, which will be repeatedly used:

(72)
(a)

〈
U,GV

〉β
B = −

(
V,HU

)η
B, (b)

〈
U,MV

〉β
B = −

(
V,NU

)η
B,

(c)
〈
U,HV

〉β
B =

〈
V,HU

〉β
B, (d)

〈
U,NV

〉β
B =

〈
V,NU

〉β
B.

We use in the sequel the shorthand notations introduced in the proof of Theorem 1,
namely UmB :=UmB [gmz ] and π̂m := π[ĝmz ].

D.1. Proof of Lemma 2. By applying the operator β∇ to the VIE (27), taking
the inner product of the resulting equality with ∇u′ and integrating over B, we

find
〈
u′ , uB − HuB

〉β
B =

〈
u′, u

〉β
B. The Lemma then follows by writing the same

identity with the roles of (u, uB) and (u′, u′B) reversed, subtracting both equalities
and invoking property (72c) of H.

D.2. Proof of Lemma 3. First identity:〈
XB, πp[Ep]

〉β
B = k2uz

〈
UpB[Ep],G1

〉β
B by Lemma 2

= −k2uz
(

1,HUpB[Ep]
)η
B by (72a)

= k2uz
((

1, πp[Ep]
)η
B −

(
UpB[Ep], 1

)η
B

)
by (30)

= k2uz
(
B0p ·Ep −Ep ·Bp0

)
Second identity:〈
YB, πp[Ep]

〉β
B =

〈
UpB[Ep], k

2(G−N )U1 +D3
z

)〉β
B by Lemma 2 and (45b)

= −k2
(
U1
B,HU

p
B[Ep]

)η
B − k

2
〈
U1
B,NU

p
B[Ep]

〉β
B by interrelations (72a,d)

= k2
(
U1
B , πp[Ep]− UpB[Ep]

)η
B − k

2
〈
U1
B,NU

p
B[Ep]

〉β
B by VIE (30)

= k2gz ·(B1p −Q1p)·Ep

Third identity: We have〈
ZB, π̂1

〉β
B =

〈
Û1
B , k

2(G−N )U2 − k4uz(M1) +D4
z + π[Ez]

〉β
B by Lemma 2

= −k2
(
U2, HÛ1

B
)η
B − k

2
〈
N Û1

B, U2

〉β
B + k4uz

(
N Û1

B, 1
)η
B + ĝz ·A11 ·Ez

= ĝz ·A11 ·Ez + k2
[

1
2g

2
z ·(B21−Q21)·ĝz +

(
XB, π̂1

)η
B

−
(
XB, Û

1
B
)η
B −

〈
N Û1

B, XB
〉β
B + k2uz

(
1,N Û1

B
)η
B

]
(73)

where the second equality follows from identities 72) and the third uses defini-
tions (46a) of B21 and (46b) of Q21. Now, expressing XB by means of equation (45a)
and using the interrelation (72a), we have(

XB, Û
1
B
)η
B =

(
Û1
B , HXB+k2uzG1

)η
B = −

〈
XB,GÛ1

B
〉β
B + k2uz

(
G1, Û1

B
)η
B,

so that the last three terms inside the square brackets of (73) are given by



32 Marc Bonnet

−k2
(
XB, Û

1
B
)η
B − k

2
〈
N Û1

B, XB
〉β
B + k4uz

(
1,N Û1

B
)η
B

= k2
〈
XB , (G−N )Û1

B
〉β
B − k

4uz
(

1 , (G−N )Û1
B
)η
B + k4uzη|B|D̂3

z

= k2uz
〈
G1, YB

〉β
B − k

2uz
(

1 , (I−H)ŶB
)η
B + k4uzη|B|D̂3

z

= −k2uz
(

1,HŶB
)η
B − k

2uz
(

1 , (I−H)ŶB
)η
B + k4uzη|B|D̂3

z using (72a)

= −k2uz
(

1, ŶB
)η
B + k4uzη|B|D̂3

z by (45b)

Using the above equality in (73) finally yields the desired identity.
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