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Formal classification of two-dimensional
neighborhoods of genus g ≥ 2 curves with trivial

normal bundle

Olivier Thom∗

Abstract: In this paper we study the formal classification of two-
dimensional neighborhoods of genus g ≥ 2 curves with trivial normal
bundle. We first construct formal foliations on such neighborhoods with
holonomy vanishing along many loops, then give the formal/analytic
classification of neighborhoods equipped with two foliations, and finally
put this together to obtain a description of the space of neighborhoods
up to formal equivalence.

1 Introduction

1.1 General setting

Let C be a complex curve of genus g. We are interested in the different 2-
dimensional neighborhoods S of C. More precisely, two surfaces S, S ′ equipped
with embeddings C ↪→ S, C ↪→ S ′ define formally/analytically equivalent neigh-
borhoods if there exists neighborhoods U,U ′ of C in S and S ′ and a formal/analytic
diffeomorphism ϕ : U → U ′ inducing the identity on C. The equivalence of two
neighborhoods is thus given by diagrams

C U ⊂ S

C U ′ ⊂ S ′

id ϕ

We want to understand the classification of such neighborhoods up to equiva-
lence.

∗The author is supported by CNRS, ANR-16-CE40-0008 Foliage.
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The first invariants in this problem are the normal bundle NC of C in S and
the self-intersection C · C = deg(NC) of the curve C. If C · C < 0, Grauert’s
theorem (cf [5] or [2]) tells that if the self-intersection is sufficiently negative (more
precisely, if C · C < 2(2 − 2g)), then S is analytically equivalent to NC (ie. a
neighborhood of C in S is analytically equivalent to a neighborhood of the zero
section in the total space of NC).

In the case C · C > 0, we can cite the works of Ilyashenko [6] on strictly
positive neighborhood of elliptic curves and of Mishustin [9] for neighborhoods of
genus g ≥ 2 curves with large self-intersection (C ·C > 2g− 2). In both cases, the
authors show that there is a huge family of non-equivalent neighborhoods (there
are some functional invariants).

In the case C · C = 0, the neighborhoods of elliptic curves have already been
studied. Arnol’d showed in [1] that if S is a neighborhood of an elliptic curve whose
normal bundle NC is not torsion, S is formally equivalent to NC ; if moreover NC

satisfies some diophantine condition, then S is analytically equivalent to NC . The
case when C is an elliptic curve and NC is torsion was studied in [8]; in particular,
it is shown that the formal moduli space (ie. with respect to formal classification)
of such neighborhoods is a countable union of finite dimensional spaces.

The goal of this paper is to study the neighborhoods of genus g ≥ 2 curves
with trivial normal bundle under formal equivalence.

1.2 Notations

Throughout this paper, we will use the term Diff(C, 0) to denote the group of
germs of analytic diffeomorphisms of C at 0; we will write D̂iff(C, 0) the group of
formal diffeomorphisms of C at 0.

A formal neighborhood Ŝ of C is a scheme X = (X, Ô) with C as a subscheme
such that there is an open covering X = ∪Ui of X with Ô|Ui

= (OC |Ui
)[[yi]],

some coordinates xi on C ∩ Ui and some holomorphic functions u(k)
ji with yj =∑

k≥1 u
(k)
ji (xi)y

k
i and u(1)

ji not vanishing on Ui ∩ Uj.
If S is an analytic neighborhood of C, then the completion Ô of OS along

C is the structure sheaf of a formal neighborhood Ŝ of C. The natural inclusion
OS ↪→ Ô gives an injection Ŝ ↪→ S and allows us to see S as a formal neighborhood.
We say that two analytic neighborhoods S, S ′ are formally equivalent if Ŝ and Ŝ ′
are equivalent.

Let S = ∪Ui be a covering of an analytic neighborhood S and (ui, vi) some
analytic coordinates on Ui with C ∩Ui = {vi = 0}. A regular analytic foliation on
S having C as a leaf can be seen as a collection of submersive analytic functions
yi =

∑
k≥1 y

(k)
i (ui)v

k
i on each Ui such that there exist some diffeomorphisms ϕji ∈

Diff(C, 0) with yj = ϕji ◦ yi on Ui ∩ Uj. In analogy, a regular formal foliation on
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S around C (or on a formal neighborhood Ŝ of C) is a collection of formal power
series yi =

∑
k≥1 y

(k)
i (ui)v

k
i with yj = ϕji ◦ yi for some ϕji ∈ D̂iff(C, 0) where the

coefficients y(k)
i (ui) are still analytic functions on C ∩ Ui and y(1)

i does not vanish
on C ∩ Ui (otherwise stated, the divisor {yi = 0} is equal to {vi = 0} = C ∩ Ui).

1.3 Results

We will use the same strategy as in [8]: first construct two "canonical" regular
formal foliations F , G on S having C as a leaf, then study the classification of for-
mal/convergent bifoliated neighborhoods (S,F ,G), and finally put these together
to obtain the formal classification of neighborhoods.

The first step, the construction of "canonical" foliations, is explained in section
2. It has already been proved in [4] that there exist formal regular foliations in
S having C as a leaf. Since we need to have some kind of unicity to be able
to use these for the classification of neighborhoods, we will need to adapt the
construction of [4]. The idea is to construct foliations whose holonomy is trivial
along as many loops as possible. For this, we fix a family (α1, . . . , αg, β1, . . . , βg) of
loops in C which is a symplectic basis in homology and denote A-loops the loops
αi and B-loops the βi. We prove the following:

Theorem 1. Let C be a curve of genus g ≥ 2 and S a neighborhood of C with
trivial normal bundle. Then there exists a unique regular formal foliation F on S
having C as a leaf, such that the holonomy of F along A-loops is trivial.

C

Figure 1: A bifoliated neighborhood of C

The second step, the classification of bifoliated neighborhoods, can be found in
[13]. We will explain in section 3 how this classification works in the generic case
and show that a bifoliated neighborhood (S,F ,G) is characterised by the order of
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tangency k between F and G along C, a 1-form ω which controls how F and G
differ at order k + 1 and an additionnal invariant

Inv(S,F ,G) ∈ (Diff(C, 0))6g−3/ ∼

(resp. Înv(S,F ,G) ∈ (D̂iff(C, 0))6g−3/ ∼ for formal neighborhoods), where the
relation ∼ is given by the action of Diff(C, 0)) on (Diff(C, 0))6g−3 by conjugacy on
each factor (resp. the action of D̂iff(C, 0) on (D̂iff(C, 0))6g−3 by conjugacy on each
factor). This invariant is given by holonomies of the foliations F and G computed
on a tangency curve T1, ie. an irreducible component different from C of the set
of points at which F and G are tangent.

Theorem 2. Let C be a curve of genus g ≥ 2. Let (S,F ,G) and (S ′,F ′,G ′) be two
bifoliated neighborhoods of C with same tangency order k and 1-form ω. Suppose
k ≥ 1 and that ω has simple zeroes p1, . . . , p2g−2. Denote T1, T

′
1 the tangency curves

passing through p1 and compute the invariants Inv(S,F ,G) and Inv(S ′,F ′,G ′) on
the tangency curves T1, T

′
1.

Then (S,F ,G) and (S ′,F ′,G ′) are analytically (resp. formally) diffeomorphic
if and only if

Inv(S ′,F ′,G ′) = Inv(S,F ,G)

(resp. Înv(S ′,F ′,G ′) = Înv(S,F ,G)).

Moreover, we know which invariants come from a bifoliated neighborhood: if
((ϕ1

i )
2g
i=1, (ϕ

2
i )

2g
i=1, (ϕ

3
j)

2g−2
j=2 ) is a representant of Inv(S,F ,G), then the ϕsr must be

tangent to identity at order k. Moreover, if we write ϕsr(t) = t+asrt
k+1 (mod tk+2),

then the periods of ω must be (a2
i−a1

i )i=1,...,2g (equation (3) in the text); a3
j must be

equal to
∫ pj
p1
ω for j = 2, . . . , 2g−2 (equation (4)); and the (ϕsi )

2g
i=1 must be represen-

tations of the fundamental group of C for s = 1, 2, ie. [ϕs1, ϕ
s
1+g] . . . [ϕ

s
g, ϕ

s
2g] = id

(equation (5)).

Theorem 3. Let ((ϕ1
i )

2g
i=1, (ϕ

2
i )

2g
i=1, (ϕ

3
j)

2g−2
j=2 ) be some analytic/formal diffeomor-

phisms; let k be an integer and ω a 1-form. They define a bifoliated analytic/formal
neighborhood (S,F ,G) with F and G tangent at order k and with 1-form ω if and
only if every ϕsr is tangent to identity at order (at least) k and if they satisfy the
relations (3), (4) and (5).

If the diffeomorphisms ϕsr are only formal, then the neighborhood is a priori
only a formal neighborhood of C. Note here that the relations (3) and (4) are
in fact relations between jets of order k + 1 of the ϕsr, so the set of bifoliated
neighborhoods modulo equivalence has huge dimension. Indeed, the space of pairs
of diffeomorphisms modulo common conjugacy is already infinite dimensional, even
formally: if we fix one diffeomorphism ϕ1 6= id tangent to the identity, then the
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centralizer of ϕ1 has dimension 1 so that the set of pairs (ϕ1, ϕ2) modulo common
conjugacy has roughly speaking the same cardinality as the set of diffeomorphisms.

Finally, the last step (the formal classification of neighborhoods) is done in
section 4. For the pair of canonical foliations constructed, the tangency order
k will be the Ueda index of the neighborhood (introduced by Ueda in [14] and
named by Neeman in [11]), ie. the highest order such that there is a tangential
fibration on Spec(OS/Ik+1) where I is the ideal sheaf of C in S. Similarly, ω can
be interpreted in term of the Ueda class of S. We will define the space V (C, k, ω)
of neighborhoods with trivial normal bundle, fixed Ueda index equal to k and fixed
Ueda class given by ω in order to state the final theorem:

Theorem 4. Let C be a curve of genus g ≥ 2, 1 ≤ k <∞ and ω a 1-form on C
with simple zeroes. Then there is an injective map

Φ : V (C, k, ω) ↪→ D̂iff(C, 0)g × D̂iff(C, 0)g × D̂iff(C, 0)2g−3/ ∼

where the equivalence relation ∼ is given by the action of D̂iff(C, 0) on D̂iff(C, 0)N

by conjugacy on each factor.
A tuple of diffeomorphisms ((ϕ

(j)
i )i)

3
j=1 is in the image of Φ if and only if the

ϕ
(j)
i are tangent to the identity at order k and if they satisfy the compatibility

conditions (3) and (4).

2 Construction of foliations
On the curve C we can choose loops αi, βi, i = 1, . . . , g forming a symplectic basis
of H1(C,C), ie. αi · αj = βi · βj = 0 and αi · βj = 1 if i = j and 0 otherwise. We
call A-loops the loops αi and B-loops the βi. Similarly, if ω is a 1-form on C, we
will call A-period (resp. B-period) of ω any integral

∫
αi
ω (resp.

∫
βi
ω).
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Figure 2: A- and B-loops

Definition 1. A foliation will be called A-canonical if its holonomy representation
ρ satisfies ρ(αi) = id for all i = 1, . . . , g and if the linear part of ρ is trivial.
We define the notion of B-canonicity similarly; unless otherwise stated, the term
"canonical" will mean A-canonical.

Choose an open covering (Ui) of some neighborhood of C; let Vi = Ui ∩C and
V = (Vi) the associated open covering of C. Denote by C the trivial rank one local
system on C and by OC the trivial line bundle on C.

First, let us give the following definitions:

Definition 2. Let (aij) be a cocycle in Z1(V ,C) and let γ be a loop on C. We
define the period of (aij) along γ to be the sum∫

γ

(aij) =
n∑
p=1

aipip+1

where the open sets (Vip)np=1 form a simple covering of γ and Vip ∩ Vip+1 ∩ γ 6= ∅.

This application only depends on the class [γ] of γ in the fundamental group
of C; taking periods along the αi and βi gives applications

PA, PB : Z1(V ,C)→ Cg.
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Putting these together gives an application P : Z1(V ,C)→ C2g which induces an
injection P : H1(V ,C)→ C2g.

On the other hand, the exact sequence

0→ C→ OC → Ω1 → 0

gives the exact sequence in cohomology

0→ H0(C,Ω1)
δ→ H1(C,C)→ H1(C,OC)→ 0. (1)

The fact that the arrowH1(C,C)→ H1(C,OC) is surjective is an easy consequence
of ([14], proposition 1). We have dim(H0(C,Ω1)) = dim(H1(C,OC)) = g and
dim(H1(C,C)) = 2g so that P : H1(C,C)→ C2g, being injective, is bijective. It is
well-known that a 1-form whose A-periods vanish is zero, so that the application
PA ◦ δ : H0(C,Ω1)→ Cg is a bijection.

Constructing a foliation on S is equivalent to constructing functions yi on Ui
which are reduced equations of C ∩ Ui such that

yj = ϕji(yi),

where the ϕji are diffeomorphisms of (C, 0). As before, if γ is a loop, we can define
the product

Hγ((ϕji)) = ϕi1in ◦ . . . ◦ ϕi3i2 ◦ ϕi2i1
which will be the holonomy of the foliation given by the yi along the loop γ. To
construct such functions, we are going to proceed by steps, but first, we need
another definition.

Definition 3. A set of functions (yi) on the open sets Ui is called A-normalized
at order µ if the yi are regular functions on Ui vanishing at order 1 on C and

yj = ϕ
(µ)
ji (yi) + a

(µ+1)
ji yµ+1

i , (2)

on Ui ∩ Uj, where a(µ+1)
ji is a function on Ui ∩ Uj, the ϕ(µ)

ji are polynomials of
degree µ which are also diffeomorphisms tangent to identity and the holonomies
Hαk

((ϕji)) are the identity modulo yµ+1
i for all k = 1, . . . , g.

The idea of the proof is first to construct some functions (yi) which are A-
normalized at order 1, and then to show that every A-normalized at order µ set
of functions (yi) can be transformed into an A-normalized at order (µ + 1) set of
functions by changes of coordinates yi 7→ yi − biyµ+1

i for some functions bi on Ui.
At the limit, we will thus obtain a formal foliation on S with trivial holonomy
along A-loops.
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Lemma 1. There exists an A-normalized at order 1 set of functions and the foli-
ations associated to two such sets of functions coincide at order 1.

Proof. Take any reduced equations (yi) of C and compute yj in the coordinate yi:

yj = a
(1)
ji yi.

The cocycle (a
(1)
ji |C) defines the normal bundle NC = OC of C so is cohomologous

to the trivial cocycle: there exist functions bi on Ui such that

a
(1)
ji |C =

bj|C
bi|C

.

Put zi = yi/bi to obtain
zj = zi + a

(2)
ji z

2
i .

for some functions a(2)
ji .

For unicity, consider two sets of functions (yi) and (zi) A-normalized at order
1. Then (yi) and (zi) define two sections y1 and z1 on the normal bundle NC .
Necessarily, y1 and z1 are colinear, hence the result.

Lemma 2. Let (yi) be a set of functions A-normalized at order µ. Then there exist
functions (bi) on Ui such that the coordinates zi = yi− biyµ+1

i are A-normalized at
order µ+ 1. Moreover, two sets of functions A-normalized at order (µ+ 1) which
coincide at order µ define the same foliation at order µ+ 1.

Proof. Since (yi) is A-normalized at order µ, it satisfies

yj = ϕ
(µ)
ji (yi) + a

(µ+1)
ji yµ+1

i .

In the following, denote by Diff1
µ(C, 0) = Diff1(C, 0)/Diffµ+1(C, 0) the group of

µ-jets of diffeomorphisms tangent to the identity. The tuple (ϕ
(µ)
ji )ji is a cocy-

cle in H1(C,Diff1
µ(C, 0)); it is entirely determined by its holonomy representation

H((ϕ
(µ)
ji )) : π1(C) → Diff1

µ(C, 0). We would like to extend this cocycle to some
cocycle in H1(C,Diff1

µ+1(C, 0)). Since Hαk
((ϕ

(µ)
ji )) is trivial for k = 1, . . . , g, ex-

tend Hαk
((ϕ

(µ)
ji )) to ραk

= id. Next, extend the diffeomorphisms Hβk((ϕ
(µ)
ji )) to

diffeomorphisms ρβk ∈ Diff1
µ+1 in any way. Then

∏g
k=1[ραk

, ρβk ] = id so the (ργ)γ
define a representation of π1(C) into Diff1

µ+1 which corresponds to a cocycle (ψji)
such that Hαk

((ψji)) = ραk
and Hβk((ψji)) = ρβk . We can then write

yj = ψji(yi) + a′ji
(µ+1)

yµ+1
i
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for some a′ji
(µ+1). Next,

yk = ψkj(yj) + a′kj
(µ+1)

yµ+1
j

= ψkj

(
ψji(yi) + a′ji

(µ+1)
yµ+1
i

)
+ a′kj

(µ+1)
(
ψji(yi) + a′ji

(µ+1)
yµ+1
i

)µ+1

= ψkj(ψji(yi)) + (a′ji
(µ+1)

+ a′jk
(µ+1)

)yµ+1
i + . . .

Since ψki = ψkjψji, we obtain a′ki
(µ+1)|C = a′kj

(µ+1)|C + a′ji
(µ+1)|C and thus

(a′ji
(µ+1)|C) is a cocycle in H1(C,OC). By the exact sequence (1), it is coho-

mologous to a constant cocycle (cji) ∈ H1(C,C): there exists functions bi on Ui
such that a′ji

(µ+1)|C − cji = bj|C − bi|C . Still using the exact sequence (1), we
see that two cocycles (cji), (c

′
ji) cohomologous to (a′ji

(µ+1)|C) differ only by the
periods of a 1-form. As noted before, PA ◦ δ : H0(C,Ω1) → H1(C,C) is bijec-
tive so we can choose (cji) with trivial A-periods, and such a (cji) is unique. Put
ϕ

(µ+1)
ji (y) = ψji(y) + cjiy

µ+1 and zi = yi − biyµ+1
i to obtain

zj = ψji(zi) + (a′ji
(µ+1) − bj + bi)z

µ+1
i + o(zµ+1

i )

= ϕ
(µ+1)
ji (zi) + o(zµ+1

i ).

Since the choice of (cji) ∈ H1(C,C) is unique, if two sets of functions (zi), (z
′
i) are

both A-normalized at order µ+1 and coincide at order µ, then they differ at order
µ+ 1 by a coboundary (di) ∈ H0(C,C): z′i = zi + diz

µ+1
i + . . . Hence, they define

the same foliation at order µ+ 1.

Putting all this together, we obtain theorem 1.

3 Classification of bifoliated neighborhoods
A bifoliated neighborhood of C is a tuple (S,F ,G) where S is a neighborhood of C
and F , G are distinct foliations on S having C as a common leaf. Two bifoliated
neighborhoods (S,F ,G) and (S ′,F ′,G ′) are said to be equivalent if there are two
neighborhoods U ⊂ S, U ′ ⊂ S ′ of C and a diffeomorphism φ : U → U ′ fixing C
such that

φ∗F = F ′ and φ∗G = G ′.

In this section, we want to study the classification of bifoliated neighborhoods
under this equivalence relation. We will consider here analytic equivalence, but the
formal classification can be obtained by replacing the word "analytic" by "formal"
everywhere.
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A neighborhood will have a lot a formal foliations, and the canonical ones may
diverge even though others might converge (cf. [8]). We will thus consider here
a general bifoliated neighborhood (S,F ,G), with the additional assumptions that
F and G coincide at order 1 and their holomy representations are tangent to the
identity. The study can be done without these assumptions (cf. [13]), but they
are true for the pair of canonical foliations and simplify the results (for example,
in general an affine structure is involved which under our assumptions is only a
translation structure, ie. a 1-form).

3.1 First invariants

If (S,F ,G) is a bifoliated neighborhood, each foliation comes with the holonomy
representation of the leaf C:

ρF , ρG : π1(C)→ Diff(C, 0),

Fix a base point p0 ∈ C, a transversal T0 passing through C at p0 and a coordinate
t on T0 (ie. a function t ∈ (C, 0) 7→ q(t) ∈ T0. Let γ be a loop on C based at p0;
choose the minimal first integral F of F around T0 such that F (q(t)) = t. The
analytic continuation F γ of F along γ is again a first integral of F , hence is of the
form

F γ = ϕ−1
γ ◦ F.

We define ρF(γ) = ϕγ.
A second invariant is the order of tangency between F and G along C: take

two 1-forms α and β on S defining locally the foliations F and G. The 2-form
α ∧ β vanishes on C so the order of vanishing of α ∧ β along C gives a global
invariant k + 1 which does not depend on the choice of α and β. The order of
tangency between F and G is defined to be this integer k. Our assumption that
the foliations coincide at order 1 exactly means that k ≥ 1.

The next invariant is a 1-form on C associated to this pair of foliations. Choose
as before a point p0 ∈ C, a transversal T0 at p0 and a coordinate t 7→ q(t) on
T0. Take local minimal first integrals F and G of F and G such that F (q(t)) =
G(q(t)) = t. By definition of k, G = F + aF k+1 + . . . in a neighborhood of p for a
local function a on C. Take the analytic continuations F γ, Gγ and aγ of F,G and
a along a loop γ. Then we can use the fact that the holonomy representations of
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F and G are tangent to the identity to get

Gγ = F γ + (aγ)(F γ)k+1 + . . .

ρG(γ)−1 ◦G = ρF(γ)−1 ◦ F + (aγ)(ρF(γ)−1 ◦ F )k+1 + . . .

G = ρG(γ)
(
ρF(γ)−1 ◦ F + aγF k+1 + . . .

)
= ρG(γ) ◦ ρF(γ)−1 ◦ F + aγF k+1 + . . .

= F + aF k+1 + . . .

Since ρG(γ) ◦ ρF(γ)−1 has constant coefficients, there exists constants cγ such that
aγ = a+ cγ. Then the 1-form ω = da is a well-defined 1-form on C.

Note that we saw in the process that

ρG(γ) ◦ ρF(γ)−1(y) = y +

(∫
γ

ω

)
yk+1 + . . . , (3)

thus the form ω is entirely determined by ρF and ρG.
Note also that the holonomy representation and the form ω depend on the

choice of the transversal T0 and of a coordinate t on it. A change of coordinate
t̃ = ϕ(t) induces conjugacies on ρF and ρG and changes ω into some multiple of it:
ρ̃F(γ) = ϕ ◦ ρF(γ) ◦ ϕ−1, ρ̃G(γ) = ϕ ◦ ρG(γ) ◦ ϕ−1 and ω̃ = ϕ′(0)−kω.

3.2 Tangency set

If F and G are local minimal first integrals of F and G, then the tangency set
between F and G is defined to be

Tang(F ,G) = {dF ∧ dG = 0}.

This definition does not depend on the choice of F and G and gives a well-defined
analytic subset of S.

Note that if we write G = F + aF k+1 + . . ., then we obtain dF ∧ dG =
F k+1dF ∧ (da+ . . .). Since ω = da,

Tang(F ,G) ∩ C = {ω = 0}.

In particular, the set Tang(F ,G) intersects C at 2g− 2 points counting multiplic-
ities. In the sequel, we will suppose that we are in the generic case: ω has 2g − 2
distinct zeroes. This also means that Tang(F ,G) is the union of 2g − 2 curves
which are transverse to C.

Denote p1, . . . , p2g−2 the zeroes of ω and Ti the tangency curve passing through
pi. If we fix some simple paths γij between pi and pj, we can look at the holonomy
transports

ϕFij , ϕ
G
ij : Ti → Tj

11



following the leaves of F and G along γij. To simplify, suppose that the γ1j only
intersect each other at p1 and that γij = γ−1

1i · γ1j.

Figure 3: The paths γ1j

To define this, fix some coordinates ti, tj on Ti and Tj; there exists a simply
connected neighborhood U of the path γij. Let L be a leaf of F on U . It intersects
Ti at exactly one point (let ti be its coordinate). In the same way, let tj be the
coordinate of L ∩ Tj. We set ϕFij(ti) = tj: this gives a germ of diffeomorphism
ϕFij ∈ Diff(C, 0) which depends on the choices of coordinates on Ti and Tj. Their
composition

ϕ↔ij = (ϕGij)
−1 ◦ ϕFij

is a diffeomorphism of Ti so only depends on the choice of a coordinate on Ti; a
change of coordinate t′i = ϕ(ti) acts by conjugacy ϕ′↔ij = ϕ ◦ ϕ↔ij ◦ ϕ−1.

We can show as in the previous subsection that the holonomy transports ϕ↔ij
are related to the 1-form ω by the relation:

ϕ↔ij (ti) = ti −

(∫
γij

ω

)
tk+1
i + . . . (4)
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•
t1

•
ϕF12(t1)

•
ϕ↔12(t1)

T1 T2

C

Figure 4: Holonomy transports

3.3 Classification of bifoliated neighborhoods

We say that a bifoliated neighborhood (S,F ,G) is generic if there are 2g−2 distinct
tangency curves T1, . . . , T2g−2 between F and G and if they intersect C transversely
at some distinct points p1, . . . , p2g−2.

On each neighborhood, we can fix one of these points, for example p1, fix a
coordinate t on T1, fix paths γ1j between p1 and pj and compute every invariant on
the transversal T1 with coordinate t. We thus have the holonomy representations
ρF , ρG and the holonomy transports ϕ↔1j between T1 and another tangency curve
Tj.

The holonomy representations ρF and ρG are entirely determined by the images
of the basis α1, . . . , αg, β1, . . . , βg: these are any diffeomorphisms such that

[ρF(α1), ρF(β1)] . . . [ρF(αg), ρF(βg)] = id

[ρG(α1), ρG(β1)] . . . [ρG(αg), ρG(βg)] = id.
(5)

Every invariant diffeomorphism found ϕ = ρF(αi), ρF(βi), ρG(αi), ρG(βi), ϕ
↔
1j

depend on the choice of the coordinate t. A change of coordinate t′ = ψ(t) induces
a conjugacy on ϕ: ϕ′ = ψ ◦ ϕ ◦ ψ−1. So we define the invariant of a neighborhood
(S,F ,G) to be

Inv(S,F ,G) =
[
((ρF(αi))

g
i=1, (ρF(βi))

g
i=1, (ρG(αi))

g
i=1, (ρG(βi))

g
i=1, (ϕ

↔
1j)

2g−2
j=2 )

]
∈ Diff(C, 0)2g ×Diff(C, 0)2g ×Diff(C, 0)2g−3/ ∼

where ∼ is the action of Diff(C, 0) by conjugacy on each factor.

Theorem 2. Let C be a curve of genus g ≥ 2. Let (S,F ,G) and (S ′,F ′,G ′) be
two bifoliated neighborhoods of C with tangency order k and 1-form ω. Suppose
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k ≥ 1 and that ω has simple zeroes p1, . . . , p2g−2. Denote T1, T
′
1 the tangency curves

passing through p1 and compute the invariants Inv(S,F ,G) and Inv(S ′,F ′,G ′) on
the tangency curves T1, T

′
1.

Then (S,F ,G) and (S ′,F ′,G ′) are diffeomorphic if and only if

Inv(S ′,F ′,G ′) = Inv(S,F ,G).

Before starting the proof, let us write some lemmas.

Lemma 3. Let p be a point in C, let F , G be two reduced equations of C around
p and (x, y) some local coordinates with C = {y = 0}. Suppose that F and G are
tangent at order k and that the zero divisor of dF ∧ dG is (k + 1)C (ie. there are
no other tangencies). There exists a unique diffeomorphism φ fixing C pointwise
such that

(F,G) ◦ ϕ = (y, y + a(x)yk+1).

The function a is unique and satisfies da|C = ω.

The proof of this lemma can be found in [8].

Lemma 4. Let p be a point in C, let F , G be two reduced equations of C around
p and (x, y) some local coordinates with C = {y = 0}. Suppose that there is a
transversal T to C such that the zero divisor of dF ∧ dG is (k + 1)C + T . Then
there exists a unique diffeomorphism φ fixing C pointwise such that

(F,G) ◦ ϕ = (y, b(y) + a(x)yk+1).

The function b is unique and a is the primitive of ω which is zero at p.

The function b is of course entirely determined by the equation G|T = b(F |T ).

Proof. Put ỹ = F , b the function determined by G|T = b(F |T ), H = G − b(ỹ)
and suppose x is a reduced equation of T . Then dF ∧ dG = (∂xH)dF ∧ dx so
by the hypotheses on the tangency divisor, ∂xH = 2xỹk+1u for some invertible
function u. Then H = x2ỹk+1v with v invertible so for φ(x, ỹ) = x

√
v, we have

G = b(ỹ) + φ(x, ỹ)2ỹk+1.
If ψ = φ|C , then the coordinate x̃ = ψ−1 ◦ φ(x, ỹ) is equal to x on C and

(F,G) = (ỹ, b(ỹ) + ψ(x̃)2ỹk+1). Thus the diffeomorphism ϕ(x, y) = (x̃, ỹ) is as
sought.

Lemma 5. Let (S,F ,G) be a bifoliated neighborhood whose 1-form ω has simple
zeroes, let T1, Tj be two tangency curves and γ1j a simple path between p1 = T1∩C
and pj = Tj ∩C. Suppose F and G are some submersive first integrals of F and G
around p1 such that F |T1 = G|T1. By lemma 4, the analytic continuations of F and
G along γ1j can be written F = y and G = b(y) + a(x)yk+1 for some coordinates
(x, y) around pj.

Then b(y) = ϕ↔1j(y) if ϕ↔1j is computed in the coordinate t = y on T1.

14



Proof. Indeed, b is characterised by G|Tj = b ◦ F |Tj , and ϕ↔1j by the fact that
the leaf of F passing through T1 at the point of coordinate F = y0 intersects
(tangentially) on Tj the leaf of G passing through T1 at the point of coordinate
F = ϕ↔1j(y0). This means that the first integral ϕ↔1j ◦ F of F coincides with G on
Tj, ie ϕ↔1j ◦ F |Tj = G|Tj , hence the result.

Proof of theorem 2. Take two bifoliated neighborhoods (S,F ,G) and (S ′,F ′,G ′)
with the same tangency index k, 1-form ω and the same invariants computed in
some coordinates t, t′ on T1 and T ′1.

Begin by fixing simply connected neighborhoods Y , Y ′ of ∪2g
j=2γ1j in S and S ′.

We begin by showing that (Y,F ,G) and (Y ′,F ′,G ′) are diffeomorphic, and we will
then show that this diffeomorphism can be extended to S and S ′.

Figure 5: The neighborhood Y

Since Y and Y ′ are simply connected, the foliations on these sets have first
integrals F,G, F ′, G′ and we can suppose that F (t) = G(t) and F ′(t′) = G′(t′) on
T1 and T ′1. Since ω = ω′, lemma 4 tells us that there is a (unique) diffeomorphism
ψ between a neighborhood of p1 in S and a neighborhood of p1 in S ′ such that
F ′ ◦ψ = F and G′ ◦ψ = G. We can take the analytic continuation of F,G, F ′ and
G′ along one of the paths γ1j. For any point p in this path, lemma 3 tells us that
the pairs (F,G) and (F ′, G′) are equivalent (by a unique diffeomorphism) if and
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only if the number a(p) is the same for both couples. But a(p) =
∫ p
p1
ω where the

integral is taken along the path γ1j so it is the case. By unicity, the diffeomorphism
ψ can be extended along the path γ1j arbitrarily near the point pj.

At the point pj, lemmas 4 and 5 show that the pairs (F,G) and (F ′, G′) are
also conjugated by a unique diffeomorphism in a neighborhood of pj. Hence, we
can extend ψ to a diffeomorphism ψ : Y → Y ′ conjugating the pairs (F,G) and
(F ′, G′).

By the lemma 3, we can also extend ψ along any simple path. Then we only
need to show that ψ can be extended along a non-trivial loop. Let γ be a non-
trivial loop on C based at p1, ϕF = ρF(γ) and ϕG = ρG(γ). The extensions
of F and G along γ are ϕ−1

F ◦ F and ϕ−1
G ◦ G; we know that F ′ ◦ ψ = F and

G′ ◦ ψ = G, so ϕ−1
F ◦ F ′ ◦ ψ = ϕ−1

F ◦ F and ϕ−1
G ◦ G′ ◦ ψ = ϕ−1

G ◦ G. Hence ψ is
the diffeomorphism conjugating (ϕ−1

F ◦ F, ϕ
−1
G ◦ G) with (ϕ−1

F ◦ F ′, ϕ
−1
G ◦ G′) and

by unicity this means that ψ can be extended along any loop. Thus ψ can be
extended to a diffeomorphism between (S,F ,G) and (S ′,F ′,G ′).

3.4 Construction of bifoliated neighborhoods

We saw three restrictions for a set of diffeomorphisms to be an invariant of some
bifoliated neighborhood: these are the compatibility relations (3), (4) and (5).
These are the only restrictions; to obtain a simpler result, we will consider the
1-form ω as an invariant here.

Theorem 3. Let ((ϕ1
i )

2g
i=1, (ϕ

2
i )

2g
i=1, (ϕ

3
j)

2g−3
j=2 ) be some diffeomorphisms; let k be an

integer and ω a 1-form. They define a bifoliated neighborhood (S,F ,G) with F
and G tangent at order k and with 1-form ω if and only if every ϕsr is tangent to
identity at order (at least) k and if they satisfy the relations (3), (4) and (5).

Proof. Denote by ρ1 and ρ2 the representations given by the diffeomorphisms (ϕ1
i )

and (ϕ2
i ). Consider C̃ = Dx the universal cover of C, X a small neighborhood of a

fundamental domain, Ui a small neighborhood of pi in X and Č = X \ (U2 ∪ . . .∪
U2g−2).
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Figure 6: The neighborhood X

Consider next the trivial bundle Š = Č × Cy along with two functions F = y
and G = y + a(x)yk+1 (with a(x) =

∫ x
p1
ω). We now want to glue the borders of Š

together: for this, we need to show that there exists for each loop γ a diffeomor-
phism ψγ defined when it makes sense such that ψγ|Č = γ and

(ρ1(γ) ◦ F, ρ2(γ) ◦G) = (F ◦ ψγ, G ◦ ψγ).

Thanks to the compatibility condition (3) and lemma 3, the couples (ρ1(γ) ◦
F, ρ2(γ) ◦ G) and (F ◦ γ,G ◦ γ) are diffeomorphic so we can indeed find such
a ψγ. We can then glue the borders of Š together to obtain a surface which is a
neighborhood of C with holes Hi around pi (i = 2, . . . , 2g−2) and two foliations F
and G transverse outside the holes. The holonomies of these foliations are ρF = ρ1

and ρG = ρ2 by construction.
To fill these holes, take Ci a neigrborhood of pi in X slightly larger than Ui

and consider the patch Pi = Ci × Cy. Consider on Pi the couple

(F̃ , G̃) = (y, ϕ3
i (y) + (x− pi)2yk+1).
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By lemma 3 and compatibility condition (4), for every point p near the boundary
of the hole Hi, there exists a unique diffeomorphism ψ between a neighborhood
of p in Š and a neighborhood of p in Pi sending (F,G) to (F̃ , G̃). By unicity,
these diffeomorphisms glue to a diffeomorphism between neighborhoods of the
boundaries of Hi and Pi and we can then glue the patch Pi onto Hi using this
diffeomorphism. By the lemma 5, we then have ϕ↔1i = ϕ3

i which concludes the
proof.

4 Formal classification of neighborhoods
We know how to construct two canonical foliations on any neighborhood, and we
know the classification of bifoliated neighborhoods, so we only need to put this
together.

Denote F and G the A- and B-canonical foliations. Note that if F = G, then
they define a fibration tangent to C, so this case can be treated by Kodaira’s
deformation theory. Suppose this is not the case and F 6= G, then their order
of tangency k is the Ueda index of S. Moreover, let (uij) ∈ H1(C,OC) be the
Ueda class of the neighborhood and (aij), (bij) ∈ H1(C,C) the cocycles defining
the (k + 1)-th order holonomy of F and G. By definition, the images of (aij) and
(bij) under the map H1(C,C) → H1(C,OC) are both (uij). Thus by the exact
sequence (1), the cocycle (bij − aij) is given by a 1-form: this 1-form is exactly ω.
To sum up, we have constructed an application H1(C,OC) → H0(C,Ω1); this is
a bijection because we can find (aij) (and thus (uij)) from ω as the cocycle with
null A-periods and with B-periods equal to those of ω.

By extension, we will call this form the Ueda form of the neighborhood. The
Ueda class (and thus the Ueda form) is well-defined only up to a multiplicative
constant, but the set of its zeroes is well-defined. The situation will be quite dif-
ferent depending on the tangency set between F and G, so suppose that ω has
only simple zeroes (so that the tangency set consists of 2g − 2 simple transversal
tangency curves). Denote by V (C, k, ω) the space of 2-dimensional formal neigh-
borhoods of C with trivial normal bundle, Ueda index k < ∞ and Ueda form (a
multiple of) ω modulo formal equivalence.

Theorem 4. Let C be a curve of genus g ≥ 2, 1 ≤ k <∞ and ω a 1-form on C
with simple zeroes. Then there is an injective map

Φ : V (C, k, ω) ↪→ D̂iff(C, 0)g × D̂iff(C, 0)g × D̂iff(C, 0)2g−3/ ∼

where the equivalence relation ∼ is given by the action of Diff(C, 0) on Diff(C, 0)N

by conjugacy on each factor.
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A tuple of diffeomorphisms ((ϕ
(j)
i )i)

3
j=1 is in the image of Φ if and only if the

ϕ
(j)
i are tangent to the identity at order k and if they satisfy the compatibility

conditions (3) and (4).

Proof. Fix a zero p1 of ω, fix some loops α1, . . . , αg, β1, . . . , βg forming a symplectic
basis of H1(C,C), fix some paths γ1j between p1 and pj.

Let [S] ∈ V (C, k, ω) and S be a representative of [S]. Let F and G be respec-
tively the A-canonical and the B-canonical foliations on S. Let ϕFτ and ϕGτ be the
holonomies of F and G along the loops τ = α1, . . . , βg; let ϕ↔1j = (ϕG1j)

−1 ◦ ϕF1j be
computed along the path γ1j. We put

θ(S) = ((ϕFβi)
g
i=1, (ϕ

G
αi

)gi=1, (ϕ
↔
1j)

2g−2
j=2 ) and Φ([S]) = [θ(S)]

the class of θ(S) modulo common conjugacy.
Since a diffeomorphism ψ between two neighborhoods S and S ′ sends the A-

canonical foliation F of S to the A-canonical foliation F ′ of S ′ (resp. the B-
canonical foliations G,G ′), ψ then sends the bifoliated neighborhood (S,F ,G) to
(S ′,F ′,G ′). Thus θ(S) and θ(S ′) are conjugated, ie. Φ([S]) is well-defined. Con-
versely, if Φ([S]) = Φ([S ′]), then (S,F ,G) is diffeomorphic to (S ′,F ′,G ′) (and
therefore S is diffeomorphic to S ′).

The realization part of the theorem is a direct consequence of theorem 2 (the
relation (5) is trivial here).

Remark 1. About the realization of a tuple ((ϕ
(j)
i )i)

3
j=1, remark that the conditions

(3) and (4) only depend on the coefficients of ϕ(j)
i of order k + 1. In this sense,

we can say that the image Φ(V (C, k, ω)) is of finite codimension.

5 Concluding remarks

5.1 About convergent foliations in S

In some cases, the canonical foliations do not converge even if the neighborhood is
analytic. Indeed, if C is an elliptic curve, Mishustin gave in [10] an example of a
neighborhood S of C with trivial normal bundle and no analytic foliations tangent
to C.

We can use this example to build examples in higher genus: let p1, p2 be two
points on C and T1, T2 two transversals at p1 and p2. Consider the two-fold
branched covering π : S ′ → S of S branching at T1 and T2. Denote C ′ = π−1(C),
α, β the A- and B-loops on C based at p1, and α1, α2, β1, β2 the preimages of α and
β. They are the A- and B-loops on C ′ based at π−1(p1). If F ,G are the canonical
foliations on S, denote F ′ and G ′ the preimages of F ,G by π.
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Then S ′ is an analytic neighborhood of the genus 2 curve C ′, the canonical
foliations of S ′ are F ′ and G ′, and they do not converge.

Even with these examples, the question of the existence of an analytic neigh-
borhood of a genus 2 curve without any convergent foliation is still open.

5.2 About analytic equivalence of neighborhoods

Let S, S ′ ∈ V (C, k, ω) be two analytic neighborhoods such that the canonical
foliations converge. Let θ = (ϕi), θ

′ = (ϕ′i), i = 1, . . . , 4g−3 be the diffeomorphisms
obtained in the construction, so that θ is a representative of Φ(S) and θ′ is a
representative of Φ(S ′). Consider the groups G, G′ spanned by the ϕi (resp. ϕ′i).

Suppose G is not abelian. Then if S and S ′ are formally diffeomorphic, there
is a formal diffeomorphism ψ conjugating θ and θ′. This ψ realizes a conjugacy
between G and G′ so by Cerveau-Moussu’s rigidity theorem [3], ψ is convergent.
This in turn implies that θ and θ′ are analytically conjugated, so that S and S ′ are
analytically diffeomorphic. Note that since the diffeomorphisms ϕi are tangent to
the identity, the group G is abelian only if the ϕi are flows of a same formal vector
field [7].

This argument also works for non-canonical foliations: suppose that S and S ′
are analytic neighborhoods conjugated by a formal diffeomorphism ψ. Suppose
that there is on S two convergent foliations F and G with tangency index k ≥ 1
and 1-form ω with simple zeroes. Suppose that ψ sends F and G to convergent
foliations F ′ and G ′. Suppose finally that the group G spanned by the diffeomor-
phisms composing the invariant Inv(S,F ,G) of theorem 2 is not abelian. Then ψ
converges.

5.3 About degenerate cases

If the 1-form ω doesn’t have simple zeroes, we can still obtain a classification of
neighborhoods in V (C, k, ω) by the same method. The problem is that in this
case some non-trivial local invariants can arise. For genus g = 2 curves, the local
situations which can be involved were classified in [12]. These local classifications
can then be used to obtain a classification of bifoliated neighborhoods of genus 2
curves even in the degenerate cases (see [13]), which in turn could give a complete
formal classification of neighborhoods of genus 2 curves with trivial normal bundle.
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