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FRICTIONLESS CONTACT OF ElASTIC BODIES BY 
FINITE ELEMENT METHOD AND MATHEMATICAL 

PROGRAMMING TECHNIQUE 

NGUYEN DANG HUNGt and GERY de SAxc£: 
Department of Structural Mechanics and Stability of Constructions, University of Liege, Belgium 

(Received 13 June 1979) 

Abstract-The work presents an analysis of the contact problems between elastic bodies without friction. 
Extended variational principles in the contact problems constitute the theoretical foundations of the analysis. 
In fact, kinematically admissible displacement fields are subjected to the non-interpenetration conditions so 
that the contact problem being equivalent to a minimization of the potential energy with contraints on the 
displacement& may be reduced to a particular case of the mathematical programming techniques. 
Applications are limited to plane state of stress or strain cases where small deformations are considered. The 
geometrical space is discretized into finite elements, namely the 12 degree of freedom hybrid triangles or the 
16 degrees of freedom isoparametric hi-linear quadrangle elements. A special procedure of linearization is 
adopted to use the quadratic programming algorithm already prepared for large scale problems. 

In these conditions, a computer program has been written in FORTRAN IV H and the results obtained 
from this present good agreement comparing to analytical solutions or other numerical solution in the 
literature. Finally, theoretical eft'orts have been performed to generalize the method by introducinR a 
concept of fictitious locked material which represents the assumed contact space between the two bodies. 

A general and new condition of non-interpenetration is proposed for general cases of two elastic solids in 
contact. 

NOMENCLATURE 
x1 Lagrangian coordinates 
,;, Eulerian coordinates 

V, v_., v. geometric domains of elastic bodies 
r., r.,,., r.,8 portion of boundary of V, V,., V8 where t, are 

prescribed 
q, '11 normal vector defined on the boundaries 

0 rigid domain 
ao boundary of n 

siJ, t strain tensor, strain field 
U(s11) density of the strain energy 

a,1, u stress tensor, stress field 
r11 stress tensor (Piola) (Euler-cauchy) 
h body forces 
t; tractions prescribed on the boundaries 
q nodal displacement vector 
g nodal generalized force vector 

K global stift'ness matrix 
(JI total potential strain energy 

(JI* modified total potential energy 
4>, contact potential 
c/1, dislocation potential 
11 contact constraint function 
;. Lagrange's parameter 

w slack variable 
A constraint matrix 

D., V Lagrangian gradient operator 
rx,1 displacement gradient 

[Jii] Jacobian matrix 
J Jacobian, determinant of [!11 J 

111 minor of element J11 in [J11] 

tMaitre de Conferences. 
tEngineer Physician. 

I. INTRODUCI'ION 
The problem of contact of elastic bodies even in small 
deformations is a nonlinear problem because of the 
complicating factor: the presence of the unknown 
surface contact. One may find in the literature two 
distinct ways of numerical approach for this problem; 
the iterative method; and the direct method. 

The first method consists of calculating the 
increment of loading and verifying the contact 
condition at each step. Following authors may be cited 
among the adepts of this procedure. Chan and 
Tuba [I], Gaertner [2], Zienkiewicz and Franca­
villa [3 ], Fredriksson [ 4 ]. 

The second method consists of reducing the elastic 
contact problem to a special case of the mathematical 
programming techniques. By that way, Feng and 
Huang[5] have examined the contact problem of an 
inflated plane membrane. The variational forms of the 
contact problem is studied by Fremond [6] who has 
presented some numerical examples of contact 
between elastic bodies and rigid foundation. Panagio­
topoulos [7] has generalized this approach to the 
inelastic foundation and presented some dual forms of 
the variational inequalities for the contact problem. 

The present work belongs to the second type of 
formulation where appropriate linearization of con­
tact condition is adopted. It is assumed that no friction 
between solid bodies exists so that the contact 
condition may be expressed uniquely in terms of 
displacements. It is supposed also that the deformation 
is small and the material obeys the linear elastic 
constitutive equations. In the numerical examples, we 
will be dealing only with plane strain or stress two 
dimensions problems. The generalization of the 
formulation to the three dimensions bodies would 
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present no major difficulties but a considerable 
increasing number of variables. This paper may be 
divided in two sections. In the first section, the contact 
between an elastic body and a rigid foundation is 
considered. 

Good agreement numerical results obtained using 
the present finite element algorithm adopting this 
formulation and the super-element technique are 
illustrated. 

In the second section, theoretical efforts are 
performed to generalize the formulation. We introduce 
a concept of representing the space separating the 
contacting surface as a fictitious perfectly locking 
material. 

This concept is pointed out by adopting a new and 
general non-interpenetration condition which involves 
important commodity for the formulation of the 
contact problem of elastic bodies. It may be seen that 
in the particular case of rigid-elastic contact under 
small deformations assumption, the general non­
interpenetration condition is reduced to the constraint 
condition of the case mentioned above. 

l. CONTACf OF AN ELASTIC BODY AND 
A RIGID FOUNDATION 

2.1 Kinematically admissible displacements in the sense 
of contact problem 

Let Q be the rigid foundation and an its boundary. 
Let Vbe the elastic body.lts boundary is composed of 
three portions: r" where surface tractions � are 
prescribed, rM Where displacementS U; are prescribed 
and re where possible contact may happen ( Fig. l ). 

The initial configuration of the body Vis determined 
by a position vector OP = x. The components of which 
x1 are the Lagrangian coordinates of the material 
point Let u(x) be the displacement vector of the point 
P under loading. The new position P' of P after 
deformation is described by the new coordinates 

We assume that the surface of the foundation (en is 
regular so that it may be defined by the following 
equation: 

II(�) = 0. (2.2) 

In practice, eqn (2.2) defines only the possible 
contacting surface but not necessarily the whole 
surface an. By convention, we suppose that the region 
where II(;) is negative belongs to the foundation n. 
The displacement field u is kinematically admissible in 
contact problem sense if it satisfied the following non­
interpenetration condition 

II(x + u)., 0. (2.3) 

2.2 Displacement variational principle 
The classical total potential energy of an elastic 

body V subjected to imposed body forces J: and 
prescribed traction � on r (I is 

where U is the density of strain energy. 
e1J is kinematically admissible strain field such that 

(2.5) 

The contact problem [6] is reduced to a minimization 
of the functional (2.4) subjected to the constraint (2.3) 
with respect to arbitrary kinematically admissible 
displacement field u1 minimized lf)(u1). 

and 

U;EHK 

H K = { u,J Ut = U; on r u 

(2.6) 

OP' = ; = X+ u (2.1) Now introducing a slack variable w the inequality 

where the components of;,'' are Eulerian coordinates 
of the material point P'. 

R, : RADIUS Cl' THE PIN 
R; : INTERNAL RADIUS Cl' TilE RCD 
TJ. : CI..EARAI«:E 

(2.3) may be substituted by the following equality: 

II(x; + u1)- w2 == 0 (2.7) 

y.v.rl 

x,u,� 

Fig. 1. Contact surface r c and external surface r. contact between a pin and a piston rod 
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and using a Lagrange's parameter A. a relaxation of Consequently 
(2.7) may be performed by a dislocation potential 
according to Friedrich 

(2.8) 

If a modified functional �· is adopted such that 

the following variational problem is equivalent to 
(2.6): 

(2.10) 

with U�oH ={udu1 = ii1 on r.} . 

There are no difficulties to see that the Ewer-La­
grange equations of the problem (2.10) are 

Internal equilibrium: Dp1J +]; = 0 

Surface equilibrium on r .,: np1J = i1 

Contact equilibrium on re: np1J = .A.D1n 

(2.11) 

(2.12) 

(2.13) 

Displacement constraint on re: ll(X; + U;) - w2 = 0 
(2.14) 

Complementarity condition on re: .A.w = 0. (2.15) 

It appears from (215) that if w + 0, then A. = 0. There is 
no contact according to (2.14) and by (2.13) no contact 
pressure takes place. If w = 0 then A. > 0 and there is 
contact. So the complementarity condition (2.15) 
restores the Kuhn-Tucker optimality conditions. The 
Fig. 2 illustrates the situation discussed above. An 
interpretation of the Lagrange parameter A. may be 
performed in the following way. There is no friction so 
the surface tractions must be normal to the contacting 
surface re 

t = .A.Vll. 

--- INITIAL CONFIGURATION 
_____ DEFORMED CONFIGURATION 

). = J!!L 
nvnn· (2.16) 

If one has chosen the normalized constraint function 

no= n;nvnn (2.17) 

instead ofn, then A. is identified exactly as the contact 
pressure. 

2.3 Finite element formulation 
Classical discretization using compatible finite 

element and displacement method leads to the 
following forms of total potential energy of the whole 
structure: 

where q is nodal displacement vector 
g is generalized force vector 
K is the stiffness matrix. 

(218) 

The finite element discretization of the contact 
potential 

�e = I A.TI(x; + ut)dre (2.19) 

may be realized in the following way. 
Assuming the displacements are small We may 

remain only the first order terms of the Taylor's 
expansion of the function TI(x1 + u1) 

So that inequality (2.3) becomes 

(2.20) 

x,U 

Fig. 2. 
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Now, let us consider an arbitrary finite element v. with gives the nodal equilibrium equation 
an interface r, belongs to re. Let s the current 
coordinate defined on r •. Let q,. be a system of nodal Kccqe + Ke,q, = ge 
displacements chosen on r. in adopting a system of (2.33) 
shape function M.(s) for u(s) Krcqe + K,...q, = g, +go 

u(s) = M.(s)q, •. (2.21) 
where qe are the condensed displacements which must 
be eliminated before the optimization step 

Let N.(s) be another system of shape function qe = Ke�1 [ge- Kc.q,]. (2.34) 
corresponding to the nodal system .?.. of Lagrange's 
parameter A. Replacing in (2.33) one obtains 

A.(s) = X[N.(s). (2.22) 

According to (2.20), (2.21) and (2.22) the contact 
potential (2.19) of element V. may reduce to this matrix 
form 

�ee = ).[ (A.q,. + he) 
with 

h.= S N.ndre. 

A.= J N.(Vll)rM.dree· 

(2.23) 

(2 24) 

(2.25) 

The assemblage of the contact elements may be 
performed by using some Boolean matrices L., G. 

q .. =LA, 
A..= G.l. 
h.= G[h 

(2.26) 

(2.27) 

and writing the total contact potential as the sum of the 
contact potential of each element 

where 

is the constraint matrix of the contact problem. Taking 
the variation of (2.28) with respect to .?. the problem 
(2.10) gives the following linear constraint in terms of 
the nodal displacements defined on fc: 

Aq, �-h. 

2.4 Superelement technique 

Let 

(2.30) 

(2.31) 

be the generalized contact forces vector. The 
constraint affects only the nodal displacement defined 
on re. In order to reduce the size of the problem before 
the optimization process, the superelement technique 
is used. Application of the principle of virtual work for 
the entire structure 

(2.32) 

with 

K ... = K,... - KrcKc� 1 Kc, 

g, = g, - KrcKe� 1 ge. 

(2.35) 

(2.36) 

(2.37) 

Now the size of the problem (2.32) is considerably 
reduced 

b[tq;K ... q,- g"[q,- ).(Aq, +h)]= 0 (2.38) 

which is equivalent to the following quadratic 
programming problem: 

minimize 

q, 
subjected to Aq, � -h. (2.39) 

Once the optimal solution q, and the associated 
Lagrange parameters A. are known. the internal 
displacements and stresses of the whole structure are 
obtained from (2.34) by back substitution and the 
contact force vector from (2.31 ). 

2.5. Example 
It seems useful to illustrate the above finite element 

formulation of the contact potential �e by taking a 
simple example shown by Fig. 3. If V. is a linear finite 
element having an interface 1-2 belongs to re one has 
the following interpolation matrix M. and displace­
ment q,. of formulae (2.21) 

M= 11 - 11 
0 

where s is the current coordinate on the interface 1-2 
and lis its length.lflinear interpolation is taken for A.(s) 
in (2.22) one has 

N. (s)=ll-rr rrl. 

In these conditions the constraint matrix A. defined by 
(2.25) takes the following form: 

A = II
AII 

e A21 
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Fig. 3. 

with 

Au = s: (1 - '7)2D1ll(r/)cb7 

A12 = s: (1 - 17)2D2ll(17)d17 

A13 = f (1 - '7)'7D1ll('7)cb7 

A14 = s: (1 - 17)'7D2ll('7)d17 

A21 = f (1 - 17)'7D1ll(17)d17 

A22 = s: (1 - '7)'7D2ll('7)d17 

A23 = s: 172D1ll(17)d17 

A24 = s: 171D2ll(17)d '7. 

In the case of the Fig. 4 where the rigid foundation is a 
circle of equation 

One has 

Hence 

A _ f_ l2(x11/l + f) 2R/l xu/1 + t R/11 
• 

- 3 (x11/l + !) R/L 2(x11/l + !) 2R/l 

and the matrix h. defined by (2.24) is 

hT=l31� (X11) l �� � � (X11) l � � � • 2 l + 3 1 + 2 2 1 + 31 + 4 . 

3. CONT ACf OF TWO ELASTIC BODIES 
3.1. Formulation 

The major difficulty for the extension of two elastic 
bodies consists on the fact that not only the contact 
zone is unknown here but the contact surface may 
deform during loading . We can take the boundary of 
one body as reference like the rigid foundation in the 
previous section but to do so we lost the symmetric 
feature of the problem. We do not treat the two body 
equally. For these reasons, we propose a new and 
general formulation described in the following. Let VA, 
V8 (Fig. 5) two elastic bodies in contact with 
respectively r .AC• r BC the possible COntacting bound­
aries and r M• r M the pOrtiOn Of boundarieS Where 

Fig.4. 
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fi 

Fig. 5. 

loading t1 is prescribed. Let V= VA v V8 the total 
VOlume Of the tWO elastic bodies and r a= r.4a V r Ba 

the portion of its boundary where t1 are prescribed. Let 
Vc is the region adjacent to the contact surface. This 
region has r C = r AC V r BC as boundary and SOme 
frontier r = r 1 V r 2 Which joints r AC and r BC tO limit 
the region Vc. It may be multiple if the v .. and VB are 
initially in contact. The basic assumption of the 
formulation is that the displacement field existing in V 

may be extended in Vc which may be considered as a 
fictitious material defined afterwards. Let x1 be the 
Lagrangian coordinates of the material point. Under 
loading the configuration changes: 

X; --> �� = X; + U; (3.1) 

and v .. , VB, Vc become respectively the deformed ZA, 

ZB, Zc. The associated Jacobian matrix of trans­
formation (3.1) is 

(3.2) 

with the so-called determinant, or simply J acobian 

J = det [111]. (3.3) 

The volume of the fictitious material is reduced to 
the value 

The narrow volume Vco nearly the elastic bodies and 
limited by AB, CB is the seat of important strain and 
tends to zero as far as loading increases. Therefore it is 
evident that for a small element of volume in Vco the 
contact between v .. and VB is realized when 

Noting that 

(3.9) 

is the minor of element JiJ of the Jacobi matrix [JiJ ]. 
one has 

. (. 1'1 . b<l>c = 11.-0-MiJd Vc 

• ( Jij 

and because of (3.2) 

b<l>c = J AI1p, bui d �-';.· = S D;(.di
J
bu

J
) d v(: 

- S D;(i.liJ)bu
J
dVc (3.10) 

and according to the Gauss formulae 

with 

r = r c V r. the total boundary of Vc. 

Taking the variation of the modified functional 

<l>*(u1, i .. w) = <l>(u;) + 1>(u1, i., w) (2.9) 

where <l>(u1) is defined by (2.4), we may find the 
following Euler-Lagrange's equations: 

in V Dp;J +]; = 0 (3.11) 

on ra npiJ = t, (3.12) 

on r np11 = 0 (3.13) 

on re ti = i.nJiJ (3.14) 

in Vc D,(I.Iii) = 0. (3.15) 

3.2. Physical interpretations 
The three first equations are classical equilibrium 

equations. Focusing our attention on the two last new 
ones to give some physical interpretations. We 
recognize in (3.14) the presence of the normal v1 (Fig. 6) 
of the strained surface r c 

(3.16) 

1=0 (3.5) so that it may be written 

otherwise, the condition of non-interpenetration 
would be 

(3.6) 

and displacement field is called kinematically admis­
sible in contact problem sense if it satisfies (3.6). 

Now, the same formulation (2.9), (2.10)may be used 
here with only the following change for the dislocation 
potential: 

with the new contact potential 

<l>c=J.UdVc. (3.8) 

(3.17) 

Fig. 6. 
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It appears from this that the tractions are still 
normal to the strained surface. This is the consequence 
of the frictionless contact condition. 

Again as in Section 3, A. may be identified with the 
contact pressure on the contact surface. 

Besides, in the virtual work equation (3.10) the 
conjugate quantity of the strain tx11 = D1u1 is the Piola 
stress tensor 

(3.18) 

therefore, (3.14) and (3.15) may be written respectively 

��;;T.r����-J9 
I 

! va= Q 
I -

external equilibrium on re 

internal equilibrium in Ve 

t1 = n1a11 

D1a11 = 0. 

(3.19) Fig. 7. 

(3.20) and the integral (3.22) have the more precise form 

It is very interesting to point out that relation (3.17), 
(3.18) is nothing else but the normality law of an ideal 
blocking material defined by the potential J which 
constitutes a dual material of the rigid perfectly plastic 
material [8] 

«<le= J A.J drds. (3.25) 

As the contact pressure A. depends uniquely to s we may 
write 

(3.26) 

aJ "C·j =A-
' aiXfJ 

A.=O ifJ>O 

A.+ 0 ifJ = 0. 
(3.21) Putting 

3.3. Relation between the constraint function J and ll 
In the case of V, & a, r IIC = an, the body v, is 

identified to a rigid foundation examined in Section 2. 
It is interesting to relate constraint function J defined 
by (3.6) to the constraint function n defined by (2.3). 

Due to the fact that in the rigid foundation there is 
no strain � = 0 and the modified functional (2.9) is 
reduced to the form 

(3.22) 

with 

CI>A(u;) = J U(e;1)dVA- JJ,u;dVA- Ji;u,dr., ... 

The dislocation potential 1/J(u�o )., w) is defined by 
(3.6) where we focus our attention to the contact 
potential 

(3.23) 

Now to relate n of(219) to J of (3.23) it is necessary 
to transform the volume integral (3.23) to a surface 
integral along rAe =re. Let A ere. Bet50 be two 
points which must be in contact during the loading 
process. We introduce (Fig. 7) a special curved 
coordinate system 

r = r(x�o x2) 
s = s(xl! x2) 

such that for r = r8 = 0, the line r = r(B) coincides 
with the boundary of the foundation an and the line 
r = r(A) coincides with the boundary of the elastic 
solid r ,.. In these conditions the frontier r �o r 2 are 
chosen to be coincided respectively with the lines = s1 
and s = s2• Therefore the domain Ve of the perfect 
locking material discussed above is to be described 

(3.24) 

f. ... n = 0 Jdr. (3.27) 

It appears from (3.26) that 

«��e = pn dr e (3.28) 

and this is exactly the constraint potential (219). 
As to J it may be written in terms of tx11 in the following 
form: 

(3.29.) 

where 

When the solid and rigid foundation is in contact by 
(3.21,), we must have: 

. ' aJ . 
"Cpp =A= 11.-,- = 11.(1 + 1%116) r.,(l.pp 

aJ 
!96=0=A-=A(1+1X) 

aiXee 
PP 

()J 
rp8 = 0 = ), ,--- = - ).IXBP• U1Xp8 

Therefore � = IXep = 0 and txpp = -1 when the 
contact is happened. Just before the contact, by 
continuity, we must expect that tx96and txP8 are small and 
only the term IX PP exists in the approximated form of J: 

J:::: 1 + 1Xpp• 

Consequently the integral (3.27) becomes 

ll(p,u) = p(A) + Up(PA) = p(A) + D•u(A) (3.30) 

where D is the normal vector to on. 
Now back to the system x�o x2 which is the 

Lagrangian system linked to the rigid foundation one 
has 

(3.31) 
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and due to the fact that the displacements are small number of degree of freedom as the classical 
conforming quadratic triangle. 

n = VTI(u = 0) = DtTI(u = 0). (3.32) 

According to (3.27), (3.30), (3.31) and (3.32) the non­
interpenetration condition (3.6) leads to 

DtTI(u = O)ut > - TI(u = 0) (3.33) 

which is nothing else but the linearized inequality 
(2.20) already obtained in Section 2. 

The unity of the two formulations has been 
demonstrated. 

4. NUMERICAL RESULTS 
Computing program of the rigid-elastic contact 

formulation exposed in Section 2 is realized by 
connecting the finite element algorithm ADELEF 
existing in our department to the mathematical 
programming code called ACDPAC developed by 
Best and Bowler [91. The types of finite element used 
alternatively in the numerical examples are the 
isoparametric quadrangle proposed by Ergatoudis 
[ 10 ], Argyris and Fried [ 11] and the hybrid triangle 
proposed by Nguyen Dang Hung [12]. The latter 
element has the following displacement field on the 
interfaces 

U = IX1 + IX2X + IX3Y + IX4X2 + IXsXY + 1X6Y2 

V =  IX7 + IXsX + IX9Y + IX1oX2 + IXuXY + 1X12/ 

and the stress field may have arbitrary degree derived 
from adopted general Airy's stress function 

• i 
F = I I f31jxi-v i=O i=O 

This element belongs to a very efficient class of hybrid 
elements named the mongrel elements discussed in 
[13] and [14]. Externally, this element posses the same 

p 

4.1. Hertz's problem 
The classical contact problem of an infinite elastic 

cylinder on a rigid semi-infinite medium (Fig. 8) is 
tested. The analytical solution of the problem has been 
given early by Hertz [15]. Geometric and mechanic 
data of the example are 

R = lOOOmm E = 21.000kg mm-2 

v = 0.3 P = 600kg mm-1. 

Taking the advantage of the symmetry, only a half of 
the infinite cylinder is discretized in triangle elements. 
The mesh is shown successively by Figs. 8, 9, 10 and 11. 
For this pattern 80 mongrel triangles are necessary 
with 394 degrees of freedom. The number of interface 
constraint elements is 16 with 36 degrees of freedom. 
The Fig. 12 illustrates the distribution of the pressure 
along the contact surface AB. The dotted curve is the 
analytical Hertz's results. The black points indicate the 
present results. Agreement between analytical and 
finite element results is satisfactory. 

The CPU of this problem is 26 sec on IBM 370-158 
at University of Liege. The Fig. 13 presents the nodal 
forces go obtained directly in output. We may see that 
the coincidence with the Hertz's ellipse is more regular 
because the fact that the forces are relaxed by the 
interpolation shape function. One may distinguish the 
upper curve which is the forces taken from the mid­
points of the contact elements and the lower curve 
from the connected vertex of the same elements. 

4.2. Piston rod 
Figure 1 shows how a piston rod acts on a pin under 

an external force F distributed along f "' A clearance 
exists before loading and the two solids are initially in 
contact on the top 

c = IJo(l -cos e) 

P/2 

L 

Fig. 8. Hertz's problem discretization of a semi-area of the cylinder. 
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J 

Fig. 9. Finite element mesh of region AKJI. 

AL_----�8�---------tc�--------------------------------­

Fig. 10. Finite element mesh of region AFGH. 
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Fig. 1 1. Finite element mesh of region AEDC. 

_ _  ,�eh 

HERTZ 
4 

3 

20 
10 

A
�----�r-----�

2
------�

3
-------

4
�------�

5
----��

6
��

8
=--

Fig. 12. Comparison of the distribution of the pressure along the contact surface. 

20gr!kg) 

16 

I Or----.--.-________ _ 

5 

A 2 3 4 5 6 B 

Fig. 13. distribution of the nodal forces along the contact surface. 

10



where 

'To= R1- R� 

is the initial gap between the radius of the hole on the 
rod and of the pin. Foil owing geometric data is chosen 
for present test: 

E = 7288kg mm-2 V= 0.32 
t(thickness) = 19.8mm 

R1 = 41 mm R. = 55.5 mm 

F = 612 kg (Fig. 14). 

Again the symmetry allows to discretized only a half of 
the structure using 48 isoparametric elements. The 
connecting rod is considered as elastic but the shaft as 
rigid. The constraint function is the equation of the 
boundary of the pin 

The pattern (Fig. 14) needs 394 degrees of freedom 
with 15 contact elements corresponding to 62 degrees 
of freedom. 

Figures 15-17 illustrate some results for the case 
'1o/R1 = 0.003. Distributed pressures }.(6) along the 

A kg nm -2 

1.2 
1.1 
1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 .......... _. ..... � 
0.1 

Fig. 14. Finite element mesh-the semi-area of the piston rod. 

600 100 eo• a 
'Jo'RJ•0.003 

Fig. 15. Comparison of the distribution of the pressure along the contact surface. 

9rlkgl 

40' 50' 60' 70' ao• a 
1Jc,IRj• 0.003 

Fig. 16. Distribution of the nodal forces alona the contact surface. 
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2 

-I 

-2 

-3 

A 10• 

Experience Reterence [2J 

Present approach 

B 
20° 30• 40° 

TJ:/Ri = 'J.003 

Fig. 17. Comparison of the distribution of the external circumferential stress. 

angular contact and the distributed pressure of 3 cases 
t]o/Ri = 0.008, t]o/Ri = 0.003, IJo/Ri = 0.001 is given by 
Figure 18. It is seen that for large clearance, the 
pressures distribution tends rapidly to elliptic form of 
the Hertz's analytical results. 

5. CONCLUSIONS 
Dealing with the frictionless contact problem of 

elastic bodies the paper presents a procedure of 
linearization of the non-interpenetration condition in 
order to realize a modelling of the contact surface into 
contact finite elements. This method rends the 
optimization problem convex and the convergence is 
assured. Numerical experiences for rigid-elastic con­
tact case are very encouraging. 

Extension to the elastic contact problem leads to a 
new concept of considering the adjacent space near the 
contact surfaces as a perfectly locking materiaL The 
introduction of a symmetrical non-interpenetration 

60 

50 

40 

30 

20 

)0.008 :A 
'fl I Rj : 0.0 03 : B 0 0.001 : c 

10• 20• 30" 40" so• so• so• 

Fig. 18. Nodal forces distribution for different clearance for 
F = 612kg. 

condition permits to formulate elegantly the friction­
less contact problem of two elastic bodies. This very 
promising formulation may be reduced to the rigid 
elastic contact problem under small displacements 
conditions. We hope to present in the near future the 
numerical results of this, and the dual formulation 
using equilibrium finite elements. 
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