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The work presents an analysis of the contact problems between elastic bodies without friction.

Extended variational principles in the contact problems constitute the theoretical foundations of the analysis. In fact, kinematically admissible displacement fields are subjected to the non-interpenetration conditions so that the contact problem being equivalent to a minimization of the potential energy with contraints on the displacement& may be reduced to a particular case of the mathematical programming techniques.

Applications are limited to plane state of stress or strain cases where small deformations are considered. The geometrical space is discretized into finite elements, namely the 12 degree of freed om hybrid triangles or the 16 degrees of freedom isoparametric hi-linear quadrangle elements. A special procedure of linearization is adopted to use the quadratic programming algorithm already prepared for large scale problems.

In these conditions, a computer program has bee n written in FORTRAN IV H and the results obtained from this present good agreement comparing to analytical solutions or other numerical solution in the literature. Finally, theoretical eft'orts have been performed to generalize the method by introducinR a concept of fictitious locked material which represents the assumed contact space betwee n the two bodies.

A general and new condition of non-interpenetration is proposed for general cases of two elastic solids in contact.
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I. INTRODUCI'ION

The problem of contact of elastic bodies even in small deformations is a nonlinear problem because of the complicating factor: the presence of the unknown surface contact. One may find in the literature two distinct ways of numerical approach for this problem; the iterative method; and the direct method.

The first method consists of calculating the increment of loading and verifying the contact condition at each step. Following authors may be cited among the adepts of this procedure. Chan and Tuba [I], Gaertner [START_REF] Gaertner | Investigation of plane elastic contact allowing for friction[END_REF], Zienkiewicz and Franca villa [3 ], Fredriksson [ 4 ].

The second method consists of reducing the elastic contact problem to a special case of the mathematical programming techniques. By that way, Feng and Huang [START_REF] Feng | On the general contact problem of an inflated non-linear plan membrane[END_REF] have examined the contact problem of an inflated plane membrane. The variational forms of the contact problem is studied by Fremond [START_REF] Fremond | Etude des Structures visco-elastiques stratitiees soumises a des charges harmoniques et de solides elastiques reposant sur des structures[END_REF] who has presented some numerical examples of contact between elastic bodies and rigid foundation. Panagio topoulos [START_REF] Panagiotopoulos | A nonlinear programming approach to the unilateral contact-and friction boundary value problem in the theory of elasticity[END_REF] has generalized this approach to the inelastic foundation and presented some dual forms of the variational inequalities for the contact problem.

The present work belongs to the second type of formulation where appropriate linearization of con tact condition is adopted. It is assumed that no friction between solid bodies exists so that the contact condition may be expressed uniquely in terms of displacements. It is supposed also that the deformation is small and the material obeys the linear elastic constitutive equations. In the numerical examples, we will be dealing only with plane strain or stress two dimensions problems. The generalization of the formulation to the three dimensions bodies would present no major difficulties but a considerable increasing number of variables. This paper may be divided in two sections. In the first section, the contact between an elastic body and a rigid foundation is considered.

Good agreement numerical results obtained using the present finite element algorithm adopting this formulation and the super-element technique are illustrated.

In the second section, theoretical efforts are performed to generalize the formulation. We introduce a concept of representing the space separating the contacting surface as a fictitious perfectly locking material.

This concept is pointed out by adopting a new and general non-interpenetration condition which involves important commodity for the formulation of the contact problem of elastic bodies. It may be seen that in the particular case of rigid-elastic contact under small deformations assumption, the general non interpenetration condition is reduced to the constraint condition of the case mentioned above. We assume that the surface of the foundation (en is regular so that it may be defined by the following equation:

II(�) = 0.
( 2 .2)

In practice, eqn (2.2) defines only the possible contacting surface but not necessarily the whole surface an. By convention, we suppose that the region where II(;) is negative belongs to the foundation n.

The displacement field u is kinematically admissible in contact problem sense if it satisfied the following non interpenetration condition II(x + u)., 0.

( 2 .3)

Displacement variational principle

The classical total potential energy of an elastic body V subjected to imposed body forces J: and prescribed traction � on r (I is where U is the density of strain energy.

e1J is kinematically admissible strain field such that (2.5)

The contact problem [START_REF] Fremond | Etude des Structures visco-elastiques stratitiees soumises a des charges harmoniques et de solides elastiques reposant sur des structures[END_REF] is reduced to a minimization of the functional (2.4) subjected to the constraint (2.3) with respect to arbitrary kinematically admissible displacement field u1 minimized lf)(u1). (2.17) instead ofn, then A. is identified exactly as the contact pressure.

Finite element formulation

Classical discretization using compatible finite element and displacement method leads to the following forms of total potential energy of the whole structure:

where q is nodal displacement vector g is generalized force vector K is the stiffness matrix. Now, let us consider an arbitrary finite element v. with gives the nodal equilibrium equation an interface r, belongs to re. Let s the current coordinate defined on r •. Let q,. be a system of nodal Kccqe + Ke,q, = ge displacements chosen on r. in adopting a system of (2.33) shape function M.(s) for u(s) Krcqe + K,... q, = g, +go

u(s) = M.(s)q, •.
(2.21) where qe are the condensed displacements which must be eliminated before the optimization step Let N.(s) be another system of shape function qe = Ke�1 [ge-Kc.q,].

(2.34) corresponding to the nodal system .?.. of Lagrange's parameter A.

Replacing in (2.33) one obtains (2.25)

The assemblage of the contact elements may be performed by using some Boolean matrices L., G.

q . . = LA ,

A..= G.l. h.= G[h (2.26) (2.27)
and writing the total contact potential as the sum of the contact potential of each element where is the constraint matrix of the contact problem. Taking the variation of (2.28) with respect to .?. the problem (2.10) gives the following linear constraint in terms of the nodal displacements defined on fc:

Aq, �-h. subjected to Aq, � -h.

Superelement technique

(2.39)

Once the optimal solution q, and the associated Lagrange parameters A. are known. the internal displacements and stresses of the whole structure are obtained from (2.34) by back substitution and the contact force vector from (2.31 ).

Example

It seems useful to illustrate the above finite element formulation of the contact potential �e by taking a simple example shown by Fig. 3. If V. is a linear finite element having an interface 1-2 belongs to r e one has the following interpolation matrix M. and displace ment q,. of formulae (2.21)

M= 1 1 -11 0 where s is the current coordinate on the interface 1-2 and lis its length.lflinear interpolation is taken for A. In these conditions the constraint matrix A. defined by (2.25) takes the following form: In the case of the Fig. 4 where the rigid foundation is a circle of equation

A = II A II e A 21

One has

Hence

A _ f_ l 2(x11/ l +f) 2R/ l xu/ 1 + t R/ 1 1 • -3 (x11/ l + !) R/ L 2(x11/ l + !) 2R/ l
and the matrix h. defined by (2.24) is hT= l

3 1 � (X 1 1) l �� � � (X 1 1) l � �� • 2 l + 3 1 + 2 2 1 + 31 + 4 .

CONT ACf OF TWO ELASTIC BODIES

Formulation

The major difficulty for the extension of two elastic bodies consists on the fact that not only the contact zone is unknown here but the contact surface may deform during loading . We can take the boundary of one body as reference like the rigid foundation in the previous section but to do so we lost the symmetric feature of the problem. We do not treat the two body equally. For these reasons, we propose a new and general formulation described in the following. Let VA, V8 (Fig. 5) two elastic bodies in contact with respectively r .AC• r BC the possible COntacting bound aries and r M• r M the pOrtiOn Of boundarieS Where Taking the variation of the modified functional <l>*(u1, i .. w) = <l>(u;) + 1>(u1, i., w)

(2.9)

where <l>(u1) is defined by (2.4), we may find the following Euler-Lagrange's equations: 

Physical interpretations

The three first equations are classical equilibrium equations. Focusing our attention on the two last new ones to give some physical interpretations. We recognize in (3.14) the presence of the normal v1 (Fig. 6) of the strained surface r c It appears from this that the tractions are still normal to the strained surface. This is the consequence of the frictionless contact condition.

Again as in Section 3, A. may be identified with the contact pressure on the contact surface.

Besides, in the virtual work equation (3.10) the conjugate quantity of the strain tx11 = D1u1 is the Piola stress tensor It is very interesting to point out that relation (3.17), (3.18) is nothing else but the normality law of an ideal blocking material defined by the potential J which constitutes a dual material of the rigid perfectly plastic material [START_REF] Dang | Mode les mathematiques et calcul numerique du comportement inC:lastique des materiaux[END_REF] «<le= J A.J drds. 

Relation between the constraint function J and ll

In the case of V, & a, r IIC = an, the body v, is identified to a rigid foundation examined in Section 2.

It is interesting to relate constraint function J defined by (3.6) to the constraint function n defined by (2.3).

Due to the fact that in the rigid foundation there is no strain � = 0 and the modified functional (2.9) is reduced to the form Now to relate n of(219) to J of (3.23) it is necessary to transform the volume integral (3.23) to a surface integral along rAe =re. Let A ere. Bet50 be two points which must be in contact during the loading process. We introduce (Fig. 7) a special curved coordinate system

r = r(x�o x2) s = s(xl! x2)
such that for r = r8 = 0, the line r = r(B) coincides with the boundary of the foundation an and the line r = r(A) coincides with the boundary of the elastic solid r ,.. In these conditions the frontier r �o r 2 are chosen to be coincided respectively with the lines = s1 and s = s 2 • Therefore the domain Ve of the perfect locking material discussed above is to be described As to J it may be written in terms of tx 1 1 in the following form: 

U1Xp8

Therefore � = IXep = 0 and txpp = -1 when the contact is happened. Just before the contact, by continuity, we must expect that tx96and tx P 8 are small and only the term IX PP exists in the approximated form of J: J::::

1 + 1Xpp• Consequently the integral (3.27) becomes ll(p,u) = p(A) + Up(PA) = p(A) + D•u(A) (3.30)
where D is the normal vector to on. Now back to the system x�o x2 which is the Lagrangian system linked to the rigid foundation one has (3.31) and due to the fact that the displacements are small number of degree of freedom as the classical conforming quadratic triangle. 

n = VTI(u = 0) = DtTI(u = 0). ( 3 
DtTI(u = O)ut > -TI(u = 0) (3.33)
which is nothing else but the linearized inequality

(2.20) already obtained in Section 2.

The unity of the two formulations has been demonstrated. [START_REF] Ergatoudis | Isoparametric elements in two and tridimensional analysis[END_REF], Argyris and Fried [START_REF] Argyris | The LUMINA clement for the matrix displacement method[END_REF] and the hybrid triangle proposed by Nguyen Dang Hung [START_REF] Dang | Direct limit analysis via rigid plastic finite elements[END_REF]. The latter element has the following displacement field on the interfaces

U = IX1 + IX 2 X + IX3Y + IX4X 2 + IXsXY + 1X6Y 2 V= IX7 + IXsX + IX9Y + IX1oX 2 + IXuXY + 1X12/
and the stress field may have arbitrary degree derived from adopted general Airy's stress function

• i F = I I f31jxi-v i=O i=O
This element belongs to a very efficient class of hybrid elements named the mongrel elements discussed in [START_REF] Dang | Sur une classc particulierc des elements finis hybrides: les elements metis. Methodes Numeriques dans les Sciences de rJngenieur[END_REF] and [START_REF] Dang | On the monotony and the converg ence of a special class of hybrid finite elements: the MONGREL Elements[END_REF]. Externally, this element posses the same p

Hertz's problem

The classical contact problem of an infinite elastic cylinder on a rigid semi-infinite medium (Fig. 8) is tested. The analytical solution of the problem has been given early by Hertz [START_REF] Hertz | Uber die Beriihrung fester elastischer Korper[END_REF]. Geometric and mechanic data of the example are

R = lOOO mm E = 21.000kg mm-2 v = 0.3 P = 600kg mm-1.
Taking the advantage of the symmetry, only a half of the infinite cylinder is discretized in triangle elements.

The mesh is shown successively by Figs. 8, 9, 10 and 11. For this pattern 80 mongrel triangles are necessary with 394 degrees of freedom. The number of interface constraint elements is 16 with 36 degrees of freedom. The Fig. 12 illustrates the distribution of the pressure along the contact surface AB. The dotted curve is the analytical Hertz's results. The black points indicate the present results. Agreement between analytical and finite element results is satisfactory.

The CPU of this problem is 26 sec on IBM 370-158 at University of Liege. The Fig. 13 presents the nodal forces go obtained directly in output. We may see that the coincidence with the Hertz's ellipse is more regular because the fact that the forces are relaxed by the interpolation shape function. One may distinguish the upper curve which is the forces taken from the mid points of the contact elements and the lower curve from the connected vertex of the same elements. --------tc�------------------------------- Again the symmetry allows to discretized only a half of the structure using 48 isoparametric elements. The connecting rod is considered as elastic but the shaft as rigid. The constraint function is the equation of the boundary of the pin

Piston rod

AL_----�8�-

The pattern (Fig. 14) needs 394 degrees of freedom with 15 contact elements corresponding to 62 degrees of freedom. condition permits to formulate elegantly the friction less contact problem of two elastic bodies. This very promising formulation may be reduced to the rigid elastic contact problem under small displacements conditions. We hope to present in the near future the numerical results of this, and the dual formulation using equilibrium finite elements.
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  l. CONTACf OF AN ELASTIC BODY AND A RIGID FOUNDATION 2.1 Kinematically admissible displacements in the sense of contact problem Let Q be the rigid foundation and an its boundary. Let Vbe the elastic body.lts boundary is composed of three portions: r" where surface tractions � are prescribed, rM Where displacementS U; are prescribed and re where possible contact may happen (Fig. l ). The initial configuration of the body Vis determined by a position vector OP = x. The components of which x1 are the Lagrangian coordinates of the material point Let u(x) be the displacement vector of the point P under loading. The new position P' of P after deformation is described by the new coordinates

  { u,J Ut = U; on r u (2.6) OP' = ; =X+ u (2.1) Now introducing a slack variable w the inequality where the components of;,'' are Eulerian coordinates of the material point P'.

R

  Fig. 1. Contact surface r c and external surface r. contact between a pin and a piston rod

  Fig. 2.

  A.(s) = X[N.(s).(2.22) According to (2.20), (2.21) and (2.22) the contact potential (2.19) of element V. may reduce to this matrix form �ee = ).[ (A.q,. + h e ) with h.= S N.ndre. A.= J N.(Vll)rM.dree• (2.23) (2 24)

  be the generalized contact forces vector. The constraint affects only the nodal displacement defined on r e . In order to reduce the size of the problem before the optimization process, the superelement technique is used. Application of the principle of virtual work for the entire structure (2.32) with K ... = K,... -K rc Kc � 1 K c , g, = g, -KrcKe� 1 ge.

  Now the size of the problem (2.32) is considerably reduced b[tq;K ... q,-g"[q,-).(Aq, +h)]= 0 (2.38) which is equivalent to the following quadratic programming problem: minimize q,

  (s) in (2.22) one has N. (s)=ll-rr rrl.

Fig. 3 .

 3 Fig. 3.

Fig. 4 .

 4 Fig.4.

fiFig. 5 .

 5 Fig. 5. loading t1 is prescribed. Let V= VA v V8 the total VOlume Of the tWO elastic bodies and r a= r.4a V r B a the portion of its boundary where t1 are prescribed. Let Vc is the region adjacent to the contact surface. This region has r C = r AC V r BC as boundary and SOme frontier r = r 1 V r 2 Which joints r AC and r BC tO limit the region Vc. It may be multiple if the v .. and VB are initially in contact. The basic assumption of the formulation is that the displacement field existing in V may be extended in Vc which may be considered as a fictitious material defined afterwards. Let x1 be the Lagrangian coordinates of the material point. Under loading the configuration changes:X; --> �� = X; + U;

  v .. , VB, Vc become respectively the deformed ZA, ZB, Zc. The associated Jacobian matrix of trans formation (3.1) is (3.2) with the so-called determinant, or simply J acobian J = det [111]. (3.3) The volume of the fictitious material is reduced to the value The narrow volume Vco nearly the elastic bodies and limited by AB, CB is the seat of important strain and tends to zero as far as loading increases. Therefore it is evident that for a small element of volume in Vc o the contact between v .. and VB is realized when Noting that (3.9) is the minor of element JiJ of the Jacobi matrix [JiJ ].

b<l>c = 11 .

 11 -0 -M i J d Vc • ( Jij and because of (3.2) b<l> c = J AI1p, bui d �-';.• = S D;(.di J bu J ) d v(: -S D;(i.liJ)bu J dVc (3.10) and according to the Gauss formulae with r = r c V r. the total boundary of Vc.

  Fig. 6.

( 3 .

 3 18) therefore, (3.14) and (3.15) may be written respectively ��;;T.r� �� �-J9 I

( 3 .

 3 20) and the integral (3.22) have the more precise form

( 3 .

 3 25)As the contact pressure A. depends uniquely to s we may write (3.26) aJ "C•j =A-' a iXfJ A.=O ifJ>O A.+ 0 ifJ = 0. (3.21) Putting

( 3 .

 3 22)with CI>A(u;) = J U(e;1)dVA-JJ,u;dVA-Ji;u,dr., ... The dislocation potential 1/J(u�o )., w) is defined by (3.6) where we focus our attention to the contact potential(3.23) 

( 3

 3 .24) f. ... n = 0 Jdr.(3.27) It appears from (3.26) that «�� e = pn dr e (3.28) and this is exactly the constraint potential (219).

( 3 .

 3 29.) where When the solid and rigid foundation is in contact by (3.21,), we must have: . ' aJ . "Cpp =A= 11.-, -= 11.(1 + 1%116) r.,(l. pp aJ !96=0=A-=A(1+1X) aiXee PP ()J r p8 = 0 = ), ,---= -).IXBP•

Figure 1 2 LFig. 8 .Fig. 9 .

 1289 Figure 1 shows how a piston rod acts on a pin under an external force F distributed along f "' A clearance exists before loading and the two solids are initially in contact on the top c = IJo(l -cos e)

-Fig. 10 .

 10 Fig. 10. Finite element mesh of region AFGH.

Fig. 11 .

 11 Fig. 11. Finite element mesh of region AEDC.

Fig. 12 .Fig. 13 .

 1213 Fig. 12. Comparison of the distribution of the pressure along the contact surface.

where'

  To = R1 -R � is the initial gap between the radius of the hole on the rod and of the pin. Foil owing geometric data is chosen for present test: E = 7288 kg mm-2 V= 0.32 t(thickness) = 19.8mm R1 = 41 mm R. = 55.5 mm F = 612 kg (Fig. 14).

Figures 15 -Fig. 14 .Fig. 15 .

 151415 Fig. 14. Finite element mesh-the semi-area of the piston rod.

Fig. 16 .

 16 Fig. 16. Distribution of the nodal forces alona the contact surface.

Fig. 17 .

 17 Fig. 17. Comparison of the distribution of the external circumferential stress.

Fig. 18 .

 18 Fig. 18. Nodal fo rces distribution for different clearance for F = 612kg.
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	According to (3.27), (3.30), (3.31) and (3.32) the non
	interpenetration condition (3.6) leads to