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Inference of the bottom topography in anisothermal
mildly-sheared shallow ice flows

Jérôme Monnier ∗ Jiamin Zhu ∗

Abstract

This study proposes a new inverse method to estimate the bed topography elevation beneath
glaciers flows from surface observations (altimetry elevations and InSAR velocities) and (very)
sparse depth measurements (e.g. acquired during airborne campaigns). To do so an original form
of depth-integrated flow equations (long-wave assumption) is derived. The latter are valid for
highly to mildly-sheared regimes hence including moderately fast flows; varying internal thermal
profiles are taken into account. The inverse problem is particularly challenging since the sur-
face signatures integrate the bottom features (bed elevation and friction-slip amount) plus the
internal deformation. The first key ingredient of the inverse method is the derivation of this
non-isothermal Reduced Uncertainty (RU) version of the classical SIA equation (lubrication type
model for generalised Newtonian fluids) by intrinsically integrating the surface measurements in
the formulation. This resulting multi-physics RU-SIA equation contains a unique uncertain di-
mensionless parameter only (the parameter γ). The next key ingredient is an advanced Variational
Data Assimilation (VDA) formulation combined with a purely data-driven extension of γ based
on the trend observed in the (sparse) depth measurements (e.g. along the flight tracks). The
resulting inverse method provides the first physical-based depth estimations in mildly-sheared
mildly-slippery shallow flows. In poorly monitored ice-sheet areas (e.g. in Antarctica), the re-
sulting estimations are noticeably less uncertain than the current ones (in particular compared to
those obtained by gravimetry inversions). The present numerical experiments and experimental
sensitivity analyses demonstrate the reliability of this new RU-SIA equation and the robustness of
the inverse method. In other respect, the RU-SIA equation may provide a-posteriori estimations
of the thermal boundary layer at bottom.

1 Introduction
Bed (bottom) topography elevation is a basic data to set up any numerical geophysical flow model. In
glaciology this data is often very poorly known. Inverse methods to infer the topography beneath the
flows are the only alternative. In ice-sheets (Antarctica, Greenland), ice thickness measurements are
available along airborne radio-echo sounding tracks (e.g. data products from CReSIS, Univ. of Kansas
and NASA Operation IceBridge) providing bed elevation measurements. The latter are dense in fast
streams costal areas but very sparse elsewhere. In other respects numerous satellites provide accurate
measurements of the ice sheets surfaces: altimeters provide surface elevations H at ≈ ±10−30 cm for
1 km2 pixels see e.g. [20], while radar interferometers (InSar) provide accurate surface velocity fields
uH as soon as |uH | & 5 m/y, see e.g. [40].
Out of highly measured areas (that is out of fast streams costal areas) the current bed topography
estimations are based on an extension of the direct airborne measurements (along the relatively sparse
flight tracks) by Kriging. The resulting bed topography maps are presented in [2] for Greenland and
in [13] for Antarctica. In poorly measured areas (e.g. deep inland Antarctica) at distance greater than
50 km from thickness measurements, the estimations are based on gravity field inversions hence pre-
senting very large uncertainties [13]. On the contrary, in fast streams nearshore areas, the inversion of
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regularized versions of the depth-averaged mass equation combined with altimetry data enables to fill
up more accurately the gaps. Indeed by following the streamlines downstream or upstream the mea-
surements, the inversion of a regularized mass equation (linear transport) is possible, see [45, 37, 38].
Up to now, no physical-based inversions have been performed out of these densely measured fast
streams areas. To do so, the considered model needs to be physically consistent and the inversions
need to be stable, robust. This is a real challenge, see e.g. [31, 32] and [48]. Moreover, inland where
the estimated bed elevations are the most uncertain (since less monitored), the measured surface ve-
locities are due in part to the internal ice deformation (sheared flow) and in part to slipperiness at
the base; that is mildly-sheared mildly-slippery flows. Then inverting the surface data becomes much
more challenging compared to fast streams - pure slipping flows since the bed topography surface
signature needs to be separated from the basal slip one (and the internal deformation).
An adequate physical model class to consider for the inversions are shallow flow models since rich
enough (mass and momentum conservations may be taken into account) but simpler than the fully 3D
free surface model. Complete 3D free surface models are extremely complex to invert in a geophysical
context since the lack of data and since representing multi-scale multi-physics phenomena. Their
inversions would very likely lead to severe equifinally issues (due to the underlying ill-posed inverse
problems). Basically, more the model is complex with numerous uncertain unknown parameters, more
its inversion is challenging.
In glaciers, the vertical internal deformation (sheared viscoplastic fluid) is highly dependent on the
vertical profile of the creep parameter (sometimes called rate factor in glaciology), therefore highly
dependent on the vertical temperature profile. This additional phenomena makes the inversion of ice
flows even more challenging. Finally the unknowns of the considered flow models to be inferred are :
the bed (bottom) topography elevation, the basal slipperiness (or equivalently the friction parameter
at bottom) and non uniform creep parameter (due to varying vertical thermal profiles). This is the
challenging inverse problem which is addressed in the present study.
It should be noted that effective bed topography profiles only can be infered since the flows act as
low-band filters. Indeed, the bed variations are filtered by the flow; the filtering features depending
on the flow regime, see [16, 17, 29, 30] for detailed analysis applied to generalised Newtonian fluids
including glaciers.
The inference of the bed topography, but not of the composite unknown (bed topography, friction
coefficient) has been addressed in numerous studies by inverting ice models, see e.g. [45, 55, 52, 37, 38,
19, 49, 31, 32]. These studies consider restricted flow regimes only since considering either purely slip-
ping ice-streams (fast plug-like flows in coastal areas) or fully sheared flows (extremely slow flows, no
slip at bottom). These studies are sometimes based on flow models but always incomplete ones. Typ-
ically the mass equation of plug-like flows (providing good estimations if the airborne measurements
are dense and cross-lines, see e.g. [38]), or including the momentum equations too but isothermal
and with no-slip at bottom, see e.g. [32] and the detailed review made in [34]. [34] has the same
goal as the present study one, that is inferring the bed topography in non isothermal mildly-sheared
mildly-slippery ice flows. However in [34] the vertical thermal profile was supposed to be given hence
simplifying the inverse problem.

In the present study, firstly a dedicated shallow flow model is derived: the so-called RU-SIA model
(Reduced Uncertainty - SIA). This model is a reformulation of the extended Shallow Ice Approximation
(xSIA) model by natively integrating the surface measurements (elevation and velocity) and taking into
account varying vertical temperature profiles. Recall that the SIA model derives from the classical
lubrication theory applied to power-law rheology fluids by neglecting the inertial terms (creeping
flows), see [12, 22, 36, 4]. [5] demonstrates the validity of xSIA model for moderate slipping amounts
at bottom (i.e. the present targeted flow regimes) by stating formal error estimates. These mildly-
sheared mildly-slippery regimes correspond to ice flows with surface velocity ≈ 10 − 50 m/y, that is
the targeted ice-sheet interior sectors and ice-sheds upstreams. Recall that these areas are poorly
measured areas (airborne data are currently non-existent or extremely sparse).
In [34], the classical xSIA model has been enriched by taking into account a varying vertical creep
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parameter profile. The present new RU-SIA equation is a diffusive equation like the classical SIA
equation or the non-isothermal version derived in [34] but containing a single dimensionless parameter
denoted γ (hence the Reduced Uncertainty feature). The latter contains all the unknown-uncertain
multi-physics terms: basal friction - slip ratio, varying creep parameter vertical profile and rheology
power-law exponent. An explicit expression of this single parameter is obtained.
Next the inversion algorithm relies on this Reduced Uncertainty physical model and two Variational
Data Assimilation (VDA) processes, see e.g. [46, 25] and [6, 33, 7]. The latter aim at optimally fusing
the RU-SIA model and the altimetry data (surface elevation measurements) plus sparse airborne
measurements. These two VDA process are based on gradient-based minimisation and employ adjoint
equations [26]. Given the measured values of depth along flight tracks, a reliable value γ is infered by
one of the VDA process above. Next, its extension to the entire domain is performed by an universal
Kriging estimator, see e.g. [8]. The surface velocity information (derived from InSAR measurements)
is contained in a RU-SIA equation coefficient.
The VDA formulations rely on linear-quadratic optimal control problems (hence robust) with prior
covariance operators and changes of the control variables. These latter are an unknown effective
diffusivity, the uncertain source mass balance and the ice depth (thickness).
The novelties and strengths of these first inversions valid for anisothermal creeping shallow flows, from
slow to mildly rapid, are numerous. In particular they provide: a) robust estimations independently
of the in-situ (airborne) measurements locations contrarily to the intrinsically unstable inversions
of the transport mass equation; b) reduced uncertainty depth estimations in very poorly monitored
areas (e.g. deep inland Antarctica); c) an a-posteriori estimation of the basal thermal layer (given
an a-priori vertical profile). Moreover since based on 2D (shallow) flow equations, these estimations
remains affordable even for large computational domains.
The elaborated algorithms have been implemented in Python using the Fenics library [1, 27] and
optimization libraries; it is part of DassFlow computational code [35]. A complete real data set of an
∼ 200 km ×250 km inland Antarctica area is considered; the elaborated inverse method provides a
new bed topography estimation. The data set includes: the current bed estimation (Bedmap2, [13])
which provides the first guess value of the VDA processes (and a reference value), surface elevations
H [20], surface velocities magnitudes |uH | [40] and the climatic forcing term ȧ [41]. The robustness
of the inversion method is analysed into details through numerous numerical experiments. The area
has been randomly chosen in function of its surface velocities (|uH | varies from ≈ 10 to 30 m/y hence
in the model validity range) and since it is sufficiently surveyed (∼ 10 flights tracks) to assess the
accuracy and robustness the algorithms.
The outline of the article is as follows. In Section 2, the non-isothermal xSIA model is recalled and the
Reduced Uncertainty (RU) version is derived, providing the so-called RU-SIA model (model containing
the single dimensionless parameter γ). A typical uncertainty estimation of γ is derived and the global
inversion method is sketched. In Section 3, values of γ are estimated along the flight tracks by a VDA
process. Next from an observed clear trend, γ is extended in the whole domain by an universal Kriging
method. In Section 4, given γ, the ice depth (thickness) h and the RHS ȧ are simultaneously estimated
by VDA, therefore providing new estimations of the bed topography elevations. In Section 5, numerical
results with numerous numerical sensitivity experiments are proposed for an inland Antarctica area.
A conclusion is proposed in Section 6.

2 The direct model and the inversion algorithm
In this section the extended SIA (xSIA) model (that is the classical SIA equation with non vanishing
basal velocity see e.g. [11]) is recalled. Next we derive the so-called Reduced-Uncertainty SIA (RU-
SIA) model. The latter is obtained by reformulating the equations by gathering the few uncertain
terms into a single dimensionless parameter γ. Finally the global inversion algorithm is presented.
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2.1 The xSIA equation
Recall that the classical SIA model is derived from asymptotic calculations of the free surface Stokes
equations with respect to the geometrical ratio ε = H∗

L∗ , where H
∗ and L∗ are characteristic flow depth

and length respectively, see [22, 36] also e.g. [11] Chapter 10.2. The basic assumption states that the
flow, thin geometry, is sheared; in other words, normal stress components are negligible. The SIA
equations are first order in ε. In [5], it is formally demonstrated that the xSIA model remains valid
for a slip coefficient C ' O(1) (C = β−1, β the friction coefficient), hence clarifying the xSIA domain
of validity. (Notice that in [5] the xSIA equation is derived in a much more general coordinate system:
the Prandtl coordinate system [42]; this form which is not considered in the present derivations may
be useful in Alpine glaciers).
In all these shallow flow SIA like equations, the slip parameter C and the creep parameter A (including
the thermal effects), see e.g. [15] (chapters 4 and 6), are highly uncertain. The aim of this section is to
re-write the equations in a form enabling to reduce the modeling uncertainty (due to C and A). This
is done by taking advantage of measurements of the surface characteristics: elevation and velocity.
This new derivation leads the so-called RU-SIA model which contain a single unknown (dimensionless)
parameter γ.

Depth-averaged mass equation Let us denote the ice surface elevation by H, the topography
elevation by b, the ice depth by h = (H − b) and the 3D ice velocity by u. The ice depth satisfies the
depth-averaged mass equation:

∂th+ divq = a, (1)

where q = hū is the discharge and ū = 1
h

∫H
b

u(z)dz is the depth-averaged velocity. The source term
a is the mass balance: the difference between accumulation and ablation, see e.g. [15, 11].

Ice

Figure 1: Schematic vertical view of the gravitational ice flow and notations

Velocity expression We define S = |∇H| the slope value, the parameter ρ̄ = (ρg cos θ)q with ρ the
ice density, g the gravity amplitude, q the power-law exponent of the rheology law, and θ the mean
slope value in the (x, y)-plane, see Fig. 1. In ice-sheet modelling, it is adequate to set θ to 0. If the
flow is sheared, the SIA equations may apply. The SIA velocity u(x, z) expression reads, see e.g. [11]
Chapter 10.2 or [15] Chapter 5.4:

u(x, z) = (u, v)(x, z) = ub(x)− 2ρ̄Sq−1(x)∇H(x)

∫ z

b

A(x, ξ)(H(x)− ξ)qdξ (2)

where A(z) is the creep parameter provided by the constitutive law; it depends on the vertical tempera-
ture profile in the ice A(z) ≡ A(T (z)), see e.g. [15] Chapter 4.3. The basal velocity ub(x) ≡ u(x, z = b)
reads:

ub(x) = −Cρ̄hqSq−1∇H(x) (3)
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with C > 0 the slip coefficient. For glaciers, the usual exponent value is q = 3, see e.g. [15, 11].
Following [34], we introduce the parameter:

Ā(x) =
(q + 2)

hq+2(x)

∫ H

b

∫ z

b

A(x, ξ)(H(x)− ξ)qdξdz. (4)

Finally the depth-averaged velocity reads:

ū(x) = −ρ̄
(
C(x) +

2Ā(x)

(q + 2)
h(x)

)
hq(x)Sq−1(x)∇H(x) (5)

In the isothermal case or if the vertical profile is constant then: Ā(x) = A(x) ∀x.

The xSIA equation By injecting the velocity expression (5) into the mass equation (1) (lubrication
type model), the xSIA equation valid for non isothermal flows reads, see [34]:

−ρ̄ div
([
C +

2Ā

(q + 2)
h

]
hq+1Sq−1∇H

)
= ȧ (6)

It is a non-linear diffusive equation in h (recall that H = (b + h)). To be solved, the values of the
slip coefficient C and the depth-integrated parameter A have to be given; however they are a-priori
unknown.
Notice that if C → 0, the no-slip condition (adherence) is imposed. On the contrary if C → ∞ a
pure slip condition (vanishing friction) is imposed. To remain within the SIA model validity, the slip
coefficient C has to vary from 0 to O(1) at most, see [5] for a detailed analysis.

2.2 The RU-SIA equation
A new form of the xSIA model (6) is derived: the so-called Reduced Uncertainty (RU-SIA) equation
in which the multi-physics and unknown parameters C and A are mathematically gathered to a single
dimensionless parameter γ. Next a-priori uncertainty estimations on γ are derived.

Velocity expressions including surface data measurements. Still by following [34], we intro-
duce the parameter:

A(x) =
(q + 1)

hq+1(x)

∫ H

b

A(x, ξ)(H(x)− ξ)qdξ (7)

Again, in the isothermal case or in presence of a constant vertical profile, A(x) = A(x) ∀x. Then the
surface velocity norm reads:

|uH | = ρ̄

(
C(x) +

2A(x)

(q + 1)
h(x)

)
hq(x)Sq(x) (8)

Let us introduce the observational term QH = |uH |
Sq . By re-writing the slip parameter as C(x) =

QH
ρ̄(x)hq(x) −

2
(q+1)A(x)h(x), the depth-averaged velocity (5) reads as:

ū(x) = −|uH |
S

(
1− 2ρ̄ RAA

QH(q + 1)(q + 2)
hq+1

)
∇H(x) (9)

with:

RA =
Ā

A
and cA = [(q + 2)− (q + 1)RA] (10)

In the isothermal case, RA = 1 = cA.
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Let us define the slip ratio as follows:

Rs =
|uH | − |ub|
|uH |

= 1− |ub|
|uH |

(11)

Observe that by using (3), (8) and (11), it follows the expression: Rs = 2ρ̄A
QH(q+1)h

q+1. (In particular
the slip ratio and the flow depth are related).
Finally the depth-averaged velocity (9) re-reads as:

ū(x) = −|uH |
S

γ ∇H(x) (12)

with:
γ =

(
1− cA

(q + 2)
Rs

)
(13)

The depth-averaged velocity uncertainty depending on the uncertain multi-physics parameters C
and A(z), see (9), has been reduced in the sense it depends now to a single uncertain parameter
γ(q, cA, Rs), see (12).

The RU-SIA equation. By injecting the depth-averaged velocity expression (12) into the depth-
averaged mass equation (1), the so-called RU-SIA equation follows:

−div
(
|uH |
S

γh∇H
)

= ȧ (14)

Recall that the RHS reads: ȧ = (a− ∂th).
The surface velocity norm |uH | and the surface slope S may be deduced from the available surface
measurements. Assuming that the depth h (or equivalently the bed elevation b) is given, γ is the
single unknown parameter of this equation in variable H.
The RU-SIA equation (14) is a linear elliptic equation in H, assuming that the observational term
|uH |
S and the "effective diffusivity” η = γh are given. Values of H at the boundary (Dirichlet boundary

conditions) close the equation.
As a consequence, assuming that the bedrock elevation b is known, γ may be estimated by an inverse
method. This is what is done in next section along the flight tracks where values of b are given (from
the measurements).
As already discussed for xSIA equation, the RU-SIA equation (14) is valid if the slip ratio Rs ranges
from ∼ 0.3 to 1. (In this case, the basic scalings done to derive the shallow flow equations (sheared
flows) remain valid, see [47, 5] for detailed discussions).

The dimensionless parameter γ and the thickness h may be considered as independent fields; γ
depends on (uncertain) physical parameters and the flow regime (through the slip ratio Rs) only. How-
ever as already pointed out Rs depends implicitly on h through the flow model, see (11). Actually
all the quantities of the present a-priori ill-posed inverse problem are fully coupled, either explicitly
or implicitly through the flow model. However the RU-SIA equation (containing the diffusivity term
η = γh) enables to separate the two quantities if not considering their correlation through the flow
model (14). The separation is made in next section by a purely data-driven model (i.e. without
physical constraints); this is Step 2) of the inverse algorithm presented in next section. The present
approach and equations are new; they constitute a step forward to obtain robust inversions.

A link between the inversion of the mass equation and the inversion of RU-SIA equation. As al-
ready mentioned, [45, 37, 38] aim at infering h by inverting the mass equation div (hū) = ȧ with the
depth-averaged velocity ū related to uH as: ū = αuH . Next the coefficient α is empirically set to
values . 1. Recall that the divergence operator may be inverted by introducing artificial diffusion in
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highly covered areas with cross-lines flight tracks; in practice in fast streams areas where Rs vanishes
therefore |ū| . |uH |.
The xSIA equation derived in [34] is valid for moderately slip regime (including with varying vertical
parameter A(z) hence non-isothermal flows) where we may have |ū| differing from |uH | by a dozen
of %. The derivation of xSIA (and RU-SIA) shows that: ū = − |∇H|S γ∇H. Therefore γ enables to
explicit the expression of the empirical parameter α introduced in [45, 37, 38]. (However it should be
noticed that in fast streams the uncertainty on the internal deformation represented by cA and q in
(13) is negligible).

2.3 Typical uncertainty on the single parameter γ
In this section, a-priori estimations on the single diùensionless parameter γ of RU-SIA equation (14)
are derived.
Let us set q = 3, which is the usual exponent value employed for glaciers. Following the Arrhenius
law, see e.g. [15, p.54], and typical temperature vertical profiles in Antarctica, see e.g. [44, 43, 50]),
the following typical vertical profile of A(z) is considered:

A(z) =

{
Aa for z ∈ [B,H]
Aa
B−b ((1− k)z + kB − b) for z ∈ [b, B]

(15)

where Aa and k are constants, see Fig. 2. We define:

B = mh+ b, m ∈ [0, 1] (16)

From (4), (7) and (10) it follows that for q = 3: RA =
5m2(1−k)(m3−6m2+15m−20)+60

12(m(1−k)(m3−5m2+10m−10)+5) .
For k ∈ [10, 1000], it follows that: cA ∈ [0.5, 5.04] (still for q = 3). In Fig. 2, the parameter cA vs m is
plotted for different values of k and q. If considering the typical value q = 3, the following numerical
estimation holds: γ ∈ [≈ 0.1, 1[.
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c
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c
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Figure 2: Left: typical vertical profile of the creep parameter A(z), see (15). Right: cA vs m (see (16)
and (10)) with k = 10 and k = 1000.

In the isothermal case, cA = 1, γ = (1−0.2Rs) hence γ ∈ [0.8,≈ 0.9] for xSIA comptaible regimes.
Therefore in the isothermal case the uncertainty on γ is relatively small.
Both in Antarctica and in Greenland, bedrock temperatures may be assumed to be close to 0. In
the Antarctica case (resp. Greenland case), the surface temperature may be equal to −40C◦ (resp.
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≈ −20C◦), corresponding to Aa ≈ 10−26 (resp. Aa ≈ 10−25), hence k ≈ 1000 (resp. k ≈ 10),
see Fig. 2 (Right). Moreover, assuming that the thermal boundary layer satisfies m ∈ [0.1, 0.5], then
cA ∈ [3.11, 4.64] (resp. cA ∈ [3.79, 3.46]), see Fig. 2. It follows from (13) that: γ ≈ (1−(0.78±0.15)Rs)
(resp. γ ≈ (1− (0.73± 0.03)Rs)).
The present basic analysis highlight orders of magnitudes of the uncertainty on γ. Moreover it shows
that the uncertainty on γ arising from the vertical thermal profile through the term (cA/(q + 2)) is
a-priori smaller than those arising from the slip ratio value Rs (in particular if q = 3 or greater).

2.4 The global inversion algorithm
The goal of the present study is to infer the depth (ice thickness) h. It is done by combining Variational
Data Assimilation (VDA) processes into the RU-SIA equation (14) and statistical estimations. More
precisely the following global inversion algorithm is considered.

• Step 1) Estimation by VDA of the effective diffusivity η = γh of the RU-SIA equation (14). The
formulation is detailed in next section. Given the optimal value η∗, the value of γ∗ = η∗

hb
along

the flights tracks (where depth measurements hb are available) are kept for the next step.
At this stage, values of the RHS ȧ provided by Racmo2 [41, 53] are assumed to be exact.

• Step 2) Extension (interpolation / extrapolation) of γ out the flights tracks by a classical uni-
versal Kriging process.

• Step 3) Estimation of the pair (h, ȧ) by VDA.
Both h only and ȧ are infered; this enables to adjust the measurements of ȧ too. According to
[41, 53], the uncertainty on ȧ is ± ∼ 20%. This bound is imposed as inequality constraints in
the VDA formulation.

3 Inference of the parameter γ
In this section, the method to estimate the multi-physics parameter γ is detailed; this corresponds to
Step 1) and Step 2) of the global inversion algorithm sketched above.

3.1 Identification of the parameter γ along the flight tracks (Step 1)
The method to compute values of γ along the flight tracks is as follows. This computation corresponds
to Step 1) of the inversion algorithm.

Estimation by VDA of the effective diffusivity η = (γh). Given the surface measurements, the
effective diffusivity η = (γ · h) of the RU-SIA equation (14) is infered by VDA. The following optimal
control problem is solved:

min
η

j(η) with j(η) = jobs(η) + αηjreg(η) (17)

jobs(η) =
1

2

∫
Ω

χtr(x)|H(η)(x)−Hobs(x)|2dx , jreg(η) =
1

2

∫
Ω

|∇η(x)|2dx

The control variable is η, η ∈ Uηad = {η ∈ L2(Ω), ηmin ≤ η ≤ ηmax}; the bounds η∗ are defined from
the numerical estimations presented in Section 2.3: γ ∈]0, 1[. It turns out in the numerical results (see
next section) that these imposed bounds on η are not reached. The airborne data along the flights
tracks are assimilated. To do so, in jobs the restriction operator χtr(x) equals 1 if dist(x,Γtr) < 3 km;
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it equals 0 otherwise. This definition is related to the length scale validity of the shallow flow model.
The elevation value Hη is the solution of (14) with Dirichlet boundary conditions (which are set from
the surface measurements). H is the state of the system. If the elevation Hobs would be assimilated
everywhere in the domain then the inverse problem would be a Linear-Quadratic optimal control
problem therefore admitting a unique solution η∗. However the observations are available along the
flights tracks only. Although the target value is the optimal value γ∗ along the flight tracks only, this
inverse problem is a-priori ill-posed. Then a classical Tikhonov regularization term jreg is added, see
e.g. [23] and references therein. The minimisation problem (17) is numerically solved using the classi-
cal first order minimisation algorithm L-BFGS (we use the Python routine scipy.optimize.minimize).
The scalar weight coefficient αη can be chosen according to numerous rules, see e.g. [23]. In the next
optimisation problem (next Section), an iterative regularisation procedure with iterative values of αη
is considered. In the present problem (17), this strategy turned out to be useless. Then various com-
putations are performed with empirical values of αη. (Typically these values satisfies: jreg

jobs
(η∗) ≈ 10−p

with p ∈ [2, 3]).

The VDA formulation is as follows. Given a control η, the direct model (14) is solved by a standard
Lagrange Finite Element Method (FEM) order 2. Given this unique solution Hη, the following adjoint
equation is solved using the same FEM :

−div(
|uH |
S

η∇P ) = χtr(H −Hobs), x ∈ Ω; P (x) = 0, x ∈ ∂Ω.

The gradient of the cost functional is computed from the state Hη and the adjoint state Pη as:

j′(η) · δη =

∫
Ω

(
|uH |
S
∇Hη∇Pη + αη∇η∇(δη)

)
dx.

Finally this gradient is used in the minimisation algorithm L-BFGS to obtain a better control variable
η i.e. an updated value providing a lower value of j(η). This iterative process is performed until
convergence. In practice the convergence turns out to be very robust: the optimal solution does not
significantly depend on the length scale of the data smoothing nor on the restriction operator defini-
tion ξtr. Detailed sensitivity analysis are proposed in next section.

Resulting value of γ along the flight tracks. The computed optimal solution of (17) is denoted
by η∗. Assuming that the depth values along the flight tracks correspond to the correct values at
the scale imposed in the definition of χtr, h∗(x) = hb(x) for x ∈ Γtr. Then the value of γ is
straightforwardly obtained as:

γ∗tr(x) =
η∗(x)

hb(x)
for x ∈ Γtr (18)

Given γ∗tr(x), next step of the inversion algorithm consists to estimate the value of γ(x) out of the
flights tracks.

Observe that the measurements along the flight tracks should be be considered as exact. Indeed
these measurements are averages; also the characteristic function χtr introduces a a-priori length scale.
Following [13], the uncertainty on these measurements equal approximatively±δhtr with δhtr = 140m.
For a characteristic value h̄ = 2.7 (this is the mean value of the forthcoming test area), this uncertainty
represents an uncertainty of ± ≈ 5% of the "true effective" depth. This uncertainty will be considered
at Step 3) of the algorithm (see next section).
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3.2 Extension of γ out of the flights tracks (Step 2)
Given the computed values γ∗tr(x) along the flights tracks, an extension (interpolation-extrapolation)
of γ is performed by employing a classical universal Kriging. The computational method is described
below.

The universal Kriging extension based on the locally observed trend. The field γ is de-
composed as follows:

γ(x) = γ̄(x) + γr(x) for x ∈ Ω (19)

That is γ(x) is decomposed as a deterministic trend function γ̄(x) plus a real-valued residual
random function γr(x). γr(x) is supposed to be intrinsically stationary with zero mean and variogram
function vY (|x− x′|) (the residual variogram function of γ(x)). ∀x,x′ ∈ Ω,

E[γ(x)] = γ̄(|uH(x)|), vY (x− x′) =
1

2
V ar[γr(x)− γr(x′)] =

1

2
E[(γr(x)− γr(x′))2].

At a point x0, x0 6∈ Γtr, the "predictor" is given by:

γ̂(x0) = 〈c, z〉 (20)

with 〈·, ·〉 the inner product, z the vector of sampled points, z = (γ(x1), · · · , γ(xn)) ∈ Rn, xi ∈ Γtr,
c = (c1, · · · , cn) ∈ Rn, ci ∈ R, i = 1, · · · , n the weight corresponding to each evaluation of the random
function γ(x) at the sample point xi. The weight vector c is computed such that it minimises the
error variance: argminc

(
σ2
krig(c)

)
with

σ2
krig(c) = V ar[γ̂(x0)− γ(x0)] = −〈c, VY c〉+ 2〈c,vY,0〉, (21)

while the unbiasedness condition E[γ̂(x0)− γ(x0)] = 0 is satisfied.
Here: VY ∈ Rn×n, (VY )i,j = vY (xi−xj), i, j = 1, · · · , n, and vY,0 = (vY (x1−x0), · · · , vY (xn−x0)) ∈
Rn.
The function γ̄(x) is the deterministic function supposed to model the (true) mean value E[γ(x)]. In
the present real-world modelling problem, the trend γ̄(x) of γ is unknown. However given a domain
(e.g. a portion of Antarctica), a trend may be determined from the measurements (along the tracks)
and the corresponding "exact" values γ∗b (x), x ∈ Γtr computed at Step 1). Doing so is equivalent to
consider that the measurements are sufficiently representative of the entire domain.

On the uncertainty of the statistical estimation of γ. Recall that even along the tracks, the mea-
sured depth values cannot be assumed to be exact. Indeed, for x ∈ Γtr, h∗tr = hb ± δhtr with
δhtr = 140m, see [13] and the discussion in the previous section.
Let us set: γ∗ = (γ̄ + δγ) with γ∗ the exact value and γ̄ the considered estimation. The computation
made for x ∈ Γtr is the following, see (18): η∗ = γ∗hb. Hence: γ∗hb = (γ̄ ± δγ)(hb ± δhtr). Therefore
given η∗ and hb along the tracks, given the uncertainty on h (which equals ≈ 5% in the forthcoming
numerical tests) generates an uncertainty on γ̄ of the same order of magnitude. In other respect this
uncertainty due to δhtr may be compared to the observed residual γr in the statistical estimation of
γ, see e.g. Fig. 7 (Right) for the present numerical test.

4 Inference of the pair (h, ȧ) with γ given
Given the surface measurements, given the parameter γ estimated at Step 2), the inference by VDA
of h and the RHS ȧ in the RU-SIA equation (14) is performed.
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The optimal control problem. Here the unknown parameter (control variable of the RU-SIA
equation) is: k = (h, ȧ). The optimal estimation of k is obtained by solving the following optimal
control problem:

min
k∈Uad

j(k) with : j(k) = jobs(k) + αkjreg(k), (22)

jobs(k) = 1
2‖Hk −Hobs‖22, jreg(k) = jreg(h) + jreg(ȧ),

jreg(h) =
1

2
‖(h− hb)‖C−1

h
and jreg(ȧ) =

1

2
‖ȧ− ȧb‖C−1

a
(23)

The scalar coefficient αk is given. The norms C−1
h and C−1

a are defined as the inverse of covariance
operators (hence symmetric, positive). The state Hk satisfies the RU-SIA equation (14) plus Dirichlet
boundary conditions. The background value (first guess) is kb = (hb, ȧb) with hb (resp. ȧb) the first
guess of h (resp. ȧ) provided by international databases: Racmo2 [41] for ȧ and e.g. Bedmap2 [13]
for h in Antarctica.

The admissible control set is: Uad = {(h, ȧ)(x), h ∈ [hmin, hmax](x), ȧ ∈ [ȧmin, ȧmax](x)}. The
bounds hmin and hmax depend whether the point x belongs to Γtr or not. The bounds ȧmin and ȧmax
are provided by the Racmo2 database [41] (see next section for more details).
The gradient of the cost functional reads: ∀δk = (δh, δȧ), j′(k) · δk = (∂hj(k) · δh, ∂ȧj(k) · δȧ), with

∂hj(k) = −
∫

Ω

|uH |
S

(x)γ(x)∇H(x)∇P (x)dx + αk∂hjreg(k)

∂ȧj(k) = −
∫

Ω

dx + αk∂ȧjreg(k)
(24)

P is the adjoint state, solution of the adjoint equation: −div
(
|uH |
S γh ∇P

)
= (H −Hobs) in Ω; plus

homogeneous Dirichlet boundary conditions P (x) = 0 on ∂Ω.

Change of control variable. Following [28, 56, 9, 3] (where the control variable is the initial state
of an atmospheric model), the following change of variable is made. The covariance operator Ch
(resp. Ca) are supposed to be bounded symmetric positive, hence it exists C1/2

h (resp. C1/2
a ) such

that: Ch = C
1/2
h C

1/2
h (resp. Ca = C

1/2
a C

1/2
a ). Then the following new control variable is considered:

w = (w1, w2) with w1 = C
−1/2
h (h− hb) , w2 = C−1/2

a (ȧ− ȧb). (25)

In variable w, the optimisation problem (22) reads :

min
w∈Ũad

j(w) with j(w) =
1

2
‖Hw −Hobs‖22 +

αw
2

(
‖w1‖22 + ‖w2‖22

)
(26)

Given the new variable w = (w1, w2), it is straightforward to calculate the original variable k:
k = (h, ȧ) =

(
C

1/2
h w1, C

1/2
a w2

)
+ (hb, ȧb).

On the covariance operators and regularization terms. The optimal solution w∗ depends on
the a-priori covariance operators Ch and Ca. These operators may be viewed as prior information on
the modeling problem. However the exact covariances operators are of course unknown. To simply
impose correct physical length scales of variations (recall that the physical model is a shallow flow
model), the following classical covariance operators are considered. For e ∈ L2(Ω),

C� e =

∫
Ω

σ�(x)σ�(x′)c(x,x′;L�) e(x) dx (27)
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where � denotes either h or ȧ; c(·, ·;L) is the correlation kernel function (also called Green’s function).
The latter is set as the classical second order auto-regressive correlation kernel:

c(x,x′;L) = exp

(
−‖x− x′‖1

L

)
(28)

The standard deviation of (h − hb) (resp. (ȧ − ȧb)) is σh, σh > 0 (resp. σa > 0). The scalar values
Lh > 0 (resp. La > 0) defines a length scale.
Our numerous numerical experiments have demonstrated that the change of variable (25) based on the
present covariance operators improve the robustness and the convergence speed of the VDA process.
For some correlation kernels - Green’s functions c(x,x′;L), it is possible to make a link with a regular-
isation term in the functional to be minimised i.e. the terms jreg(h) and jreg(ȧ) in (23). Following the
calculation presented e.g. in [51] Section 7 (in their case, calculations are valid in 1D and 3D only),
it can be proved that the introduction of the present covariance operators (27)(28) implies that:

jreg(�) ∼
∑
i=1,2

1

8L�

∫
Ω

‖e�(x)‖2 + L2
�‖∇e�(x)‖2 + L4

�∂
2
11e�(x)∂2

22e�(x) dx (29)

where � denotes either h or ȧ, e� = (�−�b)/σ�. The calculations are detailed in the appendix.
It follows from (29) that larger the length scale L� is, larger the regularisation effect is.
In other respect, the change of variable may be read as a preconditioning of the optimisation problem.
Indeed, a simple calculation shows that:

∇wj(w) =
(
C

1/2
h ∂hj(k), C1/2

a ∂ȧj(k)
)

where ∂hj(k) and ∂ȧj(k) are given in (24). Therefore the optimal necessary condition ∇kj(k) = 0

may be viewed as preconditioned by (C
1/2
h , C

1/2
a ).

After discretisation (e.g. by the standard order 2 Lagrange finite element method employed here), the
covariance operators Ch and Ca are symmetric positive (covariances) matrices. The (i, j)-th element,

i, j = 1, · · · , N , reads, see (28): σ�(xi)σ�(xj) exp

(
−|xi − xj |

L�

)
4|xi|4|xj |.

Therefore the positivity of these matrices C� depend on the a-priori imposed length scales L�. Ac-
cording to the Gerschgörin-Hadamard theorem, a sufficient condition to guarantee the positivity is to
choose L� such that :

log

(∑
j 6=i σ�(xj)

σ�(xi)

)
L� < min

i∈{1,··· ,N}
4|xi|, i, j = 1, · · · , N.

This condition shows that the value of L� should be chosen small enough to keep the covariance
matrix positive. However, it has been shown above that larger L� is, higher the regularisation is. In
conclusion, the length scales L� have to be set as a balance between the regularisation effects and the
preconditioning effects. A similar phenomena is analysed in detail in a different context in [18].

Remark 1. If considering the exact covariance operators and under the assumption that ((h−hb), (ȧ−
ȧb)) are mean 0 random fields, the new control variable (w1, w2) components are uncorrelated. In this
case the change of variable (25) is a whitening transformation (the covariance matrix after change of
variable equals the identity). In the present context, the exact-real covariance matrices are unknown.
However given the a-priori covariance matrices above, the new variables are expected to be more
physically correlated. These covariance matrices (Ch, Ca) represent prior information. The reader
may refer to e.g. [3, 24] for similar investigations but in a different physical context than the present
one.
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Iterative regularisation strategy. The weight parameter αw of the regularization term in (26) is
set as a decreasing sequence with α(n)

w > 0, n = 1, · · · , n∗. The reader may refer e.g. to [10, 23] and
references therein for descriptions of various regularisation strategies.
Let us denote by F the operator that maps the control w ∈ Uad ⊂ X onto the surface elevation H,
H ∈ Y (X and Y are Hilbert spaces). According to [23] Chapter 4, if using an iteratively regularized
Gauss-Newton method, the stop iteration number n∗ = n∗(δ) can be chosen through the Morozov’
discrepancy principle [39] such that:

‖Hδ − F (wδn∗)‖ ≤ τδ ≤ ‖Hδ − F (wδn)‖, 0 ≤ k ≤ n∗ (30)

with τ > 1 large enough and δ the a-priori error amplitude. δ is such that: ‖F (w∗) −Hδ‖ ≤ δ, Hδ

satisfying Hδ = F (w∗) + δ.
Following [23], the weight parameter sequence α(n)

w is defined as:

α(n)
w = α(0)

w q[n/n0], n = 1, · · · , n∗. (31)

With: n0 > 1 the number of iterations for each α(n)
w , [m] the maximum integer smaller than m, α(0)

w

and q given constants, α(0)
w > 0, 0 < q < 1. Values of α(0)

w , q, n0 are experimentally set; typically:
q = 0.5, n0 = 5 and α0 = 1. The stop iteration n∗ is set according to (30).

5 Inversions in an East Antarctica area
In this section, the bed topography elevation in a poorly monitored East Antarctica area is estimated
following the algorithm previously described.

5.1 Data description & first guesses
Some information on the domain are indicated in Fig. 3 and Table 1. This test area is compatible
with the flow model since |uH | ranges approximatively within [10, 30]m/y.
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Figure 3: InSAR-Based Antarctica surface velocity from [40] and the test case location.
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Antarctica test case
Points P1 P2 P3 P4 P5

(x, y) (km) (631250, 755000) (665000, 658250) (890000, 656000) (845000, 903500) (653750, 903500)

Surface |Ω| = 54840 km2 Mean ice depth - thickness (from BedMap2 [13]): 2718 m

Table 1: Test case location and information.

The area location points coordinates are provided in Polar stereographic coordinates with true scale
at 71◦ S The Cartesian coordinates x = (x, y) (in km) are transformed from these polar stereographic
coordinates, Tab. 1. The ice depth (thickness) mean value computed from BedMap2 values [13]
is: h̄b ≈ 2.7 km. The shallow flow model (RU-SIA equation) is valid as soon as the geometrical
ratio satisfies ε = [H]

[L] . 0.1. (The upper bound 0.1 is the classically admitted upper bound in the
lubrication modeling community). Then the surface data |uH | and H need to be smoothed at the
model scale i.e. at ≈ 27 km length scale. Notice that in [57], glaciers in Antarctica presenting surface
velocity ranging in ≈ [5− 100] m/y are accurately modelled by the SIA model as soon as the minimal
wave length equals ≈ 10 − 12 km in mean; this detailed study confirms the validity of the present
upper bound ε . 1/10.
To smooth the surface data, the following Gaussian function is employed:

G(x, y) =
1

2πσ2
s

e
− (x2+y2)

2σ2
s (32)

When applying the smoothing based on this Gaussian, values of pixels located at a larger distance
than 3σs are unchanged (since the Gaussian values vanish). Then all surface data are smoothed with
σs = 4 km (since 4 × 6 = 24 ≈ 27 km). The smoothed values of |uH | and H are plotted in Fig. 4.
The observational term |uH |

S , factor of the effective diffusivity in (14), is plotted in Fig. 5 (Left). It
can be noticed that this observational term varies by a factor ≈ 6, ranging from ≈ 0.4 to 2.4 104.

Figure 4: Surface data smoothed with σs = 4 km: (Left) Surface velocity module |uH(x)|; (Right)
Surface elevation H(x).
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Flight track 1

Flight track 2

Figure 5: (Left) The single observational term |uH |
S in the RU-SIA equation smoothed with σs = 4

km, see (32). (Right) The finite element mesh with 4x ≈ 3 km and the depth measurements locations
(flight tracks). Flight tracks 1 and 2 may be removed from the dataset for sensitivity analyses.

All numerical results have been performed on a medium size mesh with δx ≈ 3 km and on a finer
one with δx ≈ 1 km to confirm the insensitivity of the estimations with respect to the mesh size.
Indeed δx ≈ 3 km provides ≈ 10 points per wave length (which equals ≈ 27 km) therefore nodes
enough to properly approximate all fields. For the ≈ 3 km mesh, Fig. 5 (Right), the total number of
vertices equals 8226. Meshes are generated by employing Gmsh software [14]. Vertices are imposed
to be along the flight tracks, moreover with a finer mesh: δx ≈ 1 km along the tracks. Flights tracks
locations are provided by Bedmap2 database [13] (with the corresponding measured thickness).

First guesses of h, ȧ and a-priori uncertainties. Natural first guess values for the VDA process,
Section 4, are the ice thickness hb provided by Bedmap2 [13] and ȧb provided by Racmo2 [41]. This
two first guess fields are plotted in Fig. 6.

Figure 6: (Left) The depth (ice thickness) hb(x) from Bedmap2 [13]. (Right) The SMB ȧ(x) from
Racmo2 [41].

The depth estimations obtained with present inverse method are compared to the present reference
values that is Bedmap2 dataset [13]. Let us recall Bedmap2 values uncertainty sources and their order
of magnitudes. In [13], the depth measurements are split in two datasets (D1) and (D2). Dataset (D1)
is used to build up an interpolation (see below) in the whole domain including at Dataset (D2) points
(measurement values of (D2) are not employed at this stage). Next, Dataset (D2) is used to quantify
the accuracy of the interpolated field. Next, basic statistics on the estimated values are derived. The
a-priori uncertainties presented in [13] derive from this experimental procedure.
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The interpolation is performed by employing the ArcGIS Topogrid routine (ESRI Ltd, ArcGIS 9)
which is based on the ANUDEM algorithm [21]. This algorithm uses an optimised iterative finite
difference interpolation technique which is essentially a thin plate spline technique, see [54].

In the present two VDA processes, a-priori bounds are imposed to the "control variable" h. More
precisely:

• if x ∈ Γtr (i.e. along the flight tracks) then inequality constraints are imposed on h with the
bounds: hb(x)± δh,tracks, δh,tracks = 140m i.e. the value indicated in Bedmap2 [13].

• if x 6∈ Γtr (i.e. out of the tracks) then the imposed lower and upper bounds are: δhb(x) =
hb(x)(1± 0.6).

Concerning the climatic-dynamic term ȧ = (a−∂th) and according to [41], the uncertainty on ȧ equals
≈ ±20 %. Therefore, we impose the following lower and upper bounds: ȧ(x)(1± δa) with δa = 0.2.
Moreover, these a-priori uncertainties δh,tr, δhb, and δa are introduced in the covariance operators C�,
see (27), as the standard deviations σh and σa. We set: σh(x) ≡ δh,tr for x ∈ Γtr, σh(x) = δhb(x) for
x 6∈ Γtr and σa = δa. Finally σh and σa are empirically tuned to obtain a reasonable balance between
the regularisation terms of h and ȧ, see (22).

5.2 Estimation of the effective diffusivity η and parameter γ
The effective diffusivity η = (γh) of (14) is computed by solving (17). The iterative process is stopped
following the usual criteria : the cost function does not decrease anymore, the gradient norm and the
control variable variations vanish. Next, following the method described in Section 3, the optimal
value γ∗ along the flights tracks is straightforwardly deduced, see (18) and Fig 7 (Left).

Figure 7: (Left) The parameter γ in the whole domain obtained from the relation γ = η∗/hb, η∗
solution of (17). (Right) The targeted values γ∗tr(x) vs |uH(x)|, x ∈ Γtr i.e. along the flights tracks
(blue points), the resulting deterministic trend γ̄(|uH |) (red line) and γ̄(|uH |)± σu (green lines).

Following the method described in Section 3, the deterministic trend behavior γ̄, see (19), is infered
as a quadratic least-square optimal function: γ̄(x) = γ̄(|uH(x)|) = b1|uH(x)|2 + b2|uH(x)| + b3. In
the present case, the optimal coefficients are: b1 = 2.7910−4, b2 = 2.7810−10, b3 = 6.6610−2. The
corresponding curve is plotted in Fig. 7 (Right). Assuming that δγ = (γ − γ̄) ∼ N (0, σu), it follows
that σu = 0.05, see Fig. 7 (Right).

Following the method described in Section 3.2, the optimal values γ∗tr(x) (along the tracks) provide
the basic data-driven model for γ elsewhere. The extension (interpolation-extrapolation) of γ in the
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whole domain is obtained by an universal Kriging algorithm (values of γ along the tracks are assumed
to be representative of the whole domain). The predicted values γ̂(x) defined by (20) are plotted
in Fig. 8 (Left). The variance σkrig defined by (21) is plotted in Fig. 8 (Right). Recall that σkrig
measures the variance between the Kriging predictor γ̂(x) and the Kriging model defined by (19).
The confidence interval can be defined as γ̂ ± 3σkrig.

Figure 8: (Left) γ̂ infered from universal Kriging. (Right) The corresponding variance σkrig, see (21).
(Obviously σkrig vanishes along the tracks).

5.3 Inversion of (h, ȧ) with γ given: estimation of the bed topography
elevation

Given the parameter γ estimated by Kriging as previously described and considering Bedmap2 values
for h, the RU-SIA equation is solved to compare its solution to the surface elevation measurements.
This preliminary step demonstrates the validity of the physical-based numerical model (based on
the RU-SIA equation). Next, the VDA process in variables (h, ȧ) is performed; it provides the new
physical-based estimations of the bed topography elevation.

RU-SIA model assessment. Given γ = γ̂ and h = hb (Bedmap2 values), the surface elevation
H(x;hb, γ̂) solution of the RU-SIA equation (14) is computed. This model output is compared to the
altimetry values Hobs(x); differences are plotted in Fig. 9 (Left). Basic statistics on the differences are
indicated in Table 2 ("Direct model validation"). This simple direct run (without inversion process
excepted for γ) fits very well the surface elevation measurements. Such a simple direct run based on
the RU-SIA equation, Bedmap2 bed topography and the current estimation of γ is new. Moreover
it demonstrates the reliability and the accuracy of the present physical-based numerical model, in
particular the relevance of the RU-SIA equation derived in this study.
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Figure 9: (Left) Direct model assessment: difference between H(x;hb, γ̂) and Hobs(x). (Right) Misfit
after VDA in variables (h, ȧ): difference between H(x;h∗, γ̂) and Hobs(x).

VDA in variables (h, ȧ). Given γ = γ̂ (the Kriging predictor), the VDA problem (22) is solved. The
cost function terms evolutions (jreg and jobs) are presented in Fig. 12 (red lines). The convergence is
relatively fast thanks to the change of variables (w vs k). The step-like behavior is due to the iterative
regularization strategy, see (31). In the present example, n0 = 3 (internal iteration number for each
αn, n = 1, · · · , n∗).

Antarctica test case Median Mean Max
Direct model output (both with γ = γ̂)

|H(x;hb, γ̂)−Hobs(x)| 8.3m 11.0m 46.7m
|H(x;h∗, γ̂)−Hobs(x)| 2.6m 3.4m 21.4m

Inversion results
|h∗(x, γ̂)− hb(x)|, x 6∈ Γtr 218.6m 313.9m 1777.3m
|h∗(x, γ̂)− hb(x)|/|hb(x)| 8.1% 11.6% 63.8%

|h∗(x, γ̂)− hb(x)|, x ∈ Γtr 0m 2.9m 80.2m
|h∗(x, γ̂)− hb(x)|/|hb(x)| 0% 1.1% 3.5%

|ȧ∗(x, γ̂)− ȧb(x)| 0.4 cm/y 0.5 cm/y 1.8 cm/y
|ȧ∗(x, γ̂)− ȧb(x)|/|ȧb(x)| 15.8 % 14.2 % 20 %

Ice volume change : | ∫Ω(h∗ − hb)dx|/
∫
Ω hbdx 1.7%

Table 2: Method performances

In Table 2, basic statistics on the numerical results are presented. As already mentioned, RU-SIA
equation (14) set up from hb fits already very well the surface measurements Hobs (see |H(x;hb, γ̂)−
Hobs(x)| in Tab. 2). This confirms the relevance of the present numerical model and the equation.
Next if performing RU-SIA equation from the optimal depth estimation (h∗, ȧ∗) obtained by VDA,
the misfit with the altimetry measurements |H(x;h∗, γ̂ −Hobs(x)| decreases to 2.6m (median) only.
Concerning the RHS ȧ and following the measurements uncertainty indicated in [41], the difference
|ȧ∗(x; γ̂)− ȧb(x)| is imposed to be lower than 20%. The obtained differences are presented in Fig. 11
(Right). Notice that RACMO values are very slightly corrected only by the VDA process: less than
1 cm/y in the great majority of locations, see Fig. 11 and Tab. 2. The imposed maximal variation
±20% is reached at few locations only. Again these results confirm the reliability of the present mod-
eling approach.
The difference between the present depth estimation h∗ and Bedmap2 value hb equals 11.6% in mean
(8.1% median) out of the flight tracks (x 6∈ Γtr), see Tab. 2. Of course, the difference remains very
small along the tracks (x ∈ Γtr) since satisfying smaller inequality constraints along the tracks (see
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details in the previous section). The obtained variations along the tracks may correspond to the
measurements uncertainty also it may be due to the flow model scale. The obtained differences of
depth are presented in Fig. 10 (Right). Clearly the present estimation h∗ is a good candidate as a
new estimation of the bed elevation beneath these glaciers.
The obtained ice volume change compared to Bedmap2 is very small, see Tab. 2. Notice that in other
areas (numerical experiments not shown in the present article), larger variations of the total volume
have been obtained e.g. 6%.

Figure 10: (Left) The depth estimation h∗(x) (obtained from γ̂(x) estimation). (Right) Difference
between h∗(x) and Bedmap2 hb(x).

Figure 11: (Left) Infered RHS ȧ∗(x) (obtained from γ̂(x) estimation). (Right) Difference between ȧ∗
and ȧobs(x) from [41].

5.4 Sensitivity analyses on the depth estimation h∗, robustness of the in-
versions

The inversion process to obtain the depth estimation indicated in Fig. 10 is quite sophisticated; it
combines two main steps: the estimation of the dimensionless multi-physics parameter γ and the
estimation of the pair (h, ȧ) (within a-priori uncertainty bounds). Numerous different numerical
experiments have been performed to assess the robustness of the complete inversion process. Moreover
these empirical sensitivity analyses enable to guess basic uncertainty estimations on the results. Below
various inversions are presented by considering: different estimations of γ, different density of in-situ
depth measurements (by removing some flights tracks from the dataset), different smoothing length
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scales of the surface data Hobs and |uH | and different first guesses too. A summary of the results are
indicated in Table 3.

With different values of γ. The estimations of the bed elevation (or equivalently of the depth h),
solution of the VDA problem (22), obtained with different values of γ are compared. The considered
values of γ are : γ = γ̂, γ = (γ̂ + 3σkrig) and γ = (γ̂ − 3σkrig) where σkrig is indicated in Fig. 8. To
illustrate the good convergence behavior of these three VDA experiments, the evolution of the cost
functional terms are presented in Fig. 12.

Figure 12: (Left) The cost function terms vs iterations if solving (22) with γ̂, (γ̂ + 3σkrig) and
(γ̂−3σkrig) respectively. (Right) The gradients of the corresponding cost function terms vs iterations.

The differences between h∗ obtained with γ = γ̂ and h∗ obtained with γ = (γ̂ ± 3σkrig) are
presented in Fig. 13. The performances are summarised in Tab. 3. The mean difference between the
different infered depth are ≈ 2.8%. These results show the high robustness (relatively low sensitivity)
of the estimation h∗ with respect to the uncertain parameter γ.

Figure 13: (Left) Difference between h∗(x, γ̂+3σkrig) and h∗(x; γ̂) (in m). (Right) Difference between
h∗(x, γ̄ − 3σkrig) and h∗(x; γ̂) (in m). Considering that h̄b = 2.7km (resp. (hb)min = 2.1 and
(hb)max = 3.1), a difference of 100 m corresponds to a difference of 3.7% (resp. 3.2% and 4.8%).

With less flight tracks. Other estimations of h are performed if omitting measured values along a
few flight tracks; the obtained estimations are compared to the original one h∗(x) (if considering the
complete flight tracks dataset). A first "incomplete estimation" (resp. a second one) is obtained by

20



assimilating the same flight tracks set minus an internal one that is Flight track 1 (resp. Flight track
2) indicated in Fig. 5 (Right). The differences of the obtained estimations are plotted in Fig. 14.

Figure 14: Difference between h∗(x) (in m) obtained with all flight tracks dataset and the estimation
with one track less : (Left) Flight track 1 (set Γless,1tr ); (Right) Flight track 2 (set Γless,2tr ). Considering
that h̄b = 2.7km (resp. (hb)min = 2.1 and (hb)max = 3.1), a difference of 100 m corresponds to a
difference of 3.7% (resp. 3.2% and 4.8%).

If removing Flight track 1 or Flight track 2, the resulting trend function γ̄ remains quite close, see
Fig. 7 (Right). Therefore differences between the computed depth are relatively small, lower than 6%
(mean value), see Table 3. This is particularly true if removing Flight track 2: differences are only
3.9% in mean. Let us recall that the trend function γ̄ fully depends on the (airborne) measurements
datasets (along the flight tracks). In other respect this result highlights a great feature of the present
method: the direct model is a diffusive equation therefore the inversions do not depend on the flight
tracks location. This is a very important feature of the method. On the contrary, since the depth-
integrated mass equation is hyperbolic (it is the linear transport equation), its inversion fully depends
on the flights tracks locations and/or density (moreover with propagation of errors), see e.g. [38, 31]
and the discussion in the present general introduction.

With different smoothing length scales (through the parameter σs). Likely the most im-
portant limitation of the present method is the large scale of the estimations due to the shallow flow
assumption (long wave assumption). Thus, to be compatible with a shallow flow model, the surface
data have been smoothed at the length scale σs = 4 km, see (32). This corresponds to the minimal
length scale the physical model should be apply; the largest scale one should consider would be σs ≈ 8
km. Below the depth estimations computed from the surface data smoothed at σs = 4, σs = 6 and
σs = 8 km are compared, see Tab. 3 and Fig. 15. The difference |h∗s6(x) − h∗s4(x)|/|h∗s4(x)| equals
7.3% (mean value), while the difference |h∗s8(x) − h∗s4(x)|/|h∗s4(x)| equals 8.6% (mean). This exper-
iment shows that the sensitivity with respect to the smoothing surface data scale is non negligible
however the resulting uncertainty is smaller than the correction made on Bedmap2 values hb. (Indeed
differences with hb equals ≈ 12% (mean), see Tab. 2).
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Figure 15: Robustness with respect to the smoothing length scale σs, see (32). Difference (in m)
between h∗σs=4km(x) and : (Left) h∗σs=6km(x) (Right) h∗σs=8km(x). Considering that h̄b = 2.7km
(resp. (hb)min = 2.1 and (hb)max = 3.1), a difference of 100m corresponds to a difference of 3.7%
(resp. 3.2% and 4.8%).

With different first guesses of h. The natural first guess of h in the VDA processes is the reference
bed elevation Bedmap2 hb, [13]. However to assess the robustness of the VDA algorithms, two other
first guesses are considered: 1) h′b built up by spline interpolation of the (airborne) measurements
along the tracks; 2) h′′b built up by adding a perturbation to hb out of the flight tracks.
After computations, differences between the different estimations h∗ (obtained from the different first
guesses) are lower than 3.7% (mean). The differences are plotted in Fig. 15 and statistics are presented
in Tab. 3. This experiment demonstrates that the present inversions are robust with respect to the
first guess. Again, the uncertainty of the present physical-based estimation is lower than the obtained
correction to Bedmap2 values.

Figure 16: Robustness with respect to the first guess. Difference (in m) between h∗(x;hb) and : (Left)
h∗(x;h′b) (Right) h∗(x;h′′b ). Considering that h̄b = 2.7km (resp. (hb)min = 2.1 and (hb)max = 3.1), a
difference of 100m corresponds to a difference of 3.7% (resp. 3.2% and 4.8%).
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Comparison of h∗ obtained with ... Median Mean Max
... different γ

|h∗(x; γ̂ + 3σkrig)− h∗(x; γ̂)| 59m 74m 377m
|h∗(x; γ̂ + 3σkrig)− h∗(x; γ̂)|/|h∗(x; γ̂)| 2.1% 2.8% 21.5%

|h∗(x; γ̂ − 3σkrig)− h∗(x; γ̂)| 61m 73m 357m
|h∗(x; γ̂ − 3σkrig)− h∗(x; γ̂)|/|h∗(x; γ̂)| 2.2% 2.8% 35.1%

... different flight tracks densities
|h∗(x; Γtr)− h∗(x; Γless,1tr )| 95m 161m 1389m

|h∗(x; Γtr)− h∗(x; Γless,1tr )|/|h∗(x; Γtr)| 3.5% 5.9% 70.4%

|h∗(x; Γtr)− h∗(x; Γless,2tr )| 152m 198m 1425m

|h∗(x; Γtr)− h∗(x; Γless,2tr )|/|h∗(x; Γtr)| 2.7% 3.9% 51.4%

... different data smoothing σs
|h∗s4(x)− h∗s6(x)| 151m 198m 1425m

|h∗s4(x)− h∗s6(x)|/|h∗s4(x)| 5.4% 7.3% 55.9%
|h∗s4(x)− h∗s8(x)| 162m 233m 1560m

|h∗s4(x)− h∗s8(x)|/|h∗s4(x)| 5.8% 8.6% 60.3%

... different first guesses
|h′b(x)− hb(x)| 50m 64m 200m

|h′b(x)− hb(x)|/|hb(x)| 1.8 % 2.4 % 10.2 %
|h∗(x;h′b)− h∗(x;hb)| 57m 69m 377m

|h∗(x;h′b)− h∗(x;hb)|/|h∗(x;hb)| 2.1 % 2.6 % 30.7 %

|h′′b (x)− hb(x)| 46m 85m 734m
|h′′b (x)− hb(x)|/|hb(x)| 1.7 % 3.2 % 31.8 %
|h∗(x;h′′b )− h∗(x;hb)| 71m 96m 801m

|h∗(x;h′′b )− h∗(x;hb)|/|h∗(x;hb)| 2.6 % 3.7 % 46.4 %

Table 3: Robustness tests: statistics on the results. The subscript 4s (resp. 6s and 8s) of Hobs means
that the original dataset of |uH | and Hobs are smoothed to σs = 4km (resp. σs = 6km and σs = 8km),
see (32). In the last comparison, h′b and h′′b represent different first guesses than hb (Bedmap2); of
course excepted along the flight tracks (x ∈ Γtr).

5.5 A-posteriori estimation of the thermal boundary layer
As highlighted in Section 2.3, the uncertainty on γ is due to the slip ratio Rs uncertainty and due
to the thermal - rheology parameter cA uncertainty, see (10) and (13). cA highly depends on A(z)
therefore on the thermal vertical profile, see Fig. 2. It follows from (13) that : cA = (q+2)(1−γ)/Rs.
In the present test case γ∗ ∈ (0.01, 0.34), see Fig. 7, cA ∈≈ (0.8, 5), see Fig. 2 (Right). Considering
the most employed power-law exponent value q = 3, these ranges imply that the slip ratio Rs ranges
from ≈ 0.65 to 1. This a-posteriori estimation of Rs is consistent with the surface velocity magnitudes.
This original a-posteriori analysis confirms differently the global consistency of the present flow model.

Given an a-priori vertical thermal profile e.g. the typical one providing (15) and Fig. 2 (Left), the
RU-SIA equation provides an estimation of the effective thermal boundary layer (B − b), see Fig. 17
(Left). Next, this thermal boundary layer can be plotted vs different fields e.g. vs |uH |, see Fig. 17
(Right). Such a-posteriori model analysis may be useful for ice-sheet modellers. Also the profiles may
be constrained by the (very sparse) in-situ measurements of internal temperature profiles.
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Figure 17: A-posteriori estimation of the thermal boundary layer: (B−b) resulting from the inversion
of RU-SUA, see (16) and Fig. 2. (Left) (B − b)(x) = m(x)h(x) with Rs = 1; (Right) (B − b)(x) vs
|uH(x)|.

6 Conclusion
This study proposes a new inverse method to infer the bed topography elevation beneath ice flows from
surface observations (elevation and velocity) and sparse depth measurements. This hybrid physical-
based data-driven inverse method may provide depth (thickness) estimations in areas without any
in-situ measurements. It is based on the so-called Reduced Uncertainty equation (RU-SIA) which
models non isothermal shallow flows; the flows may be from highly to mildly sheared therefore from
slow to moderately fast. This new RU-SIA equation naturally integrates the surface measurements,
also the multi-physics uncertainties within a single dimensionless parameter γ. In mildly-sheared
flows, the inversion of surface measurements is very challenging since the bed topography surface
signature has to be separated from the basal sliding signature and from the internal thermal profile
signature (acting on the vertical velocity profile). Numerous numerical results demonstrate the re-
liability of this newly derived flow equation and the robustness of the inverse method therefore the
depth estimations. The method provides the first physical-based depth estimations inland ice-sheets
were glaciers are from slow to moderately fast. Moreover the RU-SIA equation may be interesting to
provide a-posteriori estimations of the thermal basal boundary layer too (given an a-priori vertical
profile). This inverse method can be applied to the great majority of the ice sheets surfaces : inland
and ice-sheet upstreams also to many high mountain glaciers or even to any shallow creeping flows of
generalized-Newtonian fluids (with a power-law behaviour) if sufficiently sheared. This may concern
lava flows (with the thermal field given), mud flows and various polymer flows.
In the ice-sheet modelling context, the method presents many advantages such as a robustness inde-
pendent of the in-situ measurements locations (here airborne ones). It may provide highly reduced
uncertainty estimations in particular in unmonitored areas where the current estimations are based on
highly uncertain gravimetry inversions. The method limitations are: 1) An increase of the uncertainty
if the in-situ measurements are not sufficiently representative of the entire domain. Indeed the mea-
surements provide the purely data-driven estimation of the dimensionless multi-physics parameter γ.
2) The inversions scale. Indeed the flow model is based on the long wave assumption (shallow flows)
with the geometrical ratio ε = H∗/L∗ . 0.1. (This corresponds to a length scale L ∼ 30 km in
Antarctica ice-sheet).
This original inverse method can be straightforwardly extended to unsteady flows if the provided
surface observations are time-dependent (assuming that the initial condition is either not important
in the considered time scale or assuming it is more or less known). This inverse method is promising
and may be employed for numerous others ice-sheets areas.
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Appendix
In this section, the equivalence between the covariance operators (27)(28) and the regularisation term
jreg defined by (29) is proved. The calculation is similar than those presented in [51] Section 7,
however the latter is valid in 1D and 3D only. On the contrary the present calculation is valid in
2D and with non-constant standard derivations σ�; therefore it may be applied to 2D shallow flow
models like RU-SIA equation.
The calculation related to the variable h only is presented; the calculation for ȧ is the same. For a
sake of simplicity, the subscripts h are skipped. We set: δh = (h− hb). Then:

‖δh‖2Ch
−1 = 〈δh,Ch

−1δh〉 =

∫
Ω

δh(x)δ̃h(x)dx, (33)

where δ̃h(x) = Ch
−1δh =

∫
Ω
c−1(x,x′)δh(x′)dx′. To calculate ‖δh‖2C−1 , the following equation has

to be solved:

δh(x) =

∫
Ω

c(x,x′)δ̃h(x′)dx′ =

∫
Ω

σ(x)σ(x′) exp(−|x− x′|1
L

)δ̃h(x′)dx′

We set: g(x) = exp(− |x|1L ). The equation above can be written as a convolution product: δh(x)
σ(x) =

g(x) ∗
(
σ(x)δ̃h

)
. In the Fourier space, it reads:

F
(
δh(x)

σ(x)

)
= G(ζ)F

(
σ(x)δ̃h

)
, G(ζ) = F(g(x)), ζ = (ζ1, ζ2).

It follows:
δ̃h(x) =

1

σ(x)

[
F−1

(
1

G(ζ)

)
∗
(
δh(x)

σ(x)

)]
. (34)

By applying the inverse Fourier transform F−1, it follows:

F−1

(
1

G(ζ)

)
=

1

4L

(
δ(x1)− L2δ(2)(x1)

)(
δ(x2)− L2δ(2)(x2)

)
where δ denotes the Dirac distribution. According to (34) it follows:

δ̃h(x) ∼ 1

4Lσ(x)

[
δh(x)

σ(x)
− L24

(
δh(x)

σ(x)

)
+ L4 ∂4

∂2x1∂2x2

(
δh(x)

σ(x)

)]
Finally according to (33) it follows:

‖δh‖2Ch
−1 ∼

1

4L

∫
Ω

[(
δh(x)

σ(x)

)2

+ L2

∣∣∣∣∇(δh(x)

σ(x)

)∣∣∣∣2 + L4 ∂2

∂2x2
1

(
δh(x)

σ(x)

)
∂2

∂2x2
2

(
δh(x)

σ(x)

)]
dx
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