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Inference of the bottom topography in anisothermal
mildly-sheared shallow ice flows

Jérôme Monnier ∗ Jiamin Zhu ∗

Abstract

This study proposes an inverse method to infer the bed topography beneath ice flows from
the surface observations (e.g. altimetry elevations and InSAR velocities) and sparse depth mea-
surements (e.g. from airborne campaigns). The flow model is valid for highly to mildly-sheared
regimes (hence mildly-rapid) and takes into account varying vertical thermal profiles; it is depth-
integrated (long-wave assumption). The inverse problem is particularly challenging since the as-
similated surface signatures integrate the bottom features (bed elevation and friction-slip amount)
and the internal deformation due to non constant rate factor vertical profile. The first key step
of this multi-physics flow inversion is a re-derivation of the anisothermal xSIA model (lubrication
type model for generalized Newtonian fluids) leading to a Reduced Uncertainty (RU) version pre-
senting a single uncertain multi-physic parameter γ; that is the so-called RU-SIA equation. The
next key steps are advanced Variational Data Assimilation (VDA) formulations combined with
a stochastic extension of γ based on the trend observed in the in-situ measurements (e.g. along
the flight tracks). The resulting method provides the first physical-based depth (ice thickness)
inversions in mildly-sheared mildly-slippery shallow flows. Numerical results are presented in a
poorly monitored inland Antarctica area. The uncertainty of the estimated bedrock elevation
is noticeably reduced compared to the current estimations uncertainties. The robustness of the
inversion process is demonstrated through numerous numerical experiments and empirical sensi-
tivity analyses. The new RU-SIA model may provide a-posteriori estimations of the thermal basal
boundary layer too.

1 Introduction
The knowledge of the bottom topography is a basic data to set up any numerical geophysical flow
model. In glaciology this data is often very poorly known. Inverse methods to infer the topography
beneath the flows are the only alternative. In ice-sheets (Antarctica, Greenland), ice thickness mea-
surements are available along airborne radio-echo sounding tracks (e.g. data products from CReSIS,
Univ. of Kansas and NASA Operation IceBridge) providing bed elevation measurements. These latter
are dense in fast stream costal areas but very sparse inland. Moreover numerous satellites provide ac-
curate measurements of the ice sheet surfaces: altimeters provide surface elevations H at ≈ ±10 ∼ 30
cm for 1 km2 pixels, see e.g. [?], while radar interferometers (InSar) provide surface velocity fields uH
see e.g. [?] (these measurements are accurate as soon as |uH | ≥∼ 10 m/y).

Outside of highly measured areas (fast stream costal areas) the current bed topography estimations
are based on the direct airborne measurements (along the relatively sparse flight tracks) and standard
Kriging interpolation between. The resulting bed topography maps are presented in [?] for Greenland
and in [?] for Antarctica. In poorly measured areas (e.g. deep inland Antarctica) at distance greater
than 50 km from thickness measurements, the estimations are based on gravity field inversions hence
presenting very large uncertainties, [?]. On the contrary, in fast stream nearshore areas, the inversion
of the (regularized) depth-averaged mass equation combined with altimetry data makes possible to fill
up more accurately the gaps; more precisely downstream and upstream the measurements following
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the streamlines since the equation is the linear transport equation, see [?, ?] and the pioneer study
[?].
Up to now, no physical-based inversions have been performed outside of these densely measured fast
streams areas. To do so, the considered model needs to be physically consistent and the inversions
need to be stable, robust; that is a real challenge, see e.g. [?, ?] and [?]. Moreover, inland where the
estimated bed elevations are the most uncertain (since less monitored), the measured surface velocities
are due in part to the internal ice deformation (sheared flow) and in part to slipperiness at the base;
that is mildly-sheared mildly-slippery flows. Then inverting the surface data becomes much more
challenging compared to fast streams - pure slipping flows since the bed topography surface signature
needs to be separated from the basal slip one.
An adequate physical model class to consider for such inversions are shallow flow models since rich
enough (mass and momentum conservation are taken into account) but simpler than the fully 3D
free surface model. Indeed the complete 3D model would be extremely very complex to invert in this
context since very likely presenting severe equifinally issues. (Basically, more the model is complex
with numerous uncertain unknown parameters, more its inversion is challenging). In glaciers, the
vertical internal deformation (sheared viscoplastic fluid) is highly dependent on the vertical profile of
the rated factor, therefore on the vertical temperature profile. This additional physical phenomena
makes the inversion of the flow model even more challenging. Finally the unknowns of the flow model
to be inferred are : the bed topography, the basal slipperiness (equivalently the friction coefficient at
bottom) and the thermal vertical profile. This is the challenging inverse problem which is addressed
in the present study.
It is worth to notice that effective bed topography only can be inferred since the flows act as low-band
filters. Indeed, the bed variations are filtered by the flow; the filtering features depending on the flow
regime, see [?, ?, ?, ?] for detailed analysis applied to generalised Newtonian fluids including glaciers.
The inference of the bed topography, but not of the composite unknown (bed topography, friction co-
efficient), has been addressed in numerous studies by inverting ice models, see [?, ?, ?, ?, ?, ?, ?, ?, ?].
These studies consider restricted flow regimes only since considering either pure slipping ice-streams
(fast plug-like flows in coastal areas) or fully sheared flows (extremely slow flows, no slip at bottom).
These studies are sometimes based on flow models but always incomplete ones. Typically the mass
equation of plug-like flows (providing good estimations if the airborne measurements are dense and
cross-lines, [?]) or including the momentum equations too but isothermal and with no-slip at bottom,
see e.g. [?] and the detailed review in [?]. [?] has the same goal as the present study one, that is
inferring the bed topography in non isothermal mildly-sheared mildly-slippery ice flows. However in
[?] the vertical thermal profile was supposed to be given hence simplifying the inverse problem.

In the present study, firstly a dedicated shallow flow model is derived: the so-called RU-SIA model
(Reduced Uncertainty - SIA). This model is a reformulation of the extended Shallow Ice Approxima-
tion (xSIA) model by taking into account the surface measurements (elevation and velocity) and space
varying vertical temperature profiles. Recall that the SIA model derives from the classical lubrication
theory applied to power-law rheology fluids and if neglecting the inertial terms (creeping flows), see
[?, ?, ?, ?]. Moreover [?] demonstrates the validity of xSIA model for moderate basal slip (the present
targeted flow regime) by stating formal error estimates. Such mildly-sheared mildly-slippery regimes
correspond to ice flows with surface velocity ∼ 5 − 50+ m/y, that is the targeted ice-sheet interior
sectors and ice-sheds upstreams. Recall that these areas are poorly measured areas (airborne data).
In [?] the xSIA model is enriched by taking into account varying vertical rate factor profile.
The present new RU-SIA equation is a diffusive equation like the classical SIA model and the non-
isothermal version derived in [?], but containing a single parameter denoted γ (RU version). The latter
contains all the unknown-uncertain multi-physics terms: basal friction - slip ratio, varying rate factor
vertical profile and rheology power-law exponent. An explicit expression of this single parameter is
obtained.
Secondly and based on this complete shallow flow model (taking into account all basic physical phe-
nomena), the inversion algorithm relies on two Variational Data Assimilation (VDA) processes, see
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e.g. [?, ?] and [?, ?, ?], aiming at fusing at best the RU-SIA model and the altimetry data (surface
elevation measurements) plus sparse airborne measurements. These two VDA process uses the ad-
joint equations [?]. Given reliable estimated values of γ along the flight tracks, its extension to the
entire domain is performed by an universal Kriging estimator see e.g. [?]. It is worth to notice that
the surface velocity information (InSAR satellite measurements) is contained in a RU-SIA equation
coefficient.
The VDA formulations rely on linear-quadratic optimal control problems (hence robust) with prior
covariance operators and changes of the control variables. These latter are an unknown effective dif-
fusivity, the uncertain source mass balance and the sough ice thickness - depth.
Novelties and strengths of these first inversions valid for anisothermal creeping shallow flows, from
slow to mildly rapid, are numerous. In particular they provide: robust estimations independently of
the airborne measurements locations (contrarily to the intrinsically unstable inversions of the mass -
transport equation); reduced uncertainty depth estimations in the very poorly monitored areas (e.g.
deep inland Antarctica); an estimation of the thermal basal layer (given an a-priori vertical profile).
Moreover since based on 2D shallow flow equations, these estimations remains affordable even for
large computational domains. The elaborated algorithms have been implemented in Python using the
Fenics library [?, ?] and optimization libraries; it is part of DassFlow computational code [?].
A complete real data set of an ∼ 200 km ×250 km inland Antarctica area is considered; the elaborated
inverse method provides a new bed topography estimation. The data set includes: the current bed
estimation (Bedmap2, [?]) (it provides the first guess value of the VDA processes), surface elevations
H [?], surface velocities magnitudes |uH | [?] and the climatic forcing term ȧ [?]. The robustness of
the inversion method is analysed into details through numerous numerical experiments. The area has
been randomly chosen in function of its surface velocities (ranging from ≈ 10 to 30] m/y hence in the
model validity range), also it is sufficiently surveyed (∼ 10 flights tracks) to assess the robustness and
discuss into details the elaborated inverse method.
The outline of the article is as follows. In Section ??, the non-isothermal xSIA model is recalled
and the Reduced Uncertainty (RU) version is derived, providing the so-called RU-SIA model (model
containing the single multi-physics parameter γ). Also a typical uncertainty estimation of γ is derived
and the global inversion method is sketched. In Section ??, γ values are estimated along the flight
tracks by a VDA process, next γ is extended in the whole domain by an universal Kriging method.
In Section ??, given γ, the ice thickness h and the RHS ȧ are simultaneously estimated by VDA. In
Section ??, the numerical results obtained in an inland Antarctica area are presented and discussed
into details.

2 The direct model and the global inversion algorithm
In this section first the xSIA model (extended SIA model), that is the classical SIA equation with non
vanishing basal velocity see e.g. [?], is recalled. Next we derive the so-called Reduced-Uncertainty
SIA (RU-SIA) model. The latter is obtained by reformulating the equations and gathering the few
uncertain terms into a single parameter γ. Finally the global inversion algorithm is presented.

2.1 The xSIA equation
Recall that the classical SIA model is derived from asymptotic calculations of the free surface Stokes
equations with respect to the geometrical ratio ε = H∗

L∗ , where H
∗ and L∗ are characteristic flow

depth and length respectively, see [?, ?] also e.g. [?] Chapter 10.2. The basic assumption states that
the flow, thin geometry, is sheared; in other words, the normal stress components are negligible. The
SIA equations are first order in ε. In [?], it is formally demonstrated that the xSIA model remains
valid for a friction coefficient C ' O(1), hence clarifying the xSIA domain of validity. Moreover the
xSIA equation are derived not only in the mean slope coordinate system (it is classically derived in
the horizontal-vertical coordinate system) but in a much more general coordinate system, the Prandtl
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coordinate system [?]. More precisely it is demonstrated in [?] that the same expressions and equation
remain valid, hence making possible their applications to any bottom shape, i.e. without any clear
mean slope, like those observed in some high mountain glaciers, for example.

In the xSIA model, the slip parameter C and the rate factor A (including the thermal effects) are
unknown. The aim of this section is to re-write the model equations to reduce these two highly uncer-
tain parameters to a single unknown parameter γ and by taking advantage of the surface observational
term (elevation and velocity). This gives the so-called RU-SIA model.

Depth-averaged mass equation Let us denote the ice surface elevation by H, the topography
elevation by b, the ice depth by h = (H − b) and the 3D ice velocity by u. The ice depth satisfies the
depth-averaged mass equation:

∂th+ divq = a, (1)

where q = hū is the discharge, ū = 1
h

∫H
b

u(z)dz is the depth-averaged velocity, a is the mass balance
source term.

Ice

Figure 1: Schematic vertical view of the gravitational ice flow and notations

Velocity expression We define S = |∇H| the slope value, the parameter ρ̄ = (ρg cos θ)q with ρ the
ice density, g the gravity amplitude, q the power-law exponent of the rheology law, and θ the mean
slope value in the (x, y)-plane, see Fig. ??. In ice-sheet modelling, it is usual to θ = 0. When the
flow is sheared, the SIA equations apply. The depth integrated SIA velocity ū(z) reads, see e.g. [?]
chapter 10.2 or [?] chapter 5.4:

u(x, z) = (u, v)(x, z) = ub(x)− 2ρ̄Sq−1(x)∇H(x)

∫ z

b

A(x, ξ)(H(x)− ξ)qdξ (2)

where A(z) is the rate factor in the constitutive fluid law depending on the vertical temperature profile
in the ice: A(z) ≡ A(T (z)). The basal velocity ub ≡ u(z = b) reads:

ub = −Cρ̄hqSq−1∇H (3)

with C > 0 the slip coefficient. For glaciers, the usual exponent value is q = 3.
Following [?], we introduce the parameter

Ā(x) =
(q + 2)

hq+2(x)

∫ H

b

∫ z

b

A(x, ξ)(H(x)− ξ)qdξdz. (4)

then the depth-averaged velocity reads:

ū(x) = −ρ̄
(
C(x) +

2Ā(x)

(q + 2)
h(x)

)
hq(x)Sq−1(x)∇H(x) (5)

In the isothermal case or constant vertical profile, Ā(x) = A(x) ∀x.
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The xSIA equation By injecting the velocity expression (??) into the mass equation (??), the
xSIA equation valid for non isothermal flows reads, see [?]:

−ρ̄ div
([
C +

2Ā

(q + 2)
h

]
hq+1Sq−1∇H

)
= ȧ (6)

It is a non-linear diffusive equation in h. To be solved, the values of the slip coefficient C and the
depth-integrated rate factor parameter A have to be set; however they are a-priori unknown.
Note that if C → 0, the no-slip condition (adherence) is imposed. On the contrary if C →∞ a pure
slip condition (vanishing friction) is imposed. Nevertheless, to remain within the SIA model validity
regime, the slip coefficient C has to vary from 0 to O(1) at most, see [?] for a detailed discussion and
analysis.

2.2 The RU-SIA equation
A new formulation of the xSIA model (??) is derived: the so-called Reduced Uncertainty (RU-SIA)
model in which the multi-physics and unknown parameters C and A are mathematically gathered to
a single unknown parameter γ. Moreover a-priori uncertainty estimations on γ are derived.

Velocity expressions including surface data measurements. Still by following [?], we intro-
duce the parameter:

A(x) =
(q + 1)

hq+1(x)

∫ H

b

A(x, ξ)(H(x)− ξ)qdξ (7)

Again, in the isothermal case or constant vertical profile, A(x) = A(x) ∀x. Then the surface velocity
norm reads:

|uH | = ρ̄

(
C(x) +

2A(x)

(q + 1)
h(x)

)
hq(x)Sq (8)

Let us introduce the observational term QH = |uH |
Sq . By re-writing the slip parameter as C(x) =

QH
ρ̄(x)hq(x) −

2
(q+1)A(x)h(x), the depth-averaged velocity (??) reads as:

ū(x) = −|uH |
S

(
1− 2ρ̄ RAA

QH(q + 1)(q + 2)
hq+1

)
∇H (9)

with:

RA =
Ā

A
and cA = (q + 2)− (q + 1)RA (10)

In the isothermal case, RA = 1 = cA.

Let us define the slip ratio as follows:

Rs =
|uH | − |ub|
|uH |

= 1− |ub|
|uH |

(11)

Observe that by using (??), (??) and the slip coefficient expression above, it follows the expression:
Rs = 2ρ̄A

QH(q+1)h
q+1.

Finally the depth-averaged velocity (??) re-reads as:

ū(x) = −|uH |
S

γ ∇H(x) (12)

with:
γ =

(
1− cARs

(q + 2)

)
(13)

In (??), the uncertain multi-physics parameters C and A(z) have been reduced to the single
unknown parameter γ(q, cA, Rs).
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The RU-SIA equation. By injecting the depth-averaged velocity expression (??) into the depth-
averaged mass equation (??), the so-called RU-SIA equation follows:

−div
(
|uH |
S

γh∇H
)

= ȧ (14)

Recall that the RHS reads: ȧ = a− ∂th.
The surface velocity norm |uH | and the surface slope S may be provided from surface measurements.
Assuming that the depth h (or equivalently the bedrock elevation b) is given, γ is the single unknown
parameter of this equation in variable H. Then the RU-SIA equation (??) is elliptic, linear in H,
assuming that the observational term |uH |

S and the "effective diffusivity” η = γh are given. Values of
H at the boundary (Dirichlet boundary conditions) close this elliptic equation.

The depth-integrated RU-SIA model (??) is valid if the slip ratio Rs ranges from ∼ 0.3 to 1.
Indeed in this case, the basic scaling done to derive the SIA equation (sheared flows) remains valid,
see [?, ?] for detailed discussions.

2.3 Typical uncertainty on the single parameter γ
In this section, a-priori estimations on the single unknown parameter γ of the RU-SIA model are
derived.

Let us set q = 3, which is the usual exponent value in glaciers. According to the Arrhenius law
and values, see e.g. [?, p.54], and typical ice-sheet vertical temperature profiles, see e.g. [?, ?, ?]), the
following typical vertical profile of A(z) is considered:

A(z) =

{
Aa for z ∈ [B,H]
Aa
B−b ((1− k)z + kB − b) for z ∈ [b, B]

(15)

where Aa and k are constants, see Fig. ??. Let us define

B = mh+ b, m ∈ [0, 1] (16)

From (??), (??), (??), it follows:

RA =
5m2 (1− k)

(
m3 − 6m2 + 15m− 20

)
+ 60

12 (m (1− k) (m3 − 5m2 + 10m− 10) + 5)
(for q = 3) (17)

For k ∈ [10, 1000], it follows that cA ∈ (0.5, 5.04) (for q = 3). In Fig. ??, the parameter cA vs m is
plotted for different values of k and q.

Considering that Rs ∈]0, 1], the following numerical estimation holds:

γ ∈ (−0.08, 1) (for q = 3) (18)

In the isothermal case, cA = 1, γ = (1 − 0.2Rs) hence γ ∈ (0.8, 1). In the isothermal case the
uncertainty on the parameter γ is relatively small.
Considering non-isothermal flows, the Antarctica case and the Greenland case have to be distinguished.
In both case, the bed temperature can be assumed to be close to zero. In the Antarctica case (resp.
Greenland case), the surface temperature can be equal to −40C◦ (resp. ≈ −20C◦), corresponding
to Aa ≈ 10−26 (resp. Aa ≈ 10−25), hence k ≈ 1000 (resp. k ≈ 10), see Fig. ?? (right). Moreover,
If we assume that the thermal boundary layer satisfies m ∈ [0.1, 0.5] then cA ∈ (3.11, 4.64) (resp.
cA ∈ (3.79, 3.46)), see Fig. ??. It follows from (??) that:

γ ≈ (1− (0.78± 0.15)Rs) (resp. γ ≈ (1− (0.73± 0.03)Rs)). (19)
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Figure 2: Left: typical vertical profile of the rate factor A(z), see (??). Right: cA vs m, see (??), with
k = 10 and k = 1000.

The present basic analysis shows the uncertainty orders of magnitudes; also it shows that the
uncertainty on γ coming from the vertical thermal profile uncertainty (represented by the term (cA/(q+
2))) is much smaller than those coming from the slip ratio Rs uncertainty.

2.4 The global inversion algorithm
The final goal of the study is to infer the depth (ice thickness) h by Variational Data Assimilation
(VDA) from the RU-SIA equation (??). To do so, the following global inversion algorithm is consid-
ered.

• Step 1) Estimation of the effective diffusivity η = γh, see (??), by VDA (formulation detailed in
next section). Given the optimal value η∗, the value of γ∗ = η∗

hb
along the flights tracks (where

depth measurements hb are available) are kept for the next step.
At this stage, the values of the RHS ȧ provided by Racmo2 [?, ?] are assumed to be exact.

• Step 2) Extension (interpolation / extrapolation) of γ outside the flights tracks by a classical
universal Kriging process.

• Step 3) Estimation of the pair (h, ȧ) by VDA.
Not h only is inferred; that is to adjust the measurements of ȧ too (within the given uncertainty
range). According to [?, ?], the uncertainty on ȧ is ± ∼ 20%. This bound is imposed as control
constraints of ȧ in the VDA process (optimal control problem).

3 Inference of the parameter γ
In this section, the method to estimate the multi-physics parameter γ is detailed; this corresponds to
Step 1) and Step 2) of the global inversion algorithm sketched above.

3.1 Identification of the parameter γ along the flight tracks (Step 1)
The method to compute the values of γ along the flight tracks is presented; this corresponds to Step
1) of the global inversion algorithm.
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Estimation of the effective diffusivity η = (γ · h) by VDA. Given the surface measurements,
the effective diffusivity η = (γ ·h) of the RU-SIA equation (??) is inhered by VDA, that is the following
optimal control problem is solved:

min
η

j(η) with j(η) = jobs(η) + αηjreg(η) (20)

jobs(η) =
1

2

∫
Ω

χtr(x)|H(η)(x)−Hobs(x)|2dx , jreg(η) =
1

2

∫
Ω

|∇η(x)|2dx

The control variable is η, η ∈ Uηad = {η ∈ L2(Ω), ηmin ≤ η ≤ ηmax}; the bounds being defined from
the numerical estimations (??). The airborne data along the flights tracks are assimilated. To do so,
in jobs the restriction operator χtr(x) equals 1 if dist(x,Γtr) < 3 km and equals 0 otherwise. This
definition is related to the length scale validity of the shallow flow model. The elevation value Hη is
the solution of (??) with Dirichlet boundary conditions (set from the surface measurements); it is the
state of the system. The scalar value αη is a positive constant to be set.
If the inverse problem would be well posed, that is the inverse control-to-state operator ”H−1

η ” exists
and depends continuously on the data Hobs, if the elevation Hobs would be assimilated everywhere
in the domain then the inverse problem is a Linear-Quadratic optimal control problem which would
have a unique solution. However the observations are along the flights tracks only (the restriction
operator χtr), although the target value is the optimal value γ∗ along the flight tracks only, this in-
verse problem is a-priori ill-posed. Then, the classical Tikhonov regularization term jreg is added, see
e.g. [?] and references therein for regularising optimization problems. The minimisation problem (??)
is numerically solved using the classical first order minimisation algorithm L-BFGS (Python routine
scipy.optimize.minimize). The scalar weight coefficient αη can be chosen according to numerous rules,
see e.g. [?]. In the next optimisation problem (next Section), an iterative regularisation procedure
with iterative values of αη is considered. In the present optimisation problem (??), this strategy
turned out be useless. Then various computations are performed with empirically set values of αη;
typically these values satisfies: jreg

jobs
(η∗) ≈ 10−p with p ∈ [2, 3].

The complete VDA process is as follows. Given a control η, the direct model (??) is solved by
a standard Lagrange Finite Element Method (FEM) order 2. Given this unique solution Hη the
following adjoint equation is solved using the same FEM :

−div(
|uH |
S

η∇P ) = χtr(H −Hobs), x ∈ Ω; P (x) = 0, x ∈ ∂Ω.

The gradient of the cost functional is computed from the state Hη and adjoint state Pη as:

j′(η) · δη =

∫
Ω

(
|uH |
S
∇Hη∇Pη + αη∇η∇(δη)

)
dx.

Finally this gradient is used in the minimisation algorithm L-BFGS to obtain a better control vari-
able η making decrease the cost function j. This iterative process is performed until convergence. In
practice the convergence turns out to very robust; the optimal solution does not significantly depend
on the length scale of the data smoothing nor on the restriction operator definition (more details are
provided in the numerical results section).

Resulting value of γ along the flight tracks. The computed optimal solution of (??) is denoted
by η∗. Assuming that the depth values over flight tracks (the airborne campaigns measurements)
correspond to the correct values at the scale imposed in the definition of χtr, i.e. h∗(x) = hb(x) for
x ∈ Γtr, the true value of γ is straightforwardly obtained as:

γ∗tr(x) =
η∗(x)

hb(x)
for x ∈ Γtr (21)
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Given γ∗tr(x), the next step of the global algorithm inversion consists to estimate the value of γ(x)
outside the flights tracks.

3.2 Extension of γ outside the flights tracks (Step 2)
Given the computed values γ∗tr(x) along the flights tracks, an extension (interpolation-extrapolation)
based on the classical universal Kriging is performed. The computational method is briefly described
below.

The universal Kriging extension based on the locally observed trend The field γ is de-
composed as follows:

γ(x) = γ̄(x) + γr(x) for x ∈ Ω (22)

That is γ(x) is decomposed as a deterministic trend function γ̄(x) plus a real-valued residual
random function γr(x). γr(x) is supposed to be intrinsically stationary with zero mean and variogram
function vY (|x− x′|) (the residual variogram function of γ(x)). ∀x,x′ ∈ Ω,

E[γ(x)] = γ̄(|uH(x)|), vY (x− x′) =
1

2
V ar[γr(x)− γr(x′)] =

1

2
E[(γr(x)− γr(x′))2].

At a point x0, x0 6∈ Γtr, the "predictor" is given by:

γ̂(x0) = 〈c, z〉 (23)

with: 〈·, ·〉 the inner product, z the vector of sampled points z = (γ(x1), · · · , γ(xn)) ∈ Rn, xi ∈ Γtr,
c = (c1, · · · , cn) ∈ Rn, ci ∈ R, i = 1, · · · , n the weight corresponding to each evaluation of the random
function γ(x) at the sample point xi.
The weight vector c is computed such that it minimises the error variance: argminc

(
σ2
krig(c)

)
,

σ2
krig = V ar[γ̂(x0)− γ(x0)] = −〈c, VY c〉+ 2〈c,vY,0〉 (24)

while the unbiasedness condition E[γ̂(x0)− γ(x0)] = 0 is satisfied.
Here, VY ∈ Rn×n, (VY )i,j = vY (xi−xj), i, j = 1, · · · , n, and vY,0 = (vY (x1−x0), · · · , vY (xn−x0)) ∈
Rn.

The function γ̄(x) is the deterministic function supposed to model the (true) mean value E[γ(x)].
In the present context, the trend γ̄(x) of the multi-physics parameter γ is unknown. However given
a domain (e.g. portion of inland Antarctica), a trend can be determined from the flights track
measurements and the corresponding values γ∗b (x), x ∈ Γtr. Doing so is equivalent to consider that
the flight track measurements are sufficiently representative of the considered domain.

Typical uncertainty on the interpolated-extrapolated value γ Despite being measured, the
depth value h∗(x) ≡ hb(x), x ∈ Γtr in (??) is not exact, since averaged value, length scale definition
of χtr etc. Then let us set the true thickness h∗ as : h∗ = hb + δh. It has been shown previously that
δh ≈ (0.05 ∼ 0.1)hb. If we set γ∗ = (γ̄ + δγ) with δγ induced by the variation δh, it follows that:
η∗ = γ̄∗h∗ = (γ̄ + δγ)(hb + δh), hence:

δγ

γ̄
= − δh

hb + δh
≈ (0.047, 0.091).

In other words, in the forthcoming numerical results if the residual value γr in (??) turns out to be
≈ (0.047, 0.091)γ̄ then it represents a similar uncertainty to the uncertainties on the measured value
hb.
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4 Inference of the pair (h, ȧ) with γ given
Given the surface measurements, given the single multi-physics parameter γ estimated as described
in the previous section, the inference of the depth (ice-thickness) h and the RHS ȧ in the RU-SIA
equation (??) is obtained by VDA.

The optimal control problem. The unknown parameter (control variable) is k = (h, ȧ). The
optimal estimation of k is obtained by solving the following optimal control problem:

min
k∈Uad

j(k), with j(k) = jobs(k) + αkjreg(k) (25)

jobs(k) =
1

2
‖Hk −Hobs‖22,

jreg(k) =
1

2
‖(h− hb)‖C−1

h
+

1

2
‖ȧ− ȧb‖C−1

a

The scalar coefficient αk is given. The norms C−1
h and C−1

a are defined as the inverse of symmetric,
positive covariance operators.The state Hk satisfies the RU-SIA equation (??) plus Dirichlet boundary
conditions. The background value (first guess) is kb = (hb, ȧb) with hb (resp. ȧb) the first guess of
h (resp. ȧ) provided by the publicly available databases, e.g. Bedmap2 [?] for h in Antarctica and
Racmo2 [?] for the RHS.

The admissible control set is:

Uad = {(h, ȧ) h(x) ∈ [hmin(x), hmax(x)], ȧ ∈ [ȧmin(x), ȧmax(x)], x ∈ Ω}.

The bounds hmin and hmax depend whether the point x belongs to Γtr or not. The bounds ȧmin and
ȧmax are provided by the Racmo2 database [?] (more details in the numerical results section).
The gradient of the cost functional reads: ∀δk = (δh, δȧ), j′(k) · δk = (∂hj(k) · δh, ∂ȧj(k) · δȧ), with

∂hj(k) = −
∫

Ω

|uH |
S

(x)γ(x)∇H(x)∇P (x)dx + αk
∂jreg
∂h

(k)

∂ȧj(k) = −
∫

Ω

dx + αk
∂jreg
∂ȧ

(k)
(26)

where P is the adjoint state. It is the solution of the adjoint equation: −div
(
|uH |
S γh ∇P

)
=

(H −Hobs) in Ω; plus homogeneous Dirichlet boundary conditions P (x) = 0 on ∂Ω.

Change of control variable. Following e.g. [?, ?, ?, ?] (where the control variable is the initial
state of an atmospheric model), a change of the control variable is made. The covariance operator
Ch (resp. Ca) are supposed to be bounded symmetric positive, hence it exists C1/2

h (resp. C1/2
a ) such

that: Ch = C
1/2
h C

1/2
h (resp. Ca = C

1/2
a C

1/2
a ). Then the following new control variable is considered:

w = (w1, w2), with w1 = C
−1/2
h (h− hb) , w2 = C−1/2

a (ȧ− ȧb) (27)

In variable w, the optimisation problem (??) reads :

min
z∈Ũad

j(w), with j(w) =
1

2
‖Hw −Hobs‖22 +

αw
2

(
‖w1‖22 + ‖w2‖22

)
(28)

Given the new variable w = (w1, w2), it is straightforward to calculate the original variable k:
k = (h, ȧ) =

(
C

1/2
h w1, C

1/2
a w2

)
+ (hb, ȧb).
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On the covariance operators and regularization terms. The optimal solution w∗ depends on
the a-priori covariance operators Ch and Ca. These operators may be viewed as prior information on
the modeling problem. Obviously the exact covariances operators are unknown. To simply impose
correct physical length scales of variations (the model is a shallow flow model), the following classical
covariance operators are considered. For e ∈ L2(Ω),

C�e =

∫
Ω

σ�(x)σ�(x′)c(x,x′;L�)e(x)dx, (29)

where � denotes either h or a; c(·, ·;L) is the correlation kernel function (also called Green’s function).
The latter is set as the classical second order auto-regressive correlation kernel:

c(x,x′;L) = exp

(
−|x− x′|1

L

)
(30)

The standard deviation of (h − hb) (resp. (ȧ − ȧb)) is σh, σh > 0 (resp. σa > 0); the length-scale is
Lh > 0 (resp. La > 0) and | · |1 denotes the L1 norm.
Numerous numerical experiments have demonstrated that this change of variable (??) and the present
choice of covariance operators improve the robustness and the convergence speed of the VDA process.

It is worth to notice that for some correlation kernels - Green’s functions c(x,x′;L), it is possible
to make a relationship with (higher-order) regularisation terms in the functional to be minimised,
that is the term jreg(k) in (??). Following the calculation method presented e.g. in [?] Section 7
(calculations available in 1D and 3D only in their case), it can be proved in the present case that the
introduction of the covariance operator (??)(??) implies that:

jreg(k) ∼
∑
i=1,2

1

8Lki

∫
Ω

|eki(x)|2 + L2
ki|∇eki(x)|2 + L4

ki

∂2

∂2x1
eki(x)

∂2

∂2x2
eki(x)dx (31)

where eki(x) = (ki(x) − kbi(x))/σki(x) and k1 = h, k2 = ȧ. The calculations are detailed in the
appendix.

It follows from (??) that larger the length scale Lki is, larger the regularisation effect is too.
In other respect, it is easy to notice that the change of variable can be seen as a preconditioning to
the optimisation procedure too. Indeed, a simple calculation shows that:

∇wj(w) =
(
C

1/2
h ∂hj(k), C1/2

a ∂ȧj(k)
)

where ∂hj(k) and ∂ȧj(k) are given in (??). Therefore the optimal necessary condition ∇kj(k) = 0

may be viewed "preconditioned" by (C
1/2
h , C

1/2
a ).

After discretisation (e.g. by the standard order 2 Lagrange finite element method employed here),
the covariance operators Ch and Ca are symmetric positive (covariances) matrices. The (i, j)-th
element, i, j = 1, · · · , N , reads, see (??):

σkm(xi)σkm(xj) exp

(
−|xi − xj |

Lkm

)
4|xi|4|xj |

Then the positivity of these matrix Ckm , m = 1, 2 depend on the a-priori imposed length-scale
Lkm , m = 1, 2. According to the Gerschgörin-Hadamard theorem, a sufficient condition to guarantee
the positivity is to choose Lkm such that :

log

(∑
j 6=i σkm(xj)

σkm(xi)

)
Lkm < min

i∈{1,··· ,N}
4|xi|, m = 1, 2, i, j = 1, · · · , N.
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This condition indicates that the values of Lkm , m = 1, 2 should be chosen small enough such that the
covariance matrix remain positive. However, it has been shown above that larger length-scales Lkm ,
m = 1, 2 lead to a higher regularisation, see (??). That is to say, the choice of these length-scales
L� has to respect a balance between the regularisation and the preconditioning effects. A similar
phenomena is analysed into details e.g. in [?, ?] in a different context.

Remark 1. If considering the exact covariance operators and under the assumption that ((h−hb), (ȧ−
ȧb)) are mean 0 random fields, the new control variable (w1, w2) components are uncorrelated. In this
case the change of variable (??) is a whitening transformation (the covariance matrix after change of
variable equals the identity). In the present context, the exact-real covariance matrices are unknown.
However given the a-priori covariance matrix, the new variables are expected to be more physically
correlated. The covariance matrices (Ch, Ca) represent prior information. The reader may refer to
e.g. [?, ?] for investigations in VDA but with different physics than the present one.

Iterative regularisation strategy. The weight parameter αw of the regularuzation term in (??)
is set as a decreasing sequence α(n)

w > 0, n = 1, · · · , n∗. We refer to [?, ?] and references therein for a
description of various regularisation strategies.

Let us denote by F : Uad 7→ Y the operator that maps the control w ∈ Uad ⊂ X to the observed
data H ∈ Y; X , Y are Hilbert spaces. According to [?] chapter 4, if using an iteratively regularized
Gauss-Newton method, the stop iteration number n∗ = n∗(δ) can be chosen through the so-called
Morozov’ discrepancy principle [?], i.e. n∗ is chosen such that :

‖Hδ − F (wδn∗)‖ ≤ τδ ≤ ‖Hδ − F (wδn)‖, 0 ≤ k ≤ n∗ (32)

with τ > 1 large enough. Here, δ denotes the noise level i.e. δ ≥ ‖F (w∗) −Hδ‖ where H = F (w∗)
represents the exact data and Hδ is the noisy data, Hδ = F (w∗) + δH (δH the noise) .

In the present study, following [?] (Section 4.3), the weight parameter sequence α(n)
w is defined as:

α(n)
w = α(0)

w q[n/n0], n = 1, · · · , n∗ (33)

where n0 > 1 is the number of iteration for each α
(n)
w , [m] returns the maximum integer smaller

than m, α(0)
w and q are given constants, α(0)

w > 0, 0 < q < 1. The values of α(0)
w , q, n0 are chosen

experimentally (e.g. q = 0.5, n0 = 5 and α0 = 1). The stop iteration n∗ is chosen according to (??).

5 Inversion in an inland area of Antarctica
In this section, real data in a poorly monitored Antarctica area are considered. Estimations of the
bed topography elevation are performed following the algorithm previously described, see Section ??.

5.1 Data description & first guesses
The considered area is indicated in Fig. ?? and Table ??. This test area corresponds to the flow
model validity since |uH | ∈ ≈ [1, 50+]m/y. Moreover it presents minimal surface velocity amplitude
large enough to consider the measurements accurate, see e.g. [?].
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Figure 3: InSAR-Based Antarctica surface velocity from [?] and the test case location.

Antarctica test case
Points P1 P2 P3 P4 P5

(x, y) (631250, 755000) (665000, 658250) (890000, 656000) (845000, 903500) (653750, 903500)

Surface |Ω| = 54840 km2 Mean ice thickness (from BedMap2 [?]): 2718 m

Table 1: Test case location and information.

The Antarctica location data are provided in Polar stereographic coordinate with true scale at 71◦

S. The Cartesian coordinates x = (x, y) are transformed from these polar stereographic coordinates.
The ice thickness mean value provided by BedMap2, [?], is: h̄b ≈ 2.7 km. The shallow flow model
RU-SIA is valid as soon as ε = [H]

[L] . 0.1. Then the surface data |uH | and H need to be smoothed at
the model scale i.e. at the ≈ 27 km length scale. To do this, the following Gaussian function is used:

G(x, y) =
1

2πσ2
s

e
− x

2+y2

2σ2
s (34)

When numerically computing this Gaussian function, the values for pixels located at a larger distance
than 3σs are close to 0. Therefore, all the surface data are smoothed with σs = 4 km (since 4× 6 =
24 ≈ 27 km). The smoothed values of |uH | and H are plotted in Fig. ??; the effective diffusivity
factor in the RU-SIA equation |uH |/S, see (??), is plotted in Fig. ?? (Left). It can be noticed that
this observational term varies by a factor ≈ 6 (ranging from ≈ 0.4 to 2.4 104).

13



Figure 4: Surface data smoothed with σs = 4 km: (Left) Surface velocity module |uH(x)|; (Right)
Surface elevation H(x).

Flight track 1

Flight track 2

Figure 5: (Left) The single observational term |uH |
S in the RU-SIA equation, see (??), smoothed

with σs = 4 km. (Right) The finite element mesh with 4x ≈ 3 km and the airborne measurements
locations that are the flight tracks (with the particular flight track 1 and flight track 2 potentially
removed from the data set for discussions).

The numerical experiments are systematically performed on a medium size mesh with δx ≈ 3 km
and a finer one with δx ≈ 1 km to confirm the non sensitivity of the estimations with respect to the
mesh size. Indeed δx ≈ 3 km provides ≈ 10 points per wave length (which equals ≈ 27 km) hence
nodes enough to properly approximate the equations. For the ≈ 3 km mesh, Fig. ?? (Right), the total
number of vertices equals 8226. The meshes are generated by Gmsh software. Vertices are imposed to
be on the flight tracks (the flight tracks constitutes the lines on the figure) and with a finer along the
tracks (δx ≈ 1 km along the tracks). The airborne measurements locations are available in Bedmap2
[?] (with the corresponding measured depth).

First guesses of h, ȧ and a-priori uncertainties. The natural first guess values for the VDA
process, see Section ??, are the ice thickness hb provided by Bedmap2 [?] and ȧb provided by Racmo2
[?]. This two first guess fields are presented in Fig. ??.
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Figure 6: (Left) The depth (ice thickness) hb(x) from Bedmap2 [?]. (Right) The SMB ȧ(x) from
Racmo2 [?].

The bed estimations obtained in the present study are compared with the current reference bed
topography, that is Bedmap2 [?]. Let us recall the Bedmap2 uncertainty source and its order of
magnitudes. In [?], the depth measurements are splitted into two datasets (D1) and (D2). Dataset
(D1) is used to build up an interpolation in the whole domain, including the domain where there is no
measurement and at Dataset (D2) location points (the measurement of (D2) are not employed at this
stage). Next, Dataset (D2) is used to quantify the accuracy of the interpolated field; basic statistics
on the result are deduced. This experimental procedure provides the a-priori uncertainty of Bedmap2
estimations, [?].
Note that the interpolation is performed by employing the ArcGIS Topogrid routine (ESRI Ltd,
ArcGIS 9) which is based on the ANUDEM algorithm [?]. This algorithm uses an optimised iterative
finite difference interpolation technique which is essentially a thin plate spline technique [?]. In
the present VDA process, a-priori boundaries of the "control variable" h are set from the Bedmap2
uncertainties described above; it gives the following bounds:

• if x ∈ Γtr then inequality constraints on h are set with the bounds hb(x) ± δh,tracks with
δh,tracks = 140m, see [?].

• if x 6∈ Γtr then the bounds of the inequality constraints on h are δhb(x) = hb(x)(1± 0.6).

While inferring ȧ = (a−∂th), inequality constraints are required too. According to [?], the uncertainty
on this climatic-dynamic term equals approximately 20 %. Therefore, we set lower and upper bounds
of ȧ to be ȧ(x)(1± δa) with δa = 0.2.

Moreover, these uncertainty estimations δh,tracks, δhb, and δa are also used in (??) as the standard
deviations σh and σa, i.e., σh(x) ≡ δh,tracks for x ∈ Γtr, σh(x) = δhb(x) for x 6∈ Γtr, and σa = δa. Note
also that σh and σa are tuned numerically to have a desired balance between regularization terms of
h and ȧ.

5.2 Estimation of the effective diffusivity η and parameter γ
The effective diffusivity η of (??) is computed by solving (??). The iterative process is stopped
following the usual criteria (that are the cost function does not decrease anymore, the gradient norm
and the control variable variations vanish). Next, following the method described in Section ??, the
parameter γ∗ is immediately obtained from (??), in particular the targeted values along the flights
tracks, see Fig ?? (Left).
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Figure 7: (Left) The parameter γ in the whole domain obtained from the relation γ = η∗/hb, η∗
solution of (??). (Right) The targeted values along the flights tracks γ∗(x) vs |uH(x)|, x ∈ Γtr (blue
points), the mean values γ̄(|uH |) (red line) and γ̄(|uH |)± σu (green lines).

Following the method described in Section ??, the deterministic "trend behavior" γ̄, see (??),
is inferred as a least-square data fitting function of the form: γ̄(x) = γ̄(|uH(x)|) = b1|uH(x)|2 +
b2|uH(x)| + b3. In the present case, the optimal coefficients are: b1 = 2.79 × 10−4, b2 = 2.78 ×
10−10, b3 = 6.66 × 10−2; the corresponding curve is plotted in Fig. ?? (Right). Assuming that
δγ = (γ − γ̄) ∼ N (0, σu), it follows σu = 0.05, see Fig. ?? (Right).

Given the computed values γ∗tr(x) along the flights tracks, an extension (interpolation-extrapolation)
of γ is performed in the whole domain by the universal Kriging method described in Section ??; the
values of γ on the flight tracks are assumed to be a realisation of the stochastic process.

The predicted γ̂(x) defined by (??) is presented in Fig. ?? (Left), the variance σkrig defined by
(??) is presented in Fig. ?? (Right). Recall that σkrig measures the variance between the Kriging
predictor γ̂(x) and the Kriging model defined by (??). The confidence interval can be defined as
γ̂ ± 3σkrig.

Figure 8: (Left) γ̂ infered from universal Kriging. (Right) The corresponding variance σkrig.

5.3 Inversion of (h, ȧ) with γ given
Given the parameter γ estimated by Kriging as previously described, that is γ = γ̂, first the RU-SIA
equation is solved to compare its solution to the observations. Second the VDA process in variables
(h, ȧ) is performed, providing the sough bed topography.
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RU-SIA model assessment. Given γ = γ̂ and h = hb (hb the Bedmap2 values), the surface
elevation H(x;hb, γ̂) solution of the RU-SIA equation (??) is computed. Next it is compared to the
altimetry values Hobs(x); the difference is plotted in Fig. ?? (Left). Basic statistics on this difference
are indicated in Table ?? ("Direct model validation"). This simple direct run (without inversion
process excepted for γ) fits very well the surface elevation data. Such a simple direct run based on
the RU-SIA equation, Bedmap2 bed topography and the current estimation of γ is new. Moreover
it demonstrates the reliability and the accuracy of the present physical-based approach, in particular
the relevance of the RU-SIA equation derived in this study.

Figure 9: (Left) Direct model assessment: difference between H(x;hb, γ̂) and Hobs(x). (Right) Misfit
after VDA in variables (h, ȧ): difference between H(x;h∗, γ̂) and Hobs(x).

VDA in variables (h, ȧ). Given γ = γ̂ (the Kriging predictor), the VDA problem (??) is solved.
The cost function terms evolutions (jreg and jobs) are presented in Fig. ?? (red lines). The convergence
is relatively fast thanks to the change of variables (w vs k). The step-like behavior is due to the iterative
regularization strategy, see (??). In the present example, n0 = 3 (internal iteration number for each
αn, n = 1, · · · , n∗).

Antarctica test case Median Mean Max
Direct model validation (with γ = γ̂)

|H(x;hb, γ̂)−Hobs(x)| 8.3m 11.0m 46.7m

Inversion results (with γ = γ̂)
|H(x;h∗, γ̂)−Hobs(x)| 2.6m 3.4m 21.4m

|h∗(x, γ̂)− hb(x)|, x ∈ Γtr 0m 2.9m 80.2m
|h∗(x, γ̂)− hb(x)|/|hb(x)|, x ∈ Γtr 0% 1.1% 3.5%
|h∗(x, γ̂)− hb(x)|, x 6∈ Γtr 218.6m 313.9m 1777.3m

|h∗(x, γ̂)− hb(x)|/|hb(x)|, x 6∈ Γtr 8.1% 11.6% 63.8%

|ȧ∗(x, γ̂)− ȧb(x)| 0.4 cm/y 0.5 cm/y 1.8 cm/y
|ȧ∗(x, γ̂)− ȧb(x)|/|ȧb(x)| 15.8 % 14.2 % 20 %

Ice volume change | ∫Ω(h∗ − hb)dx|/
∫
Ω hbdx 1.7%

Table 2: Method performances

In Table ??, basic statistics on the numerical results are presented. As already mentioned, the
RU-SIA model (??) fits already well the measurements Hobs. Next when performing the direct model
from the optimal solution (h∗, ȧ∗) obtained by VDA, the misfit with the altimetry measurements
(|H(x;h∗, γ̂ − Hobs(x)|) decreases to 1m (in average). The relative difference between h∗ and hb
equals ≈ 12 % (mean), outside the flight tracks i.e. for x 6∈ Γtr. Of course, the same relative difference
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remains very small along the flight tracks (x ∈ Γtr) since satisfying the imposed inequality constraints
(corresponding to the measurements uncertainty and taking into account the uncertainty due to the
model scale too). The difference of depth is presented in Fig. ?? (Right).
Concerning the RHS, the difference |ȧ∗(x; γ̂) − ȧb(x)| (mean) equals or is lower than the 20% corre-
sponding to the measurements uncertainty indicated in [?]. The difference of depth is presented in Fig.
?? (Right). The ice volume change is very small, see Table ??. In some other areas (numerical ex-
periments not shown in the present article), variations of the total volume of ≈ 6% have been obtained.

Figure 10: (Left) Infered depth h∗(x) with γ̂(x). (Right) Difference between h∗(x) and Bedmap2
hb(x).

Figure 11: (Left) Infered RHS ȧ∗(x) with γ̂(x). (Right) Difference between ȧ∗ and ȧobs(x) from [?].

5.4 Robustness of the inversions, uncertainties on the estimated depth
The inversion process to obtain the depth estimation indicated in Fig. ?? is quite complex and combine
two main steps: estimation of the single parameter γ of the RU-SIA equation and estimation of (h, ȧ).
Then numerous numerical experiments are performed to assess the robustness of the complete inversion
process, and deduce basic uncertainty estimations on the results. The inversions are performed by
considering: different estimations of γ, different density of flight tracks (e.g. by removing some),
different smoothing length scales of the surface data Hobs and |uH | and different first guesses too. A
summary of the results are indicated in Table ??.
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With different γ. The estimations of the bed (or equivalently of the depth h), solution of the VDA
problem (??), obtained with different values of γ are compared. The considered values of γ are :
γ = γ̂, γ = γ̂ + 3σkrig and γ = γ̂ − 3σkrig where σkrig is given in Fig. ??. To illustrate the good
convergence behavior of these three VDA experiments, the evolution of the cost functional terms are
presented in Fig. ??.

Figure 12: (Left) The cost function terms vs iterations solving (??) with γ̂, γ̂ + 3σkrig and γ̂ − 3σkrig
respectively. (Right) The gradients of the corresponding cost function terms vs iterations.

The differences between h∗ obtained with γ = γ̂ and h∗ obtained with γ = γ̂ ± 3σkrig and γ = γ̂
are presented in Fig. ??. Also the performances are summarized in Table ??. The mean difference
between the different inferred depth are ≈ 2.8%. These results shows the high robustness / low
sensitivity of the depth inversions with respect to the single parameter γ uncertainty.

Figure 13: (Left) Difference between h∗(x; γ̂) and h∗(x, γ̂+3σkrig). (Right) Difference between h∗(x; γ̂)
and h∗(x, γ̄ − 3σkrig).

With less flight tracks. Estimations of the bed are compared with h∗(x) obtained when assim-
ilating the complete flight tracks set. The first "incomplete estimation" is obtained by assimilation
the same flight tracks set minus the most internal one that is Flight track 1, see Fig. ?? (Right);
the second incomplete estimation" is obtained by assimilation the same flight tracks set minus Flight
track 2, Fig. ?? (Right). The differences of the depth estimations are plotted in Fig. ??.

19



Figure 14: (Left) Difference between h∗(x) obtained with all flight tracks and with one less: Flight
track 1 (set Γless,1tr ); (Right) Difference between h∗(x) obtained all flight tracks and with one less:
Flight track 2 (set Γless,2tr ).

In the present case, the resulting trend function γ̄ remains similar, see Fig. ?? (Right) if removing
Flight track 1 or Flight track 2. Therefore the differences between the computed depth are relatively
small, lower than 6% (mean value), see Table ??; especially when removing Flight track 2, the differ-
ence is only 3.9% (mean). It is worth to recall that the trend function γ̄ fully depends on the airborne
measurements along the flight tracks. However this result highlights a great feature of the present
method: the direct model is a diffusive equation hence the inversions do not depend on the flight
tracks location. This is a very important feature in practice. On the contrary, the depth-integrated
mass equation is hyperbolic (it is the linear transport equation) then its inversion fully depend on the
flights tracks locations and/or density (moreover with propagation of errors), see e.g. [?, ?] and the
discussion in the present general introduction.

With different smoothing parameter σs. Let us recall that an important feature and limitation
of the present method is the large scale inversion due to the shallow flow assumption. To be compatible
with a shallow flow model, the surface data have been smoothed at the length scale σs = 4 km, see
(??). This corresponds to the minimal scale the physical model should be apply; and the largest scale
one should consider would be σs ≈ 8 km. Then depth estimations computed from the surface data
smoothed at σs = 4, σs = 6 and σs = 8 km are compared, see Table ?? and Fig. ??. The mean
relative difference |h∗s6(x) − h∗s4(x)|/|h∗s4(x)| equals 7.3%, while mean relative difference |h∗s8(x) −
h∗s4(x)|/|h∗s4(x)| equals 8.6%. This experiment shows that the sensitivity with respect to the smoothing
surface data scale is non negligible, however the resulting uncertainty is smaller than the correction
made on the Bedmap2 bed elevation (which equals ≈ 12%, see Table ??).
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Figure 15: Left: difference between h∗σs=4km(x) and h∗σs=6km(x), where σs is defined in Eq. (see (??));
Right: difference between h∗σs=4km(x) and h∗σs=8km(x).

With different first guesses of h. The natural first guess for h is the current bedrock estimation
Bedmap2. However to test the present VDA method with respect to the first guess value, two different
first guesses are built up: 1) h′b built up by spline interpolation of the airborne measurements (data
along the flight tracks); 2) h′′b built up by adding a perturbation to hb outside the flight tracks. After
computation of h∗, the mean differences between h∗ obtained from different initial guesses are less
than 3.7%; the differences are plotted in Fig. ?? and statistics are presented in Table ??. This
experiment demonstrates that the present inversions are robust with respect to the first guess; again,
the uncertainty of the present physical-based estimation is lower than the obtained correction of the
Bedmap2 bed elevation.

Figure 16: Robustness with respect to the first guess. (Left) Difference between h∗(x;hb) and h∗(x;h′b).
(Right) Difference between h∗(x;hb) and h∗(x;h′′b ).
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Comparison of h∗ obtained with ... Median Mean Max
... different γ

|h∗(x; γ̂ + 3σkrig)− h∗(x; γ̂)| 59m 74m 377m
|h∗(x; γ̂ + 3σkrig)− h∗(x; γ̂)|/|h∗(x; γ̂)| 2.1% 2.8% 21.5%

|h∗(x; γ̂ − 3σkrig)− h∗(x; γ̂)| 61m 73m 357m
|h∗(x; γ̂ − 3σkrig)− h∗(x; γ̂)|/|h∗(x; γ̂)| 2.2% 2.8% 35.1%

... different flight tracks densities
|h∗(x; Γtr)− h∗(x; Γless,1tr )| 95m 161m 1389m

|h∗(x; Γtr)− h∗(x; Γless,1tr )|/|h∗(x; Γtr)| 3.5% 5.9% 70.4%

|h∗(x; Γtr)− h∗(x; Γless,2tr )| 152m 198m 1425m

|h∗(x; Γtr)− h∗(x; Γless,2tr )|/|h∗(x; Γtr)| 2.7% 3.9% 51.4%

... different data smoothing σs
|h∗s4(x)− h∗s6(x)| 151m 198m 1425m

|h∗s4(x)− h∗s6(x)|/|h∗s4(x)| 5.4% 7.3% 55.9%
|h∗s4(x)− h∗s8(x)| 162m 233m 1560m

|h∗s4(x)− h∗s8(x)|/|h∗s4(x)| 5.8% 8.6% 60.3%

... different first guesses
|h′b(x)− hb(x)| 50m 64m 200m

|h′b(x)− hb(x)|/|hb(x)| 1.8 % 2.4 % 10.2 %
|h∗(x;h′b)− h∗(x;hb)| 57m 69m 377m

|h∗(x;h′b)− h∗(x;hb)|/|h∗(x;hb)| 2.1 % 2.6 % 30.7 %

|h′′b (x)− hb(x)| 46m 85m 734m
|h′′b (x)− hb(x)|/|hb(x)| 1.7 % 3.2 % 31.8 %
|h∗(x;h′′b )− h∗(x;hb)| 71m 96m 801m

|h∗(x;h′′b )− h∗(x;hb)|/|h∗(x;hb)| 2.6 % 3.7 % 46.4 %

Table 3: Robustness tests: statistics on the results. The subscript 4s (resp. 6s and 8s) of Hobs means
that the original dataset of |uH | and Hobs are smoothed to σs = 4km (resp. σs = 6km and σs = 8km),
see (??). In the last comparison, h′b and h′′b represent other first guesses than hb (Bedmap); except
for points along the flight tracks (i.e. for x ∈ Γtr).

5.5 Estimation of the thermal boundary layer
As highlighted in Section ??, the uncertainty on γ is due to the slip ratio Rs uncertainty and to the
thermal - rheology parameter cA uncertainty, see (??) and (??). cA highly depends on A(z) hence on
the thermal vertical profile, see Fig. ??. It follows from (??) that

cA = (q + 2)(1− γ)/Rs

In the present test case γ∗ ∈ (0, 0.35), see Fig. ??, and cA belongs approximately to (0.8, 5), see Fig.
?? (Right). With q = 3, this implies that the slip ratio Rs ranges from ≈ 0.65 to 1. This (unsual)
a-posteriori estimation of Rs is coherent with the surface velocity magnitudes, hence comforting on
the flow model consistency.

Given an a-priori vertical thermal profile e.g. the typical one providing (??) and Fig. ?? (Left),
the RU-SIA equation provides an estimation of the effective thermal boundary layer (B − b), see Fig.
?? (Left). Next, this thermal boundary layer can be plotted vs different fields e.g. vs |uH |, see Fig.
?? (Right). Such a-posteriori model analysis may be useful for ice-sheet modellers and related studies
(e.g. these profiles may be constrained by the very sparse measured in-situ temperature data).
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Figure 17: (Left) The thermal basal layer (B − b) resulting of the inversion of RU-SUA equation, see
(??) and Fig. ??. (Left) (B − b)(x) = m(x)h(x) with Rs = 1. (Right) (B − b)(x) vs |uH(x)|

6 Conclusion
This study proposes a new inverse method to infer the bed topography beneath ice flows from sur-
face observations (elevation and velocity) and sparse depth measurements. The flow model is valid
for anisothermal highly and mildly-sheared flows (hence up to mildly-rapid). The inverse problem
is particularly challenging since the bed topography surface signature has to be separated from the
basal slip one and the thermal dependent vertical velocity profile too. The numerical results demon-
strate the robustness of the method which provides the first physical-based depth inversions inland
ice-sheets areas. The dedicated RU-SIA model (containing a single multi-physics parameter γ) may be
interesting for other purposes than depth estimations; for example to provide a-posteriori estimations
of the thermal basal boundary layer. The inverse method can be applied to the great majority of
the ice sheets surfaces (inland and ice-sheet upstreams), also to many high mountain glaciers or any
shallow generalized-Newtonian creeping flows as soon as highly or mildly sheared e.g. lava flows (with
the thermal field given), mud flows and many polymer flows. In the ice-sheet modelling context, the
method presents many advantages such as a robustness independent of the airborne measurements
locations and a reduced uncertainty of the depth estimations (particularly compared to the gravime-
try inversions). The method limitations are: a) the increase of the uncertainty when the airborne
measurements density decreases (the latter providing the a-priori model of γ); b) the inversions scale.
Indeed the direct model validity is limited by the long wave assumption that is the geometrical ratio
ε = H∗/L∗ . 0.1 corresponding to a length scale L ∼ 30 km in ice-sheets.
This new inverse method can be straightforwardly extended to unsteady flows if the surface observa-
tions are given in time (assuming that the initial condition is either not important in the considered
time scale or assuming it is more or less given). The elaborated inverse method is under exploitation
and assessments for numerous others inland Antarctica areas.
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Appendix
In this section, the relationship between the covariance operators (??)(??) introduced in the control
variable and a higher-order regularisation term in jreg (??) is detailed, that is the calculation of (??).
The calculation is similar than those presented in [?] Section 7; however these latter are valid in 1D
and 3D only. The present calculation is valid in 2D and with non-constant standard derivations σ�.
The calculation related to the variable h only is presented, the calculation for ȧ being the same. For
a sake of simplicity, the subscripts h are skipped.
Let δh = (h− hb), then

‖δh‖2Ch
−1 = 〈δh,Ch

−1δh〉 =

∫
Ω

δh(x)δ̃h(x)dx, (35)

where δ̃h(x) = Ch
−1δh =

∫
Ω
c−1(x,x′)δh(x′)dx′. To calculate ‖δh‖2C−1 , the following equation has

to be solved:

δh(x) =

∫
Ω

c(x,x′)δ̃h(x′)dx′ =

∫
Ω

σ(x)σ(x′) exp(−|x− x′|1
L

)δ̃h(x′)dx′

Let us set g(x) = exp(− |x|1L ). Then the equation above can be written as a convolution product:
δh(x)
σ(x) = g(x) ∗

(
σ(x)δ̃h

)
. In the Fourier space, it reads:

F
(
δh(x)

σ(x)

)
= G(ζ)F

(
σ(x)δ̃h

)
, G(ζ) = F(g(x)), ζ = (ζ1, ζ2)

It follows:
δ̃h(x) =

1

σ(x)

[
F−1

(
1

G(ζ)

)
∗
(
δh(x)

σ(x)

)]
. (36)

By applying the Fourier inverse F−1
(

1
G(ζ)

)
, it follows:

F−1

(
1

G(ζ)

)
=

1

4L

(
δ(x1)− L2δ(2)(x1)

)(
δ(x2)− L2δ(2)(x2)

)
where δ denotes the Dirac distribution. Therefore, according to (??), it follows:

δ̃h(x) ∼ 1

4Lσ(x)

[
δh(x)

σ(x)
− L24

(
δh(x)

σ(x)

)
+ L4 ∂4

∂2x1∂2x2

(
δh(x)

σ(x)

)]
Finally, according to (??), it follows:

‖δh‖2Ch
−1 ∼

1

4L

∫
Ω

[(
δh(x)

σ(x)

)2

+ L2

∣∣∣∣∇(δh(x)

σ(x)

)∣∣∣∣2 + L4 ∂2

∂2x2
1

(
δh(x)

σ(x)

)
∂2

∂2x2
2

(
δh(x)

σ(x)

)]
dx
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