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Abstract

We study the exponential stability in the H2 norm of the nonlinear Saint-Venant (or shallow water)
equations with arbitrary friction and slope using a single Proportional-Integral (PI) control at one end
of the channel. Using a local dissipative entropy we find a simple and explicit condition on the gain the
PI control to ensure the exponential stability of any steady-states. This condition is independent of the
slope, the friction coefficient, the length of the river, the inflow disturbance and, more surprisingly, can
be made independent of the steady-state considered. When the inflow disturbance is time-dependant and
no steady-state exist, we still have the Input-to-State stability of the system, and we show that changing
slightly the PI control enables to recover the exponential stability of slowly varying trajectories.

Introduction

Discovered in 1871, the Saint-Venant equations [2] (or 1-D shallow water equations) are among the most
famous equations in fluid dynamics and have been investigated in hundreds of studies. Their richness, al-
though being quite simple, has made them become a major tool in practice for many industrial goal, the
most famous being probably the regulation of navigable rivers. They are the ground model for such purpose
in France and Belgium. Regulation of rivers is a major issue, for navigation, freight transport, renewable
energy production, but also for safety reasons, especially as several nuclear plants all around the world are
implanted close to rivers. For these reasons, the stability of the steady-states of the Saint-Venant equations
has been, and is still, a major issue.

Many results were obtained in the last decades. In 1999, the robust stability of the homogeneous linearized
Saint-Venant equations was shown using a Lyapunov approach and proportional feedback controller [9].
Later the stability of the homogeneous nonlinear Saint-Venant equations was achieved, still using propor-
tional feedback controller. In 2008, through a semi-group approach [15], the stability of the inhomogeneous
nonlinear Saint-Venant equation was shown for sufficiently small friction and slope (or equivalently suffi-
ciently small canal), and these results were successfully applied to real dataset from the Sambre river in
Belgium. More recently, in [5] the authors give sufficient conditions to stabilize the nonlinear Saint-Venant
equations with arbitrary friction for the H2 norm but no slope using again proportional feedback controllers,
and in [19] with both arbitrary friction and slope, this last result being proved by exhibiting an explicit local
entropy for the nonlinear inhomogeneous Saint-Venant equations.
It is worth mentioning that other stability results have also been obtained in less classical cases or with
less classical feedbacks. For instance in [7] was shown the rapid stabilization of the homogeneous nonlinear
Saint-Venant equations when a shock (e.g. a hydraulic jump) occurs in the target steady-state. Also, several
results (e.g. [13]) were obtained using a backstepping approach, a very powerful method based on a Volterra
transformation, developed mainly for PDE in [21], and generalized recently with a Fredholm transformation
for hyperbolic systems [11, 31, 32]. One may look at [19] for a more detailed survey about this method and
its use for the Saint-Venant equations. However, backstepping gives rise to non-local and non-static feedback
laws that are likely to be harder to implement, and, to our knowledge, have not been implemented yet.
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Most of the previous results were performed with static proportional feedback controllers. When it comes to
industrial applications, however, the proportional integral (PI) control is by far the most popular regulator.
It is used for instance for the regulation of the Sambre and Meuse river in Belgium [4, Chapter 8]. The reason
behind such preference is the robustness of the PI control with off-set errors [1, Chap. 11.3]. An exemple can
be found in [14] where the authors show the interest of adding an integral term to a proportionnal control
on a linear and homogeneous system, and exhibit coherent experimental result.
For these reasons, the PI controller has fed a wide literature, at least when used on finite dimensional sys-
tems. However, despite their undisputable practical interest, PI controllers for nonlinear infinite dimensional
systems have shown hard to handle mathematically and even studying simple systems give sometimes rise
to lengthy proofs with relatively sophisticated tools [10]. While the behaviour and the stability of linearized
equations with PI controller has been well understood in the past, partly thanks to spectral tools like the
spectral mapping theorem (e.g. [23, 22] for hyperbolic systems), no such tools exist for nonlinear systems
and the stability of the nonlinear Saint-Venant equations has remained a challenge until today. Among the
existing linear result using a spectral approach on can refer to [29, 30] where the authors find a sufficient
condition for the stabilization of the linearized inhomogeneous Saint-Venant equations. Necessary and suf-
ficient conditions for the linearized homogeneous Saint-Venant equations are given in [4, Section 2.2.4.1,
3.4.4]. In [12] the authors find a necessary and sufficient condition for a linear scalar equation and show
the difficulty of finding good conditions for the nonlinear equation, while in [8] the authors deal with 2× 2
systems. Among the existing nonlinear results one can refer to [26] in the case where the operator without
PI control generates an exponentially stable semi-group, [27] where the authors find a sufficient condition
for the nonlinear homogeneous Saint-Venant equations, [4, 2.2.4.2] where the authors find a necessary and
sufficient condition also for the nonlinear homogeneous Saint-Venant equations, while [4, 5.4.4,5.5] give a
sufficient condition for the inhomogeneous Saint-Venant equations for a single channel or a network, but
in the particular case of constant steady-states only, which simplifies their analysis [17]. Stricly speaking
this last result was derived for the linearized system but with a Lyapunov approach which can easily be
generalized to the nonlinear system. More recently, and to our knowledge this is the most advanced result,
[6] gave a sufficient condition of stability for the inhomogeneous Saint-Venant equations with an arbitrary
friction and river length but only in the absence of slope, using a Lyapunov approach.

In this paper, we consider the stabilization of the general nonlinear Saint-Venant equations with a single
boundary PI control. We give a simple and explicit condition on the parameters of the PI controller such
that any steady-state is exponentially stable for the H2 norm. While stability results in inhomogeneous and
nonlinear systems often raise to a limit length for the domain, depending on the source term, above with we
are unable to guaranty any stability ([17, 18, 3, 15] or [4, Chap. 6]), this result holds whatever the friction,
the slope, and the length of the channel. Besides, our condition is independent of the slope, the friction
coefficient, the river length, and, more surprisingly, can be made independent of the steady-state considered.
Finally, when there is no slope this condition is less restrictive that the condition obtained in [6] and when
there is no friction or slope this condition coincides with the necessary and sufficient spectral condition of
stability for the linearized system given in [8] and [4, Theorem 2.7].
The case where the inflow disturbances are time dependant and no steady-states exists was seldom considered
in the literature. However, it is in fact unlikely that the industrial target state is a real steady-state as the
inflow disturbance often depends on time in practice, even though only slowly. Therefore, in the more general
framework of slowly time-varying target states, we show the Input-to-State Stability (ISS) of the system with
respect to the variation of the inflow disturbance. Finally, we show that if we allow the controller to depend
on the target state, by changing slightly the PI controller, we can ensure the exponential stability of slowly-
varying target trajectories that are the natural target trajectories to consider when there is no steady-state
to the system.
This paper is organised as follows: in Section 1 we give a description of the nonlinear Saint-Venant equations,
we introduce the time-varying target trajectories together with some definitions and existence results, then
we state our main results. In Section 2 we prove our main result Theorem 1.3 that deals with the exponential
stability of time-varying state. In Appendix, we show that Corollary 1 dealing with the exponential stability
of steady-states, and Theorem 1.4 showing the ISS of the system with respect to the variation of the inflow
disturbance, are both deduced from the proof of Theorem 1.3.
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1 Model description

We consider the following nonlinear Saint-Venant equations for a rectangular channel with arbitrary slope
and friction.

∂tH + ∂x(HV ) = 0,

∂tV + V ∂xV + g∂xH +

(
kV 2

H
− C(x)

)
= 0.

(1.1)

Here, k is an arbitrary nonnegative friction coefficient and C denotes the slope, which is assumed to be a
C2 function, with C(x) := −gdB/dx where B is the bathymetry and g the acceleration of gravity. We are
interested in systems where the water flow uphill is a given function, unknown and imposed by external
conditions, for instance a flow coming from another country, while the water flow downhill is controlled
through a hydraulic installation. Therefore we have the following boundary conditions,

H(t, 0)V (t, 0) = Q0(t),

H(t, L)V (t, L) = U(t),
(1.2)

where U(t) is a control feedback and Q0(t) is the incoming flow, which is a given (and unknown) function.
Here L denotes the length of the water channel. In practical situations, the formal control U(t) can be
expressed by a simple linear model [6]

U(t) = vG(H(t, L)− U1(t)), (1.3)

where U1(t) is the elevation of the gate of the dam, which is the real control input that can be chosen, while
vG is a constant depending on the parameters of the gate (potentially unknown as well).

Usually, the industrial goal of such system is to stabilize the level of the water at the end point H(t, L),
called control point, to a target value Hc > 0. On the other hand, the usual mathematical goal in such
problem is to stabilize a target steady-state (H∗, V ∗), potentially nonuniform [4][Preface]. However, in the
present problem (1.1)–(1.2), it is clear that, when Q0 is not constant, it is impossible to aim at stabilizing any
steady-state and one needs to aim at stabilizing other target trajectories. Therefore, we define the following
target trajectory (H1, V1) that we aim stabilizing as the solution of

∂tH1 + ∂x(H1V1) = 0,

∂tV1 + V1∂xV1 + g∂xH1 +

(
kV 2

1

H1
− C(x)

)
= 0,

H1(t, 0)V1(t, 0) = Q0(t),

H1(t, L) = Hc,

(1.4)

with the initial condition
H1(0, ·) = H∗(·) and V1(0, ·) = V ∗(·), (1.5)

where (H∗, V ∗) is the (unique) steady-state solution of the system when Q0 is constant, equal to Q0(0).
Namely (H∗, V ∗) is the solution of

∂x(HV ) = 0,

V ∂xV + g∂xH +

(
kV 2

H
− C(x)

)
= 0,

H(L) = Hc,

(1.6)

with condition at x = 0

H∗(0)V ∗(0) = Q0(0). (1.7)

We are now going to show that the trajectory (H1, V1) exists for any time and satisfies some bounds.
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Existence and bounds of the target trajectory Instead of studying directly our target trajectory
(H1, V1) we first construct an intermediary family of functions (H0, V0). We defined previously (H∗, V ∗)
as the steady-state associated to a constant flux Q0 ≡ Q0(0), i.e. (H∗, V ∗) is the solution of the ODE
problem (1.6) with initial condition H∗(0)V ∗(0) = Q0(0). But in fact at each time t∗ ∈ R∗+, we can define a
steady-state (H∗t∗ , V

∗
t∗) associated to a constant flux Q0 ≡ Q0(t∗), i.e. (H∗t∗ , V

∗
t∗) is the solution of the ODE

problem (1.6) with initial condition satisfying

H∗t∗(0)V ∗t∗(0) = Q0(t∗). (1.8)

This problem could seem peculiar as all conditions should be imposed exclusively in 0 or in L to ensure the
well-posedness. However looking at the first equation of (1.6), the problem (1.6), (1.8) is in fact equivalent
to a single ODE on H∗t∗ with boundary condition H∗t∗(L) = Hc and V ∗t∗ defined by V ∗t∗ = Q0(t)/H∗t∗ . Thus
for each t∗ ∈ [0,+∞) such function exists on [0, L], is unique and C3 provided that the state stays in the
fluvial regime (or subcritical regime), i.e. gH∗t∗ > V ∗2t∗ on [0, L], which, for a given Hc, is equivalent to a
bound on Q0(t∗) (see [19] for more details). As we are interested in stabilizing physical trajectories in the
fluvial regime, we assume that this assumption is satisfied in the following and that there exist α > 0 and
H∞ > 0 independent of t∗ ∈ [0,∞) such that

H∗t∗ <
1

2
H∞ on [0, L],

gH∗t∗ − V ∗2t > 2α on [0, L].
(1.9)

For a given Hc, this is again equivalent to imposing a bound Q∞ on ‖Q0‖L∞(0,∞), from (1.6) and (1.8),
which would be more logical. However, for convenience, we will still use H∞ and α in the following. This
assumptions is quite physical, especially as in practical situation the river is in fluvial regime and Q0(t) is
often periodic or quasi-periodic. This gives a family of one-variable functions indexed by a parameter t∗,
which can also be seen as the two-variable functions (H0, V0) : (t, x)→ (H∗t (x), V ∗t (x)). Besides, from (1.7),
as (H∗t , V

∗
t ) is the solution of a system of ODE with a parameter t, the two variable functions (H0, V0)

therefore belongs to C3([0,+∞)× (0, L)) (see [16][Chap. 5, Cor. 4.1]). And from its definition, one can note
that (H0(0, ·), V0(0, ·)) = (H∗, V ∗). Now that we have introduced this intermediary family of functions, we
can show the existence of the target trajectory (H1, V1) and we have the following Input-to-State Stability
(ISS) result (see [25] for a definition of ISS for finite dimensional systems, [20, Chap 1, Chap 3] for a
generalization to first-order hyperbolic PDE and [24] for the use of Lyapunov function to achieve ISS on
time-varying hyperbolic systems),

Proposition 1.1. There exist positive constants c1, c2 such that if ∂tQ0 ∈ C2([0,∞)), there exist µ > 0,
ν > 0 and δ > 0 such that if ‖∂tQ0‖C2([0,+∞)) ≤ δ, then for any (H0

1 , V
0
1 ) ∈ H2((0, L),R2) such that

‖H0
1 −H∗‖H2(0,L) + ‖V 0

1 − V ∗‖H2(0,L) ≤ ν,

the system (1.4) with initial condition (H0
1 , V

0
1 ) has a unique solution (H1, V1) ∈ C0([0,+∞), H2(0, L)) which

satisfies the following ISS inequality

‖H1(t, ·)−H0(t, ·)‖H2(0,L) + ‖V1(t, ·)− V0(t, ·)‖H2(0,L)

≤ c1(‖H0
1 −H∗‖H2(0,L) + ‖V 0

1 − V ∗‖H2(0,L))e
−µt2 + c2

(∫ t

0

|∂tQ0(s) + ∂2ttQ0(s) + ∂3tttQ0(s)|e
µs
2 ds

)
e−

µt
2 .

(1.10)

This result is shown in Appendix A, and a definition of the C2 norm is recalled in Remark 1.1. Note that
Q0 is supposed to be bounded, which is quite physical, but there is no additional requirement on this bound
besides the physical assumption given by Q∞ of remaining in the fluvial regime. This is important as in
practical situations the value of the incoming flow can change a lot, even though slowly.
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Here, we choose to stabilize the trajectory (H1, V1) associated to H0
1 = H∗ and H0

1 = V ∗. As we will see,
this target trajectory can be seen as the natural trajectory to stabilize as it satisfies the industrial goal
H(t, L) = Hc and it coincides with the steady-state solution when Q0 is a constant. In this last case Q0

and Hc are imposed and H∗ and V ∗ = Q0/H
∗ are thus fully determined using (1.6). But one can note from

(1.10) that, in fact, the behaviour of (H1, V1) at large time does not depend on the initial condition (H0
1 , V

0
1 )

in (1.5), provided that it is close in H2 norm to (H∗, V ∗).

Remark 1.1. The same ISS result can be shown replacing the H2 norm in Proposition 1.1 by the Hp norm
where p ∈ N∗ \ {1}, with the condition ‖∂tQ0‖Cp([0,+∞)) ≤ δ instead of ‖∂tQ0‖C2([0,+∞)) ≤ δ. This is shown
in Appendix A. We define here the Cp norm for a function U ∈ Cp(I), where I is an interval, as

‖U‖Cp(I):= max
i∈[0,p]

(‖∂itU‖L∞(I)) (1.11)

Thus, from Proposition 1.1 and (1.9), there exists a constant δ > 0 such that, if ‖∂tQ0‖C2([0,∞)) < δ, then
(H1, V1) ∈ C0([0,+∞), H2(0, L)) and

H1(t, x) < H∞, ∀ (t, x) ∈ [0,+∞)× [0, L], (1.12)

gH1(t, x)− V 2
1 (t, x) > α, ∀ (t, x) ∈ [0,+∞)× [0, L]. (1.13)

Besides, when Q0 is a constant, it is easy to check that (H0, V0) = (H∗, V ∗) is also solution of (1.4)–(1.5).
Thus, from the uniqueness of the solution of (1.4)–(1.5), (H1, V1) = (H∗, V ∗) and therefore we recover a
steady-state. This illustrates that (H1, V1) can be seen as the natural target state when Q0 is not a constant
anymore. Moreover, from (1.4), stabilizing (H1, V1) also satisfies the industrial goal by stabilizing H(t, L)
on the value Hc.

Control design and main result As mentioned in the introduction, a usual type of controller used in
pratice to reach this aim is the proportional-integral (PI) controller. It has the advantage of eliminating the
offset coming from constant load disturbances, which can usually appear in these systems as the command
on the gate’s level are only known up to some constant incertainties. A generic PI controller is given by

U1(t) = kp(Hc −H(t, L)) + kIZ, (1.14)

where kp and kI are coefficients that can be designed and Z accounts for the integral term, i.e.

Ż = Hc −H(t, L). (1.15)

With such controller, and using (1.3), the boundary conditions (1.2) become (1.15) and

H(t, 0)V (t, 0) = Q0(t),

H(t, L)V (t, L) = vG(1 + kp)H(t, L)− vGkpHc − vGkIZ,
(1.16)

In Corollary 1 we show that this boundary control can be used to stabilize exponentially a steady-state when
Q0 is a constant. In Theorem 1.4 we show that this control can also provide an Input-to-State Stability
property with respect to ∂tQ0. However, this control (1.14) cannot be used to stabilize a dynamic target
trajectory (H1, V1), as there is no function Z1 ∈ C1([0,+∞)) such that (H1, V1, Z1) is a solution of (1.1),
(1.15), (1.16) while (H1, V1) is a solution of (1.4). Therefore, when stabilizing a dynamic target trajectory,
one has to add an additional term and use

U1(t) = kp(Hc −H(t, L)) + kIZ − f(t), (1.17)

where f(t) := H1(t, L)V1(t, L)/vG. The boundary conditions (1.2) become then

H(t, 0)V (t, 0) = Q0(t),

H(t, L)V (t, L) = H1V1(t, L) + vG(1 + kp)(H(t, L)−Hc)− vGkIZ,
(1.18)
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where we have actually changed Z and re-define Z := Z − kp/kI , which still satisfies the equation (1.15).
This new control (1.17) assumes that V1(t, L) is known at least up to a constant, as H1(t, L) = Hc and
additional constants can be incorporated into Z. When no knowledge on the target state is available besides
Hc, it is impossible to stabilize exponentially the system, and the best one can get is the Input-to-State
Stability which is given by Theorem 1.4. However in the following we will keep working with (1.17) and
(1.18) to show Theorem 1.3 and the exponential stability of the system, as the proof of Theorem 1.4 and
Corollary 1 which uses only the control (1.14) and (1.16) are easily deduced from the proof of Theorem 1.3.

We introduce the first-order compatibility conditions associated to the boundary conditions (1.18) for an
initial condition (H0, V 0, Z0).

H0(0)V 0(0) = Q0(0),

H0(L)V 0(L) = H1V1(0, L) + vG(1 + kp)(H
0(L)−Hc)− kIZ0,

− ∂x(H0(0)V 0(0) + g
gH0(0)2

2
)− (k(V 0)2(0)− CH0(0)) = Q′0(0),

− ∂x(H0(L)V 0(L) + g
gH0(L)2

2
)− (k(V 0)2(L)− CH0(L)) = ∂t(H1V1)(0, L)

− vG(1 + kp)∂x(H0(L)V 0(L)) + kI(H
0(L)−Hc).

(1.19)

With such compatibility conditions the system (1.1), (1.15), (1.18) is well-posed and we have the following
theorem due to Wang [28][Theorem 2.1]:

Theorem 1.2. Let T > 0, and assume that ‖∂tQ0‖C3([0,+∞)) ≤ δ(T ), such that (H1, V1) is well-defined and
belongs to C0([0, T ], H3(0, L)). There exists ν(T ) > 0 such that for any (H0, V 0, Z0) ∈ (H2((0, L))))2 × R
satisfying

‖H0(·)−H1(0, ·)‖H2(0,L) + ‖V 0(·)− V1(0, ·)‖H2(0,L) + |Z0| ≤ ν(T ), (1.20)

and satisfying the compatibility conditions (1.19), the system (1.1), (1.15), (1.18) has a unique solution
(H,V, Z) ∈ (C0([0, T ], H2((0, L))))2 × C1([0, T ]). Moreover there exists a positive constant C(T ) such that

‖H(t, ·)−H1(t, ·)‖H2(0,L) + ‖V (t, ·)− V1(t, ·)‖H2(0,L) + |Z|
≤ C(T )

(
‖H0(·)−H1(0, ·)‖H2(0,L) + ‖V 0(·)− V1(0, ·)‖H2(0,L) + |Z0|

)
.

(1.21)

To apply the result from [28], note that Z can be seen as a third component of the hyperbolic system with
a null propagation speed, a constant initial condition Z0 and Z(t) being thus its value everywhere on [0, L]
including at the boundaries.

Remark 1.2. If, in addition, (H0, V 0) ∈ H3((0, L);R2), then the unique solution (H,V, Z) given by Theorem
1.2 belongs to C0([0, T ], H3((0, L);R2))× C2([0, T ]) and there exists a constant C(T ) such that

‖H(t, ·)−H1(t, ·)‖H3(0,L) + ‖V (t, ·)− V1(t, ·)‖H3(0,L) + |Z|
≤ C(T )

(
‖H0(·)−H1(0, ·)‖H3(0,L) + ‖V 0(·)− V1(0, ·)‖H3(0,L) + |Z0|

)
.

(1.22)

We recall the definition of exponential stability

Definition 1.1. We say that a trajectory (H1, V1) is exponentially stable for the H2 norm if there exists
ν > 0, C > 0 and γ > 0 such that for any T > t0 ≥ 0 and any (H0, V 0, Z0) satisfying

‖H0(·)−H1(t0, ·)‖H2(0,L) + ‖V 0(·)− V1(t0, ·)‖H2(0,L) + |Z0| ≤ ν, (1.23)

and the compatibility conditions (1.19), the system (1.1), (1.15), (1.18) with initial condition (H0, V 0, Z0)
at t0 has a unique solution (H,V, Z) ∈ (C0([t0, T ], H2((0, L))))2 × C1([t0, T ]) and,

‖H(t, ·)−H1(t, ·)‖H2(0,L) + ‖V (t, ·)− V1(t, ·)‖H2(0,L) + |Z|
≤ Ce−γt

(
‖H0(·)−H1(t0, ·)‖H2(0,L) + ‖V 0(·)− V1(t0, ·)‖H2(0,L) + |Z0|

)
, ∀ t ∈ [t0,+∞).

(1.24)
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Remark 1.3. From (1.4) and Sobolev inequality, this exponential stability implies in particular the expo-
nential convergence of H(t, L) to Hc.

We can now state the main results of this article

Theorem 1.3. There exists δ > 0 such that if ‖∂tQ0‖C3([0,+∞)) ≤ δ, then the trajectory (H1, V1) given by
(1.4) of system (1.1), (1.15), (1.18) is exponentially stable for the H2 norm if:

kp > −1 and kI > 0,

or kp < −1− gH1(t, L)− V 2
1 (t, L)

vGV1(t, L)
and kI < 0.

(1.25)

This result is proved in Section 2. The main idea of the proof consist in finding a local convex and dissipative
entropy for the system (1.1), (1.15), (1.18).

In particular, in the case where Q0 is constant, we can use the static boundary control (1.14), and we have
the following corollary:

Corollary 1. If Q0 is constant, then the steady-state (H∗, V ∗) of the system (1.1), (1.15), (1.16) given by
(1.6)–(1.7) is exponentially stable for the H2 norm if:

kp > −1 and kI > 0,

or kp < −1− gH∗(L)− V ∗2(L)

vGV ∗(L)
and kI < 0.

(1.26)

Proof. This is a particular case of Theorem 1.3. To see this, note, as mentioned earlier, that when Q0 is
constant, then (H1, V1) = (H∗, V ∗). Then, observe that f(t) given in (1.17) is a constant that can be added
in Z (i.e. we can re-define Z := Z − f(t), which still satisfies (1.15)).

Remark 1.4. In the literature, results about PI control of the Saint-Venant equations sometimes leave the
step of modeling the spillway and use a generic formulation of the PI control on the outflow rate of the form

H(t, L)V (t, L) = k1(H(t, L)−Hc)− k2Z, (1.27)

where Z is the integral term, still given by (1.15). Note that, with these notations, the sufficient condition
of Corollary 1 becomes

kp > 0 and kI > 0,

or kp < −
gH∗(L)− V ∗2(L)

V ∗(L)
and kI < 0.

(1.28)

which is a known result in the linear case using a spectral approach. Theorem 1.3 and Corollary 1 show that
this result remains true when the system is nonlinear, using a Lyapunov approach.

Remark 1.5. When the system is homogeneous, conditions (1.26) are optimal (necessary and sufficient)
[8], [4, Section 2.2.4.1].

This approach uses very little knowledge of the state of the system, as we only measure the height at the
boundary x = L. In practical situation, however, we may have also little knowledge of the target trajectory
(H1, V1) or the input disturbance Q0(t) and we only know Hc. In this case we cannot use a controller of the
form (1.18), but only a static controller of the form (1.16), namely

H(t, L)V (t, L) = vG(1 + kp)H(t, L)− vGkpHc − vGkIZ. (1.29)

In this case, it is impossible to aim at stabilizing the target trajectory (H1, V1), but we still have the Input-
to-state Stability with respect to the input disturbance ∂tQ0,
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Theorem 1.4. There exists ν > 0, δ > 0, γ > 0 and C, such that if ‖∂tQ0‖C2([0,+∞)) ≤ δ, then for any
T > 0 and (H0, V 0) ∈ (H2(0, L))2 such that

‖H0 −H∗‖H2(0,L) + ‖V 0 − V ∗‖H2(0,L) ≤ ν,

the system (1.1), (1.15), (1.16) with initial condition (H0, V 0) has a unique solution (H,V ) ∈
C0([0, T ], H2(0, L)) which satisfies the following ISS inequality

‖H(t, ·)−H0(t, ·)‖H2(0,L) + ‖V (t, ·)− V0(t, ·)‖H2(0,L)

≤ Ce−γt
(
‖H0 −H∗, V 0 − V ∗‖H2(0,L) +

∫ t

0

|∂tQ0(s) + ∂2ttQ0(s) + ∂3tttQ0(s)|eγsds
)
.

(1.30)

The proof is given in Appendix B and is a consequence from the proof of Theorem 1.3.

In Section 2 we prove Theorem 1.3.

2 Exponential stability for the H2 norm

This section is divided in three parts. First we transform the system through a change of variables. Then
we state three lemma, useful for the analysis. Finally we prove Theorem 1.3.

2.1 A change of variables

For any solution of (1.1), (1.15), (1.18) we define the perturbation as(
h
v

)
=

(
H −H1

V − V1

)
. (2.1)

Let us assume that there exists ν ∈ (0, ν0) to be selected later on, such that

‖H0(·)−H1(0, ·)‖H2(0,L) + ‖V 0(·)− V1(0, ·)‖H2(0,L) + |Z0| ≤ ν. (2.2)

The boundary conditions (1.18) can be written in the following form

v(t, 0) = B1(h(t, 0), t),

v(t, L) = B2(h(t, L), Z, t),
(2.3)

with

∂1B1(0, t) = − V1(t, 0)

H1(t, 0)
,

∂1B2(0, 0, t) =
vG(1 + kp)− V1(t, L)

H1(t, L)
,

∂2B2(0, 0, t) = − vGkI
H1(t, L)

.

(2.4)

We introduce the following change of variables:

(
u1
u2

)
=

v +
√

g
H1
h

v −
√

g
H1
h

 . (2.5)
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Note that this change of variables is very similar to the change of variables used in [3, 19] with the only
difference that (H1, V1) is not a steady-state anymore. It corresponds to the transformation in Riemann
coordinates for the perturbations. Indeed, denoting S, F and G by

S(x, t) =

 √
g

H1(t,x)
1

−
√

g
H1(t,x)

1

 , (2.6)

F

(
H
V

)
=

(
V H
g V

)
, G

(
H
V

)
=

(
0

kV 2

H − C(x)

)
, (2.7)

and using (1.1), (1.15), (1.18), (1.4), (2.1)–(2.5), one has

∂tu1 + Λ1(u, x, t)∂xu1 + l1(u, x, t)∂xu2 +B1(u, x, t) = 0,

∂tu1 − Λ2(u, x, t)∂xu2 + l2(u, x, t)∂xu1 +B2(u, x, t) = 0,
(2.8)

where,

A(u, x, t) =

(
Λ1(u, x, t) l1(u, x, t)
l2(u, x, t) Λ2(u, x, t)

)
= S(x, t)F

(
S−1(x, t)u +

(
H1(t, x)
V1(t, x)

))
S−1(x, t), (2.9)

B(u, x, t) =

(
B1(u, x, t)
B2(u, x, t)

)
= S(x, t)F

(
S−1(x, t)u +

(
H1(t, x)
V1(t, x)

))((
∂xH1(t, x)
∂xV1(t, x)

)
+ ∂x(S−1)u

)
+ S∂t

(
H1(t, x)
V1(t, x)

)
+ S(x, t)G

(
S−1(x, t)u +

(
H1(t, x)
V1(t, x)

))
− ∂tS(x, t)S−1(x, t)u,

(2.10)

and thus

Λ1(0, x, t) = V1 +
√
gH1, Λ2(0, x, t) = V1 −

√
gH1, (2.11)

l1(0, x, t) = B1(0, x, t) = 0, l2(0, x, t) = B2(0, x, t) = 0, (2.12)

∂B1

∂u
(0, x, t) = γ1(t, x)u1(t, x) + γ2(t, x)u2(t, x),

∂B2

∂u
(0, x, t) = δ1(t, x)u1(t, x) + δ2(t, x)u2(t, x).

(2.13)

where

γ1 =
3

4

√
g

H1
H1x +

3

4
V1x +

kV1
H1
− kV 2

1

2H2
1

√
H1

g

γ2 =
1

4

√
g

H1
H1x +

1

4
V1x +

kV1
H1

+
kV 2

1

2H2
1

√
H1

g

δ1 = −1

4

√
g

H1
H1x +

1

4
V1x +

kV1
H1
− kV 2

1

2H2
1

√
H1

g

δ2 = −3

4

√
g

H1
H1x +

3

4
V1x +

kV1
H1

+
kV 2

1

2H2
1

√
H1

g
.

(2.14)

And for the boundary conditions, there exists ν1 ∈ (0, ν0) such that for any ν ∈ (0, ν1), one has:

u1(t, 0) = D1(u2(t, 0), t),

u2(t, L) = D2(u1(t, L), Z, t),

Ż =
(u1(t, L)− u2(t, L))

2

√
H1(t, L)

g
,

(2.15)
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where D1 and D2 are C2 functions and

∂1D1(0, t) = −λ2(0)

λ1(0)
,

∂1D2(0, 0, t) = −λ1(L)− vG(1 + kp)

λ2(L) + vG(1 + kp)
,

∂2D2(0, 0, t) = −2
vGkI

√
g

H1(t,L)

vG(1 + kp) + λ2(t, L)
.

(2.16)

Expression (2.14) is simply a computation, very similar to what it done in [19] for instance, while the
derivation of (2.15) and (2.16) are detailed in the appendix.

Remark 2.1. Obviously, from the change of variables (2.1)–(2.5), the exponential stability of the system
(1.1), (1.15), (1.18) is equivalent to the exponential stability of the steady-state u∗ = 0 for the system (2.8),
(2.15).

As the operator A, given by (2.9), is a C2 function in u, t and x (and in particular C1) and as, from (2.13)
and (1.13), Λ1(0, x, t) > 0 > Λ2(0, x, t), there exists ν2 ∈ (0, ν1) and E ∈ C1(Bν2 × (0, L)× [0,+∞);M2(R)),
where Bν2 ⊂ R2 is the disc of radius ν2, such that for any ‖u(t, ·)‖H2(0,L) ≤ ν2,

E(u(t, x), x, t)A(u(t, x), x, t) = D(u(t, x), x, t)E(u(t, x), x, t),

E(0, x, t) = Id,
(2.17)

where D(u(t, x), x, t) = (Di(u(t, x), x, t))i∈1,2 is a diagonal matrix and Id is the identity matrix. Before
going any further, let us note a few useful properties of these functions. For simplicity in the following we
will denote for any n ∈ N∗ and any function U ∈ L∞((0, T )× (0, L);Rn) (resp. L∞((0, L);Rn))

‖U‖∞ := ‖U‖L∞((0,T )×(0,L);Rn),

(resp.‖U‖∞ := ‖U‖L∞((0,L);Rn)).
(2.18)

We may also denote ‖u‖H2(0,L) instead of ‖u(t, ·)‖H2(0,L) to lighten the expressions. From the definition of
A given in (2.9), and from (1.13), for ‖u‖H2(0,L) ≤ ν2, there exists a constant C1 depending only on H∞, α
and ν2 such that we have the following estimates

max (‖∂t(A(u(t, x), x, t)−A(0, x, t))‖∞, ‖∂t(D(u(t, x), x, t)−D(0, x, t))‖∞, ‖∂t(E(u(t, x), x, t))‖∞)

≤ C1 (‖u‖∞(‖∂tH1‖∞ + ‖∂tV1‖∞) + ‖∂tu‖∞) ,

max (‖∂t(A(u(t, x), x, t)−A(0, x, t))‖∞, ‖∂t(D(u(t, x), x, t)−D(0, x, t)), ‖∂t(E(u(t, x), x, t))‖∞)

≤ C1 (‖u‖∞(‖∂xH1‖∞ + ‖∂xV1‖∞) + ‖∂xu‖∞) .

(2.19)

For E and D, this comes from the fact that E and D are C∞ functions with respect to the coefficients of A
(note that D is the matrix of eigenvalues of A), and that A ∈ C2(Bη0 ;C1([0,+∞)× [0, L])).

2.2 Three useful lemma

We introduce now three lemma, which will be useful in the following analysis. The first one is a classical
result about Lyapunov functions,

Lemma 2.1. Let V : (H2(0, L))2 × R× R+ → R∗+ such that there exists a constant c > 0 such that

c
(
‖U‖H2(0,L) + |z|

)
≤ V (U, z, t) ≤ 1

c

(
‖U‖H2(0,L) + |z|

)
, ∀ (U, z, t) ∈ (H2(0, L))2 × R× R+. (2.20)

If there exists γ > 0 and δ > 0 such that, for any solution (u, Z) of the system (2.8), (2.15) with initial
conditions satisfying ‖u(0, ·)‖H2(0,L) + |Z(0)| ≤ δ,

d

dt
[V (u(t, ·), t)] < −γV (u(t, ·), t) (2.21)
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in a distribution sense, then the system (2.8), (2.15) is exponentially stable for the H2 norm and V is called
a Lyapunov function for the system (2.8), (2.15).

This first lemma reduces the problem of proving the exponential stability to finding a Lyapunov function
V for the system (2.8), (2.15). A proper definition of a differential inequality in a distribution sense as in
(2.21) can be found in [17]. To lighten this article we do not give a proof of this classical lemma, although
a proof for a very similar case (Lyapunov function that does not depend explicitly on time and for the C1

norm instead) can be found for instance in [17][Proposition 2.1], and is easily extended to this case.

The second Lemma is a variation of a result shown in [19] that gives a local entropy of the Saint-Venant
equations. Let us first introduce the following function φ defined by

φ1(t, x) = exp

(∫ x

0

γ1
λ1
dx

)
,

φ2(t, x) = exp

(
−
∫ x

0

δ2
λ2
dx

)
,

φ(t, x) =
φ1(t, x)

φ2(t, x)
,

(2.22)

where λ1 and λ2 are defined by

λ1(t, x) := Λ1(0, x, t) > 0, λ2(t, x) := −Λ2(0, x, t) > 0. (2.23)

We can now state the following lemma

Lemma 2.2. There exists δ0 > 0 such that if ‖∂tH1‖L∞((0,+∞)×(0,L) ≤ δ0, the function λ2φ/λ1 is solution
on [0, L] to the following equation

∂xf =

∣∣∣∣φγ2λ1 +
φ−1δ1
λ2

f2 +

√
g

H1
∂tH1

∣∣∣∣ ,∀ x ∈ [0, L], t ∈ [0,+∞), (2.24)

and for any x ∈ [0, L] and any t ∈ [0,+∞),(
φγ2
λ1

+
φ−1δ1
λ2

f2 +

√
g

H1
∂tH1

)
> 0. (2.25)

The proof is given in the Appendix.

Eventually, we introduce our last Lemma, which seems very natural and is stated here to lighten the proof
of Theorem 1.3.

Lemma 2.3. There exists l > 0 and C > 0 such that if ‖∂tQ0‖C3([0,+∞)) ≤ l, then

max
(
‖∂tH1‖C1([0,+∞),L∞(0,L)), ‖∂tV1‖C1([0,+∞),L∞(0,L))

)
< C‖∂tQ0‖C3([0,+∞)). (2.26)

This is a consequence of the ISS property (Proposition 1.1) and Remark 1.1 with p = 3, the relations (1.4),
and Sobolev inequality. Thanks to this Lemma, we now only need to find a bound on ∂tH1 and ∂tV1 instead
of a bound on ∂tQ0 in the proof of Theorem 1.3.

2.3 Proof of Theorem 1.3

We can now prove Theorem 1.3.
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Proof of Theorem 1.3. From Theorem (1.2), Remark 2.1, and Lemma 2.1, one only needs to find a Lyapunov
function V : (H2(0, L))2 × R× R+ → R∗+ satisfying (2.20) and (2.21). We define the following candidate:

Va(U, z, t) :=

∫ L

0

f1(t, x)e−µx(E(U(x), x, t)U)21(t, x) + f2(t, x)eµx(E(U(x), x, t)U)22(t, x)dx+ qz2, (2.27)

where f1, f2 are positive and bounded functions which will be defined later on, and µ and q are positives
constant which will also be defined later on. Recall that E is still given by (2.17). Let T > t0 ≥ 0 and
(u0, Z0) ∈ H2(0, L)× R satisfying the compatibility condition (1.19) and such that(

‖u0‖H2(0,L) + |Z0|
)
< ν, (2.28)

where ν is a constant to be chosen later on but such that ν < min(ν2, ν(T )). Recall that ν(T ) is given by
Theorem 1.2. From Theorem 1.2 there exists a unique solution u ∈ C0([t0, T ], H2(0, L)). We suppose in
addition that (u0, Z0) ∈ H3(0, L), and that (2.28) also hold for the H3 norm instead of the H2 norm in
u. From Remark 1.2, (u, Z) ∈ C0([t0, T ] ×H3(0, L)) × C3([t0, T ]). This assumption is here to allow us to
compute easily the derivative of u but will be relaxed later on by density.

Let δ ∈ (0, δ0) to be chosen later on, with δ0 is given by Lemma 2.2, and assume that

max(‖∂tH1‖C1([t0,∞);L∞(0,L)), ‖∂tV1‖C1([t0,∞);L∞(0,L)) < δ. (2.29)

As this is the only assumption on H1 and V1, we can assume from now on that t0 = 0 without loss of
generality.

Looking at (2.27), Va is indeed a function defined on H2(0, L) × R × R+, but for notational ease we will
denote Va(t) := Va(u(t, ·), Z(t), t), where Z(t) is given by (1.15), and E := E(u(t, x), x, t). Similarly we
introduce

Vb(U, t) :=

∫ L

0

f1e
−µx(E(U(x), x, t)I(U, x, t))21 + f2e

µx(E(U(x), x, t)I(U, x, t))22dx+ q
H1(t, L)

4g
(U1(L)− U2(L))2,

Vc(U, t) :=

∫ L

0

f1e
−µx(E(U(x), x, t)J(U, x, t))21 + f2e

µx(E(U(x), x, t)J(U, x, t))22dx

+ q

(√
H1(t, L)

4g
(I1(t, L)− I2(t, L)) +

∂tH1(t, L)

4

√
1

gH1(t, L)
(U1(L)− U2(L))

)2

,

(2.30)

where

I(U, x, t) := (A(U, x, t)∂x(∂tU) + (∂tA(U, x, t) + ∂UA(U, x, t).∂tU)∂xU + ∂tB (U, x, t) + (∂UB(U, x, t))(∂tU)) ,

J(U, x, t) :=A(U, x, t)∂x(∂2ttU) + (∂UA(U, x).∂2ttU)∂xU + (∂UB(U, x))(∂2ttU)

+ (∂2ttA(U, x, t) + 2∂U(∂tA(U, x, t)).∂tU)∂xU

+ 2∂tA(U, x, t)∂x(∂tU) + 2∂UA(U, x).∂tU∂x(∂tU) + ((∂2UA(U, x).∂tU).∂tU)∂xU

+ ∂2ttB(U, x) + 2∂U(∂tB(U, x)).∂tU + (∂2UB(U, x).∂tU)(∂tU).

(2.31)

Observe that for a solution u of (2.8), and using the expression of Z given by (1.15), the expressions of
Vb(u(t, ·), t) and Vc(u(t, ·), t) become

Vb(u(t, ·), t) :=

∫ L

0

f1(t, x)e−µx(E∂tu)21(t, x) + f2(t, x)eµx(E∂tu)22(t, x)dx+ q(Ż(t))2,

Vc(u(t, ·), t) :=

∫ L

0

f1(t, x)e−µx(E∂2ttu)21(t, x) + f2(t, x)eµx(E∂2ttu)22(t, x)dx+ q(Z̈(t))2,

(2.32)
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which justifies the expression chosen for (2.30) and (2.31). We also note for notational ease Vb(t) :=
Vb(t,u(t, ·)) and Vc(t) := Vc(t,u(t, ·)). Finally we denote V := Va + Vb + Vc. We start now by dealing
with Va, Differentiating t→ Va(t) with respect to time, using (2.8), (2.17) and integrating by parts, one has

V̇a =− 2

∫ L

0

f1(t, x)e−µx(Eu)1 [(EA(u, x, t)∂xu)1 + (EB)1(u, x, t)]

+ f2(t, x)eµx(Eu)2 [(EA(u, x, t)∂xu)2 + (EB)2(u, x, t)] dx

+

∫ L

0

∂t(f1)e−µx(Eu)21 + ∂t(f2)eµx(Eu)22dx

+ 2

∫ L

0

f1e
−µx(Eu)1 ((∂tE + ∂uE.∂tu) u)1 + f2e

µx ((∂tE + ∂uE.∂tu) u)2 dx+ 2qZ(t)Ż(t)

=− 2

∫ L

0

f1(t, x)e−µx(Eu)1 [D1(u, x, t) (∂x(Eu)− (∂xE + ∂UE.∂xu)u)1]

+ f2(t, x)eµx(Eu)2 [D2(u, x, t) (∂x(Eu)− (∂xE + ∂UE.∂xu)u)2] dx

+

∫ L

0

∂t(f1)e−µx(Eu)21 + ∂t(f2)eµx(Eu)22dx− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)dx

+ 2

∫ L

0

f1e
−µx(Eu)1 ((∂tE + ∂uE.∂tu) u)1 + f2e

µx ((∂tE + ∂uE.∂tu) u)2 dx+ 2qZ(t)Ż(t),

(2.33)

V̇a =−
[
f1e
−µxD1(Eu)21 +D2f2e

µx(Eu)22
]L
0

−
∫ L

0

(Eu)1e
−µx ((−∂x(D1f1)− f1∂u(D1).∂xu)(Eu)1 − 2f1D1((∂xE + ∂UE.∂xu)u)1)

+ (Eu)2e
µx ((−∂x(D2f2)− f2∂u(D2).∂xu)(Eu)2 − 2f2D2((∂xE + ∂UE.∂xu)u)2) dx

+

∫ L

0

∂t(f1)e−µx(Eu)21 + ∂t(f2)eµx(Eu)22dx− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)

+ 2

∫ L

0

f1e
−µx(Eu)1 ((∂tE + ∂uE.∂tu) u)1 + f2e

µx ((∂tE + ∂uE.∂tu) u)2 dx

− µ
∫ L

0

D1f1e
−µx(Eu)21 −D2f2e

µx(Eu)22dx+ 2qZ(t)Ż(t).

(2.34)

In order to simplify this expression, observe that from (2.9), (2.17) and (2.23), D1(0, x, t) = λ1(t, x) and
D2(0, x, t) = −λ2(t, x), using the fact that D is C1 in u, and using (2.19) and (2.29) there exists C > 0
depending only on H∞ and α, ν and δ such that

‖Di − sgn(Di(0, x, t))λi‖∞ ≤ ‖Cu‖∞, (2.35)

‖∂xDi + ∂uDi.∂xu− sgn(Di(0, x, t))∂xλi‖∞ ≤ C (‖∂xu‖∞ + ‖u‖∞) , i ∈ {1, 2}, (2.36)

and
‖∂xE‖∞ ≤ C (‖u‖∞) , (2.37)

‖∂tE + ∂uE∂tu‖∞ ≤ C (‖u‖∞ + ‖∂tu‖∞) . (2.38)
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Thus, using this together with (2.34)

V̇a ≤−
[
f1e
−µxD1(Eu)21 +D2f2e

µx(Eu)22
]L
0

−
∫ L

0

(Eu)21e
−µx(−∂x(λ1f1)− ∂t(f1)) + (Eu)22e

µx(∂x(λ2f2)− ∂t(f2))dx

− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)dx

− µ
∫ L

0

λ1f1e
−µx(Eu)21 + λ2f2e

µx(Eu)22dx+ 2qZ(t)Ż(t)

+ C (‖u‖∞ + ‖∂xu‖∞)

∫ L

0

(Eu)21 + (Eu)22dx

+ C (‖u‖∞ + ‖∂xu‖∞)
2
∫ L

0

|(Eu)1|+ |(Eu)2|dx,

(2.39)

where C is a constant that may change between lines but only depends on ν, an upper bound of δ (for
instance δ0), µ, H∞ and α. Note that C is continuous in µ ∈ [0,∞), thus it can be made independent of µ
by imposing an upper bound on µ, for instance µ ∈ (0, 1]. Finally, from the second equation of (2.17), and
the fact that E is C1 in u, there exists a continuous function r1 such that, for any vector v ∈ R2

E(u(t, x), x, t)v − v = (u(t, x).r1(u(t, x), x, t))v, ∀ (t, x) ∈ [0, T ]× [0, L]. (2.40)

As E(u(t, x), x, t) is locally a C∞ function of the coefficients of A, r1 is bounded on Bν2 × [0, L]× [0, T ] by a
bound that only depends on ν2, H∞ and α. Thus there exists a constant C̄ depending only on ν2, H∞ and
α such that

1

C̄
‖v‖L2((0,L);R2) ≤ ‖Ev‖L2((0,L);R2) ≤ C̄‖v‖L2((0,L);R2). (2.41)

Thus, using this together with the fact that D1 and D2 are C1 with u, (2.27), and Young’s inequality and
then Cauchy-Schwarz inequality on the last integral term,

V̇a ≤−
[
f1e
−µxλ1(Eu)21 − λ2f2eµx(Eu)22

]L
0

−
∫ L

0

(Eu)21e
−µx(−∂x(λ1f1)− ∂t(f1)) + (Eu)22e

µx(∂x(λ2f2)− ∂t(f2))dx

− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)dx

− µ min
x∈[0,L]

(λ1, λ2)Va+µ min
x∈[0,L]

(λ1, λ2)qZ2(t) + 2qZ(t)Ż(t)

+ C (‖u‖∞ + ‖∂xu‖∞) ‖u‖2L2(0,L)

+ C (‖u‖∞ + ‖∂xu‖∞)
3

+ C‖u‖∞(|u(t, 0)2|+ |u(t, L)2|).

(2.42)

Now, as E and B are C2 with u and continuous with x and t, and as B(0, x, t) = 0, there exists a continuous
function r2 ∈ C0(Bν2 × [0, T ]× [0, L];Rn×n×n) such that,

(EB)(u(t, x), x, t) = ∂u(EB)(0, x, t).u(t, x) + (r2(u, x, t).u(t, x))u(t, x), ∀ t ∈ [0, T ]× [0, L]. (2.43)

Note that from (2.10), r2 is bounded on Bν2 × [0, L]× [0, T ] by a constant that only depends on ν2, δ, H∞
and α. From (2.10) and (2.17) ∂u(EB)(0, x, t) = ∂uB(0, x, t). Besides, from (2.17), E is invertible and C1,
thus an inequality similar to (2.17) holds for E1, and u = E−1(Eu). Therefore, using (2.43) together with

14



(2.40), the fact that r1 and r2 are bounded, and the expression of ∂uB(0, x, t) given in (2.13)–(2.14), one has

V̇a ≤−
[
f1e
−µxλ1u

2
1 − λ2f2eµxu22

]L
0

−
∫ L

0

(Eu)21e
−µx(−∂x(λ1f1)− ∂t(f1)) + (Eu)2eµx(∂x(λ2f2)− ∂t(f2))dx

− 2

∫ L

0

f1e
−µxγ1(Eu)21 + f2e

µxδ2(Eu)22 +
(
γ2f1e

−µx + δ1f2e
µx
)

(Eu)1(Eu)2dx

− µ min
x∈[0,L]

(λ1, λ2)Va+µ min
x∈[0,L]

(λ1, λ2)qZ2(t) + 2qZ(t)Ż(t)

+ C (‖u‖∞ + ‖∂xu‖∞) ‖u‖2L2(0,L)

+ C (‖u‖∞ + ‖∂xu‖∞)
3

+ C‖u‖∞(|u(t, 0)2|+ |u(t, L)2|).

(2.44)

As D1 and D2 are of class C2, denoting for simplicity k2 := ∂1D1(0, t), k1 := ∂1D2(0, 0, t) and k3 :=
−∂2D2(0, 0, t), and using (2.15)

V̇a ≤ −µ min
x∈[0,L]

(λ1, λ2)Va +
[
f1λ1k

2
2 − λ2f2

]
u22(t, 0)

− I1(u1(t, L), Z(t))−
∫ L

0

I2((Eu)1, (Eu)2)dx

+ C (‖u‖∞ + ‖∂xu‖∞)
(
‖u‖2L2(0,L) + (‖u‖∞ + ‖∂xu‖∞)

2
+ (|u(t, 0)2|+ |u(t, L)2|)

)
,

(2.45)

where I1 and I2 denote the following quadratic forms

I1(x, y) =
(
λ1f1(L)e−µL − λ2f2(L)eµLk21

)
x2 +

(
q

√
H1

g
k3 − λ2f2(L)eµLk23 − µ min

x∈[0,L]
(λ1, λ2)q

)
y2

+ (2λ2f2(L)eµLk3k1 − q

√
H1

g
(k1 − 1))xy,

I2(x, y) = ((−λ1f1)x + 2f1γ1(t, x)− ∂tf1) e−µxx2 + ((λ2f2)x + 2f2δ2(t, x)− ∂tf2) eµxy2

+ 2
(
γ2f1e

−µx + δ1f2e
µx
)
xy.

(2.46)

We can perform similarly with Vb and Vc, to do this observe that ∂tu and ∂2ttu are respectively solutions of

∂t(∂tu) +A(u, x, t)∂x(∂tu) + (∂uB(u, x, t))(∂tu) + (∂tA(u, x, t) + ∂uA(u, x, t).∂tu)∂xu + ∂tB (u, x, t) = 0
(2.47)

∂t(∂
2
ttu) +A(u, x, t)∂x(∂2ttu) + (∂uA(u, x).∂2ttu)∂xu + (∂uB(u, x))(∂2ttu),

+ 2∂u(∂tA(u, x, t)).∂tu)∂xu + (∂2ttA(u, x, t) + 2∂uA(u, x).∂tu∂x(∂tu) + ∂tA(u, x, t)∂x(∂tu)

+ ((∂2uA(u, x).∂tu).∂tu)∂xu + ∂2ttB(u, x) + ∂u(∂tB(u, x)).∂tu + (∂2uB(u, x).∂tu)(∂tu) = 0,

(2.48)

which are very similar to (2.8), as they only differ by quadratic perturbations or terms involving a time
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derivative of (H1, V1). We get then

V̇ = V̇a + V̇b + V̇c ≤ −µ min
x∈[0,L]

(λ1, λ2)V +
[
f1λ1k

2
2 − λ2f2

] (
u22(t, 0) + (∂tu2(t, 0))2 + (∂2ttu2(t, 0))2

)
− I1(u1(t, L), Z)− I1(∂tu1(t, L), Ż)− I1(∂2ttu1(t, L), Z̈)

−
∫ L

0

I2((Eu)1, (Eu)2) + I2((E∂tu)1, (E∂tu)2) + I2((E∂2ttu)1, (E∂
2
ttu)2)dx

+ C (‖u‖∞ + ‖∂xu‖∞)
(
‖u‖2L2(0,L) + ‖∂tu‖2L2(0,L) + ‖∂2ttu‖2L2(0,L) + (‖u‖∞ + ‖∂xu‖∞)

2

+|u2(t, 0)2|+ (|u1(t, L)|+ |Z|)2 + |∂tu2(t, 0)2|+ (|∂tu1(t, L)|+ |Ż|)2 + |∂2ttu2(t, 0)2|+ (|∂2ttu1(t, L)|+ |Z̈|)2
)

+ Cδ
(
|u2(t, 0)|2 + (|u1(t, L)|+ |Z|)2 + |∂tu2(t, 0)|2 + (|∂tu1(t, L)|+ |Ż|)2

)
+ CδV.

(2.49)

The two last terms come from the successive differentiations of the boundary conditions (2.15), together
with (2.29), or the terms in (2.47)–(2.48) involving a time derivative of A or B. One can see that three
identical quadratic form appears in the integral in ((E∂itu)1, (E∂

i
tu)2), i = 0, 1, 2, as well as three identical

quadratic form at the boundaries in (∂itu1(t, L), ∂itZ), i = 0, 1, 2, and three identical terms proportional
respectively to (∂itu2(t, 0)), i = 0, 1, 2. Thus a sufficient condition to have V decreasing strictly would be
that the square terms and the forms that appear at the boundaries are negative-definite and the quadratic
form in the integral is negative, i.e. the three following conditions:

1. Condition at 0
λ2f2(0)

λ1f1(0)
> k22. (2.50)

2. Condition at L

λ1f1(L)

λ2f2(L)
> k21, (2.51a)

(
λ1f1(L)− λ2f2(L)k21

)(
q

√
H1

g
− λ2f2(L)k3

)
k3 −

(
λ2f2(L)k3k1 −

1

2
q

√
H1

g
(k1 − 1)

)2

> 0.

(2.51b)

3. Condition from the integral

((−λ1f1)x + 2f1γ1(t, x)− ∂tf1) > 0, (2.52a)

((−λ1f1)x + 2f1γ1(t, x)− ∂tf1) ((λ2f2)x + 2f2δ2(t, x)− ∂tf2)

− (γ2f1 + δ1f2)
2
> 0, ∀ (t, x) ∈ [0, T ]× (0, L).

(2.52b)

Let assume for the moment that (2.50)–(2.52) are satisfied for any δ ∈ (0, δ3) where δ3 is a positive constant.
Then, as the inequalities (2.50)–(2.52) are strict, by continuity there exist µ > 0 such that the square terms
and the quadratic forms I1 at the boundaries and the quadratic forms I2 in the integral are positive definite.
And there exists ν3 ∈ (0, ν2) and δ4 ∈ (0, δ3) such that, for any ν ∈ (0, ν3), and any δ ∈ (0, δ4),

V̇ ≤ −µmin
[0,L]

(λ1, λ2)V + CδV + C
(

(‖u‖∞ + ‖∂xu‖∞)
2
)
, (2.53)

where C is a positive constant depending only on the system. Note that here, the cubic boundary terms
that appeared in (2.49) have been compensated by the strictly negative quadratic boundary terms, taking
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ν sufficiently small and using (1.21). Choosing δ5 ∈ (0, δ4) such that δ5 < µmin[0,L](λ1, λ2)/4C, for any
δ ∈ (0, δ5) one has

V̇ ≤ −3

4
µmin

[0,L]
(λ1, λ2)V + C

(
(‖u‖∞ + ‖∂xu‖∞)

2
)
. (2.54)

Now, if we assume in addition that (2.20) hold, using (1.21), and Sobolev inequality, there exists ν4 ∈ (0, ν3]
such that, for any ν ∈ (0, ν4),

C
(

(‖u‖∞ + ‖∂xu‖∞)
2
)
≤ µ

4
min
[0,L]

(λ1, λ2)V, (2.55)

thus, setting γ = µmin[0,L](λ1, λ2),

V̇ ≤ −γ
2
V. (2.56)

which shows the exponential decay of V and ends the proof of Theorem 1.3.

In other words, all that remains to do is to find f1, f2 and q such that (2.50)–(2.52) are satisfied and such
that V satisfies (2.20). In order to find such function we are now going to use Lemma 2.2. To understand
the link between Lemma 2.2 and the three conditions (2.50)–(2.52), observe that the condition (2.52) give
rise to a differential inequation, which, as it will appear later on, is linked to the differential equation solved
by Lemma 2.2. Then (2.50) and (2.51) can be seen as boundary conditions/values of the solution of this
differential inequation.

From Lemma 2.2, we know that there exists a solution on [0, L] to equation (2.24), namely λ2φ/λ1. Therefore,
as [0, L] is a compact set, there exists ε1 such that for any ε ∈ [0, ε1) there exists a solution fε(t, x) to the
following system

∂xfε(t, x) =

(
φγ2
λ1

+
δ1
φλ2

(fε)
2 +

√
g

H1
∂tH1

)
+ ε,

fε(0) =
λ2(t, 0)

λ1(t, 0)
+ ε,

(2.57)

and moreover (t, x, ε) → fε(t, x) is of class C0 and ∂xfε(t, x) as well. This is a classical result on ODE due
to Peano (see e.g. [16][Chap. 5, Th 3.1]). From (2.57), ∂tfε satisfies the following equation

∂x∂tfε = 2
δ1
φλ2

fε∂tfε +

(
φγ2
λ1

)
t

+

(
δ1
φλ2

)
t

f2ε +

√
g

H1
∂2ttH1 −

1

2

√
g

H3
1

(∂tH1)2. (2.58)

We used here that, from Proposition 1.1 and Remark 1.1, (H1, V1) ∈ C0([0,+∞);H3(0, L)), and from
(1.4), ∂t∂xH1 = −∂2x(HV ) and ∂t∂xV1 = ∂x

(
−V1∂xV1 − g∂xH1 − (kV 2

1 /H1 − gC)
)
. Thus ∂2ttH1 belongs to

C0([0, T ]×H1(0, L)), and (γ1, γ2, δ1, δ2) belong to C1([0, T ]×H1(0, L)). Using (2.58), we have

∂tfε(t, x) =∂tfε(t, 0) exp

(∫ x

0

2
δ1
φλ2

fε(t, y)dy

)
+

∫ x

0

exp

(∫ x

y

2
δ1
φλ2

fε(t, ω)dω

)((
φγ2
λ1

)
t

+

(
δ1
φλ2

)
t

f2ε +

√
g

H1
∂2ttH1 −

1

2

√
g

H3
1

(∂tH1)2
)
dy.

(2.59)

Instead of seeing the function fε as a solution of an ODE with a parameter t, one can see it as a solution
of an ODE with parameters λ1, λ2, γ2, δ1, ∂tH1 and ε that we denote gε(x, λ1, λ2, γ1, δ1, ∂tH1). From
[16][Theorem 2.1] gε is continuous with these parameters and with ε. But from (1.12), (1.13), and (2.29), all
these parameters are bounded and therefore belong to a compact set when t ∈ [0,+∞). Thus,

ε→ gε(x, λ1(t), λ2(t), γ1(t), δ1(t), ∂tH1(t)) = fε(t, x) (2.60)

is uniformly continuous in ε for (t, x) ∈ [0,∞)× [0, L]. This, together with (2.59) implies that
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∣∣∣∣∫ x

0

exp

(∫ x

y

2
δ1
φλ2

fε(t, ω)dω

)
∂t(∂y(H1V1))dy

∣∣∣∣
≤ C0 max

(
‖∂tH1‖C1([0,+∞);L∞(0,L)), ‖∂tV1‖C1([0,+∞);L∞(0,L))

)
,

(2.61)

where C0 is a constant that only depends on L, H∞, α, and is continuous with ε ∈ [0, ε1).
Similarly there exists a constant C1 > 0 depending only on L, H∞ and α such that

‖∂tφ1‖L∞((0,+∞)×(0,L)≤ C1 max
(
‖∂tH1‖C1([0,+∞);L∞(0,L)), ‖∂tV1‖C1([0,+∞);L∞(0,L))

)
, (2.62)

and similarly for φ2. This, together with the definition of λ1 and λ2 given by (2.23), (2.59), and using the
continuity of ε→ fε on [0, ε1) (recall that this continuity is uniform with respect to (t, x) ∈ [0,+∞)× [0, L]),
we get that there exists C > 0 depending only on H∞, α and ε and continuous with ε on [0, ε1) such that

|∂tfε(t, x)| ≤ (|∂tfε(t, 0)|+ max
(
‖∂tH1‖C1([0,+∞);L∞(0,L)), ‖∂tV1‖C1([0,+∞);L∞(0,L))

)
)C(ε). (2.63)

But, from (2.57) ∂tfε(t, 0) = (λ2/λ1)t, thus using (2.29) we obtain

|∂tfε(t, x)| ≤ δC2(ε), (2.64)

where C2 is again a constant that only depends on ε, α and H∞ and is continuous with ε on [0, ε1). We
can now restrict ourselves to ε ∈ [0, ε1/2] and then C2 can be chosen independent of ε by simply taking its
maximum on [0, ε1/2]. Recall that from Lemma 2.2 we have, f0 = φλ2/λ1, and(

φγ2
λ1

+
δ1
φλ2

f20 +

√
g

H1
∂tH1

)
> 0. (2.65)

Recall that we still have not chosen the bound δ ∈ (0, δ0) on ‖∂tH1‖C1([0,∞);L∞(0,L)) and
‖∂tV1‖C1([0,∞);L∞(0,L)) given in (2.29). From the assumptions on kp and kI , i.e. (1.25), and (2.16), and
recalling that k1 = ∂1D2(0, 0, t) and k3 = −∂2D2(0, 0, t), one has

k21 <

(
λ1(L)

λ2(L)

)2

, k3 > 0. (2.66)

Thus, using (2.23),

η1 := min

((
1

|k1|
− λ2(L)

λ1(L)

)
, 1− λ2(L)

λ1(L)

)
> 0. (2.67)

As ε→ fε(t, x) is uniformly continuous with ε for (t, x) ∈ [0,∞)× [0, L], there exists ε2 ∈ (0, ε1/2) such that
for any (t, x) ∈ [0,∞)× [0, L]

|fε2(t, x)− f0(t, x)| ≤ φ(t, L)η1, (2.68)

and (
φγ2
λ1

+
δ1
φλ2

f2ε2 +

√
g

H1
∂tH1

)
> 0. (2.69)

Note that ε2 depends a priori on δ from (2.69). However, from Lemma 2.2 we can in fact choose ε2 inde-
pendent of δ and depending only on an upper bound of δ (for instance δ0 given by Lemma 2.2). This is
important as, in the following, we will choose a δ that may depends on ε.

We select f1 and f2 in the following way:

f1(t, x) =
φ21

λ1fε2(t, x)
> 0,

f2(t, x) = φ22
fε2(t, x)

λ2
> 0,

(2.70)
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and we can now check that the condition (2.52) is verified for δ small enough as

(−λ1f1)x = −2
(φ1)xλ1f1

φ1
+ φ21

∂xfε2(t, x)

f2ε2(t, x)
. (2.71)

Thus from (2.22)

− (λ1f1)x + 2γ1f1 = φ21
∂xfε2
f2ε2

(2.72)

and similarly

(λ2f2)x + 2δ2f2 = (φ22fε2(t, x))x − (φ22)xfε2(t, x)

= φ22∂xfε2 .
(2.73)

Therefore, from (2.57), (2.72), and (2.73), one has

(−(λ1f1)x + 2γ1f1 − ∂tf1)((λ2f2)x + 2δ2f2 − ∂tf2) =

(
φ1φ2
fε2

)2((
φγ2
λ1

+
δ1
φλ2

f2ε2 +

√
g

H1
∂tH1

)
+ ε2

)2

− ∂xfε2
(
φ21
f2ε2

∂tf2 + φ22∂tf1

)
+ (∂tf1)(∂tf2).

(2.74)

But we have

∂tf1 = 2
(∂tφ1)φ1
λ1fε2

− (
∂tλ1
λ21fε2

+
∂tfε2
λ1f2ε2

)φ21, (2.75)

and besides, from (1.4) and (2.29), there exists C3 > 0 depending only on α and H∞, and an upper bound
of δ (for instance δ0), such that

max(‖H1x‖L∞((0,+∞)×(0,L), ‖V1x‖L∞((0,+∞)×(0,L)) ≤ C3. (2.76)

Thus, using (2.14) and (2.23), there exists C4 > 0 depending only on α and H∞, and δ0 (but not on δ) such
that

max(‖φ1‖L∞((0,+∞)×(0,L), ‖φ−1‖L∞((0,+∞)×(0,L)) < C4, (2.77)

and similarly for φ2. Observe now that, from f0 = λ2φ/λ1 and (2.77), |f0| and 1/|f0| can be bounded by a
constant depending only on α, H∞, and δ0. Thus from (2.68)

1/C5 ≤ ‖fε2‖L∞((0,+∞)×(0,L) ≤ C5, (2.78)

where C5 only depends on α, H∞ and δ0. And therefore, from (2.23), (2.64), (2.62), and (2.78) one has

|∂tf1| ≤ C6δ, (2.79)

and similarly
|∂tf2| ≤ C7δ, (2.80)

where C6 and C7 are constants that only depend on α, H∞ (and δ0). We now select the bound on
max (|∂tH1|, |∂tV1|): we select δ3 ∈ (0, δ0) such that, for any δ ∈ [0, δ3] and any (t, x) ∈ [0,∞)× [0, L],

C6C
2
5C

2
4δ < ε2, (2.81)

and

ε22 + 2ε2 inf
x∈[0,L],t∈[0,+∞),ε∈(0,ε2)

(
φγ2
λ1

+
δ1
φλ2

f2ε +

√
g

H1
∂tH1

)
>

(
φγ2
λ1

+
δ1
φλ2

X2 +

√
g

H1
δ + ε2

)(
C6

φ21
X2

+ C7φ
2
2

)(
X

φ1φ2

)2

δ

+ 2

√
g

H1

(
φγ2
λ1

+
φ−1δ1
λ2

X2

)
δ +

(
X

φ1φ2

)2

C7C6δ
2,

(2.82)
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for any x ∈ [0, L] and any X ∈ [1/C5, C5]. Observe that this is obviously possible as ε2 > 0 and, when
δ3 = 0, (2.82) is verified and the inequality is strict. Then, from (2.22), (2.77), (2.74), (2.78)–(2.82),

(−(λ1f1)x + 2γ1f1 − ∂tf1)((λ2f2)x + 2δ2f2 − ∂tf2) >

(
φ1φ2
fε2

)2(
φγ2
λ1

+
δ1
φλ2

f2ε2

)2

=

(
γ2
λ1
f1 +

δ1
λ2
f2

)2

,

(2.83)

which is exactly the second inequality of (2.52). Besides, from (2.25) and (2.81),

(−(λ1f1)x + 2γ1f1 − ∂tf1) =φ21
∂xfε2
f2ε2

− ∂tf1

=
φ21
f2ε2

((
φγ2
λ1

+
δ1
φλ2

f2ε2 +

√
g

H1
∂tH1

)
+ ε2 −

∂tf1f
2
ε2

φ21

)
> 0.

(2.84)

We can now check that (2.50) and (2.51) are also verified thanks to the choice of ε2 and η1. Indeed, using
(2.57) and (2.16), one has

λ2(0)f2(t, 0)

λ1(0)f1(t, 0)
= f2ε2(t, 0) =

(
λ2(0)

λ1(0)
+ ε2

)2

>

(
λ2(0)

λ1(0)

)2

= k22. (2.85)

This explains our choice of initial condition for fε2 . Now, from (2.68), one has

λ1(t, L)f1(t, L)

λ2(t, L)f2(t, L)
=
φ2(t, L)

f2ε2(L)
>

1(
λ2(t,L)
λ1(t,L)

+ η1

)2 , (2.86)

and from the definition of η1 given by (2.67),

η1 +
λ2(L)

λ1(L)
= min

(
1

|k1|
, 1

)
. (2.87)

Therefore
λ1(t, L)f1(t, L)

λ2(t, L)f2(t, L)
> max(k21, 1), (2.88)

and in particular the condition (2.51a) is verified. Let us now look at condition (2.51b). So far we have not
selected the positive constant q. We want to show that there exists q > 0 such that the condition (2.51b)
is satisfied. Observe that the left-hand side of (2.51b) can be seen as a polynomial in q, and the condition
(2.51b) can be rewritten as

P (q) :=− q2

4

H1

g
(k1 − 1)

2
+ q

√
H1

g
k3
(
λ1f1(L)− λ2f2(L)(k21 − k1(k1 − 1))

)
− (λ1f1(L)) (λ2f2(L)) k23

=− q2

4

H1

g
(k1 − 1)

2
+ q

√
H1

g
k3 (λ1f1(L)− λ2f2(L)k1))− (λ1f1(L)) (λ2f2(L)) k23 > 0.

(2.89)

From (2.88) λ1f1(t, L) > λ2f2(t, L)k1 and from (2.66) k3 > 0. Thus the real roots of P are positive if they
exist. This implies that there exists a positive constant q such that (2.51b) is satisfied if the discriminant of
P is positive. Denoting its discriminant by ∆,

∆ =
H1

g
k23λ

2
2f2(t, L)2

[(
λ1f1(L)

λ2f2(L)
− k1

)2

−
(
λ1f1(L)

λ2f2(L)

)
(k1 − 1)

2

]
. (2.90)
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Let us introduce h : X → (X − k1)2 − X(k1 − 1)2. The function h is a second order polynomial with
a positive dominant coefficient and observe that its roots are k21 and 1. Thus h is increasing strictly on
[max(k21, 1),+∞). Hence, using (2.88),

∆ =
H1

g
k23λ

2
2f2(t, L)2h(

λ1f1(L)

λ2f2(L)
)

>
H1

g
k23λ

2
2f2(t, L)2h(max(k21, 1)) = 0.

(2.91)

This proves that there exists q > 0 such that (2.51b) is satisfied, and we select such q. All it remains to do
now is to show that the function (U, z)→ V (t,U, z), which is now entirely selected, satisfies (2.20).

From (1.13) and (1.12) we know that for any (t, x) ∈ [0,∞)× [0, L],√
gH∞ > λ2 > α, 2

√
gH∞ > λ1 > α. (2.92)

Besides, from the definition of φ1 and φ2 given by (2.22), (2.14) and the bound (1.13), (1.12), there exists a
constant C8 that only depends on δ, α and H∞ such that

1

C8
≤ ‖φ1‖∞ ≤ C8,

1

C8
≤ ‖φ2‖∞ ≤ C8. (2.93)

Thus, using that f0 = λ2φ/λ1, (2.70), (2.68), (2.93), and (2.92), there exists c1 > 0 constant independent of
U and z such that, for any (U, z) ∈ H2(0, L)× R,

c1
(
‖U‖H2(0,L) + |z|

)
≤ V (t, (U, z)) ≤ 1

c1

(
‖U‖H2(0,L) + |Z|

)
∀ t ∈ [0,+∞), (2.94)

which is exactly (2.20). This concludes the proof of Theorem 1.3.

3 Conclusion

In this paper we gave simple conditions on the design of a single PI controller to ensure the exponential
stability of the nonlinear Saint-Venant equations with arbitrary friction and slope in the H2 norm. These
conditions apply when the inflow is an unknown constant, in that case the system has steady-states and
any of them are stable. But they also apply when the inflow is time-dependant and slowly variable. In that
case, no steady-states exists and one has to stabilize other target states. When the values of the target state
are known at end of the river, we have exponential stability of the target state. Otherwise, we have the
Input-to-State stability with respect to the variation of the inflow disturbance. These sufficient conditions
are found using a local quadratic entropy and, to the best of our knowledge, are less restrictive than any of
the conditions that existed so far, even in the linear case. In [8] it was shown that, in absence of friction and
slope, these conditions were optimal for the linear case. However, so far there is no answer when there is
some slope or friction and whether these conditions are optimal or not would be a very interesting issue for
a further study. Its possible application to a network of channels would also be a matter of interest. Finally,
many stabilizing devices for finite dimensional systems also use a PID control with an additional derivative
term. It has been shown in [12] that this control cannot ensure exponential stability for an homogeneous
hyperbolic equation. It would be an interesting question to know whether a filtering on the derivative term
could enable to recover the stability for infinite dimensional system and whether this would enable a faster
stabilization than the PI control.

Acknowledgment

The author would like to thank Jean-Michel Coron for his constant support and his advices. The author
would like to thank Sebastien Boyaval for many fruitful discussions. The author wishes also to thank Eric
Demay, Peipei Shang, Shengquan Xiang and Christophe Zhang for fruitful discussions. Finally the author
would like to thank the ANR project Finite4SoS (ANR 15-CE23-0007) and the french Corps des IPEF.

21



A Proof of Proposition 1.10

This appendix uses many computations that are very similar to the computations in Section 2, but in a
simpler way. Thus, in order to avoid writing two times the same thing and to keep the proof relatively short,
some steps might be quicker in this appendix. Let T1 > 0 and to be chosen later on. As (H0(0), V0(0)) satisfies
(1.9), there exists νa > 0 such that for ν ∈ (0, νa), F ((H0

1 , V
0
1 )T ) has two distinct nonzero eigenvalues. Recall

that F is given by (2.7) and that that ν is the bound on ‖H0
1 − H0(0), V 0

1 − V0(0)‖H2(0,L). Besides, from
(1.8) (H0(t, ·), V0(t, ·)) can be seen as the solution of a system of ODE with a parameter t in the initial
condition. Thus, as ∂tQ0 ∈ C2([0,+∞)) and the slope C satisfies C ∈ C2([0, L]), using (1.6) and [16][Chap.
5, Theorem 3.1], (H0, V0) ∈ C3([0, T1]×C3([0, L])) and there exists a constant C depending only on H∞, α
and an upper bound of δ, such that,

‖∂itH0, ∂
i
tV0‖C2([0,L]) ≤ C

∣∣∣∣∣
i∑

n=1

∂nt Q0

∣∣∣∣∣ , ∀ i ∈ [1, 3], (A.1)

and in particular
‖∂tH0, ∂tV0‖C2([0,T1];C2([0,L])) ≤ C‖∂tQ0‖C2(0,+∞). (A.2)

Thus [28][Theorem 2.1] can still be used on (H1 −H0) and there exist δ0(T1) > 0 and ν0(T1) ∈ (0, νa) such
that, if ν ∈ (0, ν0(T1)) and δ ∈ (0, δ0(T1)), there exists a unique solution (H1, V1) ∈ C0([0, T1];H2(0, L))2 to
the system (1.4)–(1.5). Besides (H1, V1) satifsfies an estimate as (1.21) but with (H1, V1) instead of (H,V )
and (H0, V0) instead of (H1, V1). We denote by C(T1) the associated constant. Let us define h1 := H1 −H0

and v1 := V1 − V0. We transform (h1, v1)T into w = (w1, w2)T using the change of variables defined by
(2.1)–(2.5) with H0 and V0 instead of H1 and V1. Thus we obtain

∂tw +A0(w, x)∂xw +B0(w, x) + S0

(
∂tH0

∂tV0

)
= 0,

w1(t, 0) =H1(w2(t, 0), Q0(t)−Q0(0)),

w2(t, L) =H2(w2(t, L)),

(A.3)

where A0, B0 and S0 have the same expression as A, B and S (given by(2.9), (2.10), (2.6)) but with (H0, V0)
instead of (H1, V1). Similarly we define

λ01 = V0 +
√
gH0, λ

0
2 =

√
gH0 − V0, (A.4)

and φ0, defined as φ but with (H0, V0) instead of (H1, V1). Similarly as in Appendix C,

H′2(0) = −λ01(L)/λ02(L), H′1(0) = −λ02(0)/λ01(0), (A.5)

which is of the form (2.15) with vG = 0 and Z = 0. Before going any further, note that we can perform the
same computations as in Section 2 with no problem, as the proof in Section 2 only used Proposition 1.1 to get
that (H1, V1) exists for any time and that (1.13) and Lemma 2.3 hold, but we will see now that such claims are
true for H0 and V0. The existence of (H0, V0) was already shown in section 1 and (1.9) is exactly (1.13) with
(H0, V0) instead of (H1, V1). Finally, (A.2) is exactly the equivalent of Lemma 2.3 for (H0, V0). We define
now the Lyapunov fonction candidate V := Va(w(t, x), t)+Vb(w(t, x), t)+Vc(w(t, x), t)+Vd(w(t, x), t) where
Va, Vb and Vc are defined in (2.27), (2.30), with f1 and f2 chosen as f1 := (φ01)2/(λ01η) and f2 := (φ02)2η/(λ02),
where η is a function such that there exists a constant ε > 0 independent of w such that

η′ =

∣∣∣∣γ02λ01 +
δ01
λ02
η2
∣∣∣∣+ ε,∀ x ∈ [0, L],

η(0) =
λ02(0)

λ01(0)
φ0(0) + ε.

(A.6)

Note that η exists as, for any t ∈ [0,+∞), (φ(t, ·)0λ02(t·)/λ01(t·)) is a solution of

∂xf =

∣∣∣∣γ02λ01 +
δ01
λ02
f2
∣∣∣∣ ,∀ x ∈ [0, L], (A.7)
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this can be proved as in Lemma 2.2, and this case was actually shown in [19]. Note that from (1.6), (1.8)
and (1.9), (H0)x and (V0)x can be bounded by above and by below by constants that only depends on H∞,
α and an upper bound of Q0 (which can also be expressed only with H∞, α from (1.9)). Therefore, looking
at their definition, the function f1 and f2 can also be bounded by above and below by constants that only
depends on H∞, α and ε. Thus there exist c1 > 0 and c2 > 0 depending only on H∞ and α, ε and µ such
that

c1‖h1(t, ·), v1(t, ·)‖2H2(0,L) ≤ V (t) ≤ c2‖h1(t, ·), v1(t, ·)‖2H2(0,L),∀ t ∈ [0, T1]. (A.8)

Consequently, by differentiating V exactly as in (2.33)–(2.49), and from (A.3), we obtain that there exists
µ > 0, ν1 ∈ (0, ν0(T1)) and δ3 > 0 such that, for any ‖h1(0, ·), v1(0, ·)‖H2(0,L) ≤ ν1, and ‖∂tQ0‖C2([0,∞)) ≤ δ,
where δ ∈ (0, δ3),

V̇ ≤− µV +

∫ L

0

2f1w1(S0

(
∂tH0

∂tV0

)
)1 + 2f2w2(S0

(
∂tH0

∂tV0

)
)2dx,

+

∫ L

0

2f1∂tw1(S0

(
∂2ttH0

∂2ttV0

)
)1 + 2f2∂tw2(S0

(
∂2ttH0

∂2ttV0

)
)2dx,

+

∫ L

0

2f1∂
2
ttw1(S0

(
∂3tttH0

∂3tttV0

)
)1 + 2f2∂

2
ttw2(S0

(
∂3tttH0

∂3tttV0

)
)2dx.

(A.9)

Thus, using Cauchy-Schwarz inequality, (A.8), and (A.1) there exists C1 > 0 depending only on H∞, α and
an upper bound of µ such that

V̇ (t) ≤ −µV (t) + C1|∂tQ0(t) + ∂2ttQ0(t) + ∂3tttQ0(t)|V 1/2(t), ∀ t ∈ [0, T1]. (A.10)

and in particular
V̇ (t) ≤ −µV (t) + C1‖∂tQ0‖C2([0,t])V

1/2(t), ∀ t ∈ [0, T1]. (A.11)

Let us define Veq := (C1δ/µ)2. From (A.11), if V (t) > 2Veq, then there exists a constant k > 0 such that

V̇ (t) < −kV 1/2(t). We now choose δ such that
√

2C1δ/(µ
√
c1) < ν1. Thus, from (A.11) and as c1, c2, C1

and µ do not depend on T1, we can choose T1 large enough such that

V (T1) ≤ 2Veq ≤ c1ν21 , (A.12)

which implies that
‖h1(T1, ·), v1(T1, ·)‖C2(0,L) ≤ ν1 (A.13)

and therefore there exists a unique solution (h1, v1) ∈ C0([T1, 2T1], H2(0, L)), with initial condition
(h1(T1, ·), v1(T1, ·)) (we use the same existence Theorem ([28][Theorem 2.1])) and, noting that V (T1) ≤ 2Veq
implies V (2T1) ≤ 2Veq, this analysis still hold. We can do similarly for any [nT1, (n + 1)T1] with n ∈ N,
thus, as (H0, V0) ∈ C0([0,+∞), H2(0, L)), there exists a unique solution (H1, V1) ∈ C0([0,+∞), H2(0, L))
and (A.10) holds for any t ∈ [0,+∞). Therefore denoting g(t) = V (t)eµt, we deduce from (A.10) that

g′(t) ≤ C1|∂tQ0(t) + ∂2ttQ0(t) + ∂3tttQ0(t)|e
µt
2

√
g(t). (A.14)

Thus

V 1/2(t) ≤ V 1/2(0)e−
µt
2 +

C1

2

(∫ t

0

|∂tQ0(s) + ∂2ttQ0(s) + ∂3tttQ0(s)|e
µs
2 ds

)
e−

µt
2 . (A.15)

This implies the ISS property

‖h1(t, ·), v1(t, ·)‖H2((0,L);R2) ≤
√
c2
c1
‖h1(0, ·), v1(0, ·)‖H2((0,L);R2)e

−µt2

+
C1

2
√
c1

(∫ t

0

|∂tQ0(s) + ∂2ttQ0(s) + ∂3tttQ0(s)|e
µs
2 ds

)
e−

µt
2 .

(A.16)

This ends the proof of Proposition 1.1. To extend this proof to the Hp norm for p > 2, note that using the
same argument (A.2) holds with the Cp([0, T1];C3([0, L])) norm in the left-hand side and the Cp norm in
the right-hand side. We can can define V3, ..., Vp on Hp(0, L)×R×R+ as in (2.30) such that Vk(w(t, x), t) =
Va(∂kt w(t, x), t), for any k ∈ [3, p]. Then (A.8) holds with V := Va + Vb + Vc + V3 + ...Vp and the Hp norm,
and the rest can done done identically.
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B Proof of Theorem 1.4

Theorem 1.4 result from the proof of Theorem 1.3. Note that the boundary conditions (1.16) can be written
under the form (1.18) with (H0, V0) instead of (H1, V1) where the only difference is that Z satisfies now

Ż = Hc −H(t, L) +
f(t)

vGkI
, (B.1)

where f(t) = Hc∂tV0(t, L). The rest of the proof can be conducted as in Appendix A for (H1, V1), with a
priori two differences: (H,V ) satisfies the boundary conditions of the form (1.18) and not of the form given
in (1.4), and Ż satisfies (B.1) instead of (1.15). However, note that in Appendix A the only assumption used
on the boundary conditions of the transformed system is that they are of the form (2.3), which is still the
case here. Thus, the only difference with Appendix A are some additional terms when Ż is used, which is
in the boundary terms in the derivative of the Lyapunov function. There exists therefore δ4 > 0 and ν2 > 0
such that, for any ‖h1(0, ·), v1(0, ·)‖H2(0,L) ≤ ν2, and ‖∂tQ0‖C2([0,∞)) ≤ δ, where δ ∈ (0, δ4),

V̇ (t) ≤ −γ
2
V (t)+C1|∂tQ0(t) + ∂2ttQ0(t) + ∂3tttQ0(t)|V 1/2 + 2qZf(t) + 2qŻf ′(t) + 2qZ̈f ′′(t), (B.2)

where C1 is a constant only depending on H∞, α, ν2 and δ4. Using Lemma 2.3, there exists a constant
C > 0 depending only on H∞, α, ν2 and δ4 such that

V̇ ≤ −γ
2
V + CV 1/2|∂tQ0(t) + ∂2ttQ0(t) + ∂3tttQ0(t)|. (B.3)

The same argument as in Appendix A, (A.14)–(A.16), implies directly the ISS property (1.30).

C Boundary conditions (2.15) and (2.16)

In this appendix we justify the boundary conditions (2.15) with (2.16) after the change of variables. From
the boundary conditions (2.3) in the physical coordinate (h, v), together with the definition of u1 and u2
given in (2.5), one has at x = L

u1(t, L) = B2(h(t, L), Z(t), t) +

√
g

H1
h(t, L) =: F1(h(t, L), Z(t), x, t),

u2(t, L) = B2(h(t, L), Z(t), t)−
√

g

H1
h(t, L) =: F2(h(t, L), Z(t), x, t).

(C.1)

From its definition, F1 is C1 and, from (2.4), and (1.21), there exists ν1 ∈ (0, ν0) such that, for any
t ∈ [0,∞), ∂1F0(0, Z(t), t) 6= 0. Thus F1 is locally invertible with respect to its first variable, thus there
exists ν2 ∈ (0, ν1) such that h(t, L) = F−11 (u1(t, L), Z(t), t), where F−11 denotes the inverse with respect to
the first variable. Besides, as F1 is of class C2 with respect to the two first variables, F−11 is also of class
C2. Then, using (C.1)

u2(t, L) = F2(F−11 (u1(t, L), Z(t), t), Z(t), t) =: D2(u1(t, L), Z(t), t). (C.2)

and, using (2.4),

∂1D2(0, 0, t) = ∂1F2(0, 0, t)∂1(F−11 )(0, 0, t)

=
∂1F2(0, 0, t)

∂1F1(0, 0, t)
=
∂1B2(0, 0, t)−

√
g
H1

∂1B2(0, 0, t) +
√

g
H1

= −λ1(L)− vG(1 + kp)

λ2(L) + vG(1 + kp)
.

(C.3)
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Now, as ∂2F−11 (0, 0, t) = −∂2F1(0, 0, t)/∂1F1(0, 0, t), using (2.4),

∂2D2(0, 0, t) = ∂1F2(0, 0, t)∂2(F−11 )(0, 0, t) + ∂2F2(0, 0, t)

= −∂1F2(0, 0, t)
∂2F1(0, 0, t)

∂1F1(0, 0, t)
+ ∂2F2(0, 0, t)

= ∂2B2(0, 0, t)

1−
∂1B2(0, 0, t)−

√
g
H1

∂1B2(0, 0, t) +
√

g
H1


=− vGkI

H1(t, L)

(
2
√
gH1(t, L)

vG(1 + kp) + λ2(t, L)

)
.

(C.4)

The same can be done in x = 0 in a slightly easier way, as B1 does not depends on Z. This gives (2.15) and
(2.16).

D Proof of Lemma 2.2

In this appendix we prove Lemma 2.2. The proof is very similar to the proof given in [19] in the special case
where (H1, V1) is a steady state. However, it happens that the proof actually does not need the relation
(H1V1)x = 0 which is no longer true when (H1, V1) is not a steady-state. Let f = (λ2φ/λ1), we have from
(2.22):

∂xf =
φ

λ21
(λ1∂xλ2 − λ2∂xλ1 + λ2γ1 + λ1δ2)

=
φ

λ21

(
(V1 +

√
gH1)(−V1x +

√
gH1

2H1
H1x)− (−V1 +

√
gH1)(V1x +

√
gH1

2H1
H1x)

+(
√
gH1 − V1)

(
3

4

√
g

H1
H1x +

3

4
V1x +

kV

H1
− kV 2

1

2H2
1

√
H1

g

)

+(V1 +
√
gH1)

(
−3

4

√
g

H1
H1x +

3

4
V1x +

2kV

H1
+
kV 2

1

2H2
1

√
H1

g

))

=
φ

λ21

(√
gH1

(
−2V1x +

3

2
V1x +

2kV

H1

)
− V1

(
3

2

√
g

H1
H1x −

kV 2
1

H2
1

√
H1

g
−
√

g

H1
H1x

))

=
φ

λ21

(
2kV

H1

√
gH1 +

kV 2
1

H2
1

√
H1

g
V1 +

1

2

√
g

H1
∂tH1

)
.

(D.1)

And on the other hand:(
φγ2
λ1

+
δ1
λ2φ

f2
)

=
φ

λ21
(λ1γ2 + λ2δ1)

=
φ

λ21

(
2kV

H1

√
gH1 +

kV 2
1

H2
1

√
H1

g
V1 + V1

√
g

H1

H1x

2
+ V1x

√
gH1

2

)

=
φ

λ21

(
2kV

H1

√
gH1 +

kV 2
1

H2
1

√
H1

g
V1 −

1

2

√
g

H1
∂tH1

)
.

(D.2)

Thus from (D.1) and (D.2)

∂xf =

(
φγ2
λ1

+
δ1
λ2φ

f2 +

√
g

H1
∂tH1

)
. (D.3)
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And there exists δ0 such that, if ‖∂tH1‖L∞((0,+∞)×(0,L)δ0,

φ

λ21

(
2kV1
H1

√
gH1 +

kV 2
1

H2
1

√
H1

g
V1 +

√
g

H1
∂tH1

)
> 0, ∀ x ∈ [0, L], t ∈ [0,+∞), (D.4)

and, from (D.1) and (D.3),

∂xf =

∣∣∣∣φγ2λ1 +
δ1
λ2φ

f2 +

√
g

H1
∂tH1

∣∣∣∣ , (D.5)

this ends the proof of Lemma 2.2.
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