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DRINFELD DOUBLE OF QUANTUM GROUPS, TILTING MODULES
AND Z-MODULAR DATA ASSOCIATED TO COMPLEX REFLECTION

GROUPS

by

ABEL LACABANNE

In this article, we construct a categorification of some Fourier matrices associated to
complex reflections groups by Malle [Mal95]. To any spetsial imprimitive complex re-
flection group W , he attached a set of unipotent characters, which is in bijection with
the set of unipotent characters of the correnponding finite reductive group when W is a
Weyl group. He also defined a partition of these characters into families, the analogue of
Lusztig’s non abelian Fourier transform and eigenvalues of the Frobenius. In [Cun07],
Cuntz showed that for each family, this defines a so-called Z-modular datum. Therefore,
one can associate a Z-algebra, free of finite rank over Z. If the stucture constants of such
an algebra R are positive, it is a classical problem to find a tensor category, with some ex-
tra structure, whose Grothendieck ring is precisely R . However, these structure constants
belong in general to Z and the categorification is more involved.

In the case of cyclic groups, Bonnafé and Rouquier [BR17] constructed a tensor trian-
gulated category which categorifies the modular datum attached to the non-trivial family
of the cyclic spets. In the present article, we construct fusion categories with symmetric
center equivalent to Rep(G , z ) for G a cyclic group and z ∈G satisfying z 2 = 1. If the order
of G is even, we can therefore construct a new category, which is enriched over super-
spaces, so that its Grothendieck group have negative structure constants in general. As
shown in [Lac18], this defines a Z-modular datum.

Our construction is as follows: we consider the representation theory of a quantum
double associated to the complex simple Lie algebra sln+1 at an even root of unity. Simi-
larly to the usual construction for Uq (g) at a root of unity, we consider the semisimplifi-
cation of the full subcategory of tilting modules. A partial modularization of an integral
subcategory gives then the category with symmetric center Rep(G , z ).

We investigate this construction in full generality considering any simple complex Lie
algebra g and any root of unity. Indeed, some fusion datum constructed by Broué, Malle
and Michel for spetsial exceptional complex reflection groups can be categorified by con-
sidering similar categories in type B .

Acknowledgements. — I warmly thank my advisor C. Bonnafé for many fruitful discus-
sions and his constant support. I also thank R. Rouquier for suggesting me to consider
supercategories in this work.



2 A. LACABANNE

1. Quantum double of Borel algebras

In this section, we recall the construction of the quantum enveloping algebraUq (g) as-
sociated to a simple complex Lie algebra g. Our main object of study will be the quantum
double of a Borel algebra b of g, which will be denoted by Dq (g).

1.1. Notations. — Let g be a simple complex Lie algebra of rank n . We fix a Cartan
subalgebra h of g. Let Φ⊆ h∗ be the set of roots of g relative to h, Π= {α1, . . . ,αn} be a basis
of Φ, Φ+ be the positive roots relative to Π. Let b+ (resp. b−) be the Borel subalgebra of
g relative to Π (resp. −Π). We denote by h the Coxeter number of g and by h∨ the dual
Coxeter number of g.

Fix a symmetric bilinear form 〈·, ·〉 on h∗ normalized such that 〈α,α〉= 2 for short roots.
Let D =maxα,β∈Φ

〈α,α〉
〈β ,β 〉 . We have D = 1 in type A, D or E , D = 2 in type B ,C or F4 and D = 3

in type G2. For α ∈Φ, we define α∨ ∈ h∗ by

α∨ =
2α

〈α,α〉
.

Let Q be the root lattice, P the weight lattice, P + the cone of dominant weights, Q∨ the
coroot lattice and P ∨ the coweight lattice

P = {λ ∈ h∗ | 〈λ,α∨〉 ∈Z, ∀α ∈Π}
P + = {λ ∈ h∗ | 〈λ,α∨〉 ∈N, ∀α ∈Π}
p∨ = {λ ∈ h∗ | 〈λ,α〉 ∈Z, ∀α ∈Π}

Let ($i )1≤i≤n be the dual basis of (α∨i )1≤i≤n with respect to the form 〈·, ·〉 and ρ be the half
sum of positive roots. We call the $i ’s the fundamental weights. The element ρ is in P
and is equal to the sum of fundamental weights [Bou68, VI.1.10 Proposition 29].

We denote by Q+ the monoid spanned by Π. We denote by ≤ the usual partial order on
P : λ≤µ if and only if µ−λ ∈Q+.

For any α ∈Φ, denote by sα the reflection in the hyperplane orthogonal to α

sα(v ) = v −〈v,α∨〉α= v −〈v,α〉α∨, ∀v ∈ h∗.

For 1≤ i ≤ n denote by si the reflection sαi
. All these reflections generate the Weyl group

W of g and for any w ∈W , w (Φ) = Φ. The form 〈·, ·〉 is then invariant with respect to W .
We denote by l (w ) the length of w ∈W relative to the generating set (si )1≤i≤n .

For q an indeterminate, define the following elements of Z[q , q−1]

[n ]q =
q n −q−n

q −q−1
, n ∈Z, [n ]q !=

n
∏

k=1

[k ]q , n ∈N and
�

n
k

�

q
=

k
∏

i=1

[n +1− i ]q
[i ]q

, n ∈Z, k ∈N.

We denote by [n ]ξ (resp. [n ]ξ!, resp.
�

n
k

�

ξ

) the evaluation of [n ]q (resp. [n ]q !, resp.
�

n
k

�

q
)

at an invertible element ξ of a ring. Let L be the smallest integer such that L〈λ,µ〉 ∈Z for
any λ,µ ∈ P . Let s be an indeterminate and let q = s L . We will work over the field Q(s )
and the ringA =Z[s , s−1]. We define qi = q

〈αi ,αi 〉
2 .

1.2. Positive and negative parts of the usual quantum enveloping algebra. — We start
by defining the usual positive and negative part of the quantum groupUq (g).
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Definition 1.1. — Let Uq (b+) be the associative unital Q(s )-algebra with generators K ±1
i , Ei ,

1≤ i ≤ n , and defining relations

Ki K j = K j Ki , Ki K −1
i = 1= K −1

i Ki , ∀1≤ i , j ≤ n ,

Ki E j = q 〈αi ,α j 〉E j Ki , ∀1≤ i , j ≤ n ,

1−〈αi ,α∨j 〉
∑

r=0

(−1)r
�

1−〈αi ,α∨j 〉
r

�

qi

E
1−〈αi ,α∨j 〉−r

i E j E r
i = 0, ∀1≤ i 6= j ≤ n .

There exist several Hopf algebra structures on Uq (b+), and we choose the following
comultiplication ∆, counit ε and antipode S :

∆(Ki ) = Ki ⊗Ki ε(Ki ) = 1 S (Ki ) = K −1
i ,

∆(Ei ) = 1⊗Ei +Ei ⊗Ki ε(Ei ) = 0 S (Ei ) =−Ei K −1
i .

Definition 1.2. — Let Uq (b−) be the associative unital Q(s )-algebra with generators L±1
i , Fi ,

α ∈Φ, and defining relations

L i L j = L j L i , L i L−1
i = 1= L−1

i L i , ∀1≤ i , j ≤ n ,

L i Fj = q−〈αi ,α j 〉Fj L i , ∀1≤ i , j ≤ n ,

1−〈αi ,α∨j 〉
∑

r=0

(−1)r
�

1−〈αi ,α∨j 〉
r

�

qi

F
1−〈αi ,α∨j 〉−r

i Fj F r
i = 0, ∀1≤ i 6= j ≤ n .

There exist severals Hopf algebra structures on Uq (b−), and we choose the following
comultiplication ∆, counit ε and antipode S :

∆(L i ) = L i ⊗ L i ε(L i ) = 1 S (L i ) = L−1
i ,

∆(Fi ) = L−1
i ⊗ Fi + Fi ⊗1 ε(Fi ) = 0 S (Fi ) =−L i Fi .

For λ=
∑n

i=1λiαi , we denote by Kλ (resp. Lλ) the element
∏n

i=1 K λi
i (resp.

∏n
i=1 Lλi

i ).

1.3. A Hopf pairing between Uq (b+) and Uq (b−). — The following is due to Drinfeld
[Dri87, Section 13] and has been studied by Tanisaki [Tan92].

Proposition 1.3. — There exists a unique bilinear form (·, ·):Uq (b+)×Uq (b−)→Q(s ) satisfying
for all x , x ′ ∈Uq (b+), y , y ′ ∈Uq (b−) and 1≤ i ≤ n

1. (x , y y ′) = (∆(x ), y ⊗ y ′),
2. (x x ′, y ) = (x ′⊗ x ,∆(y )),
3. (x , 1) = ε(x ), (1, y ) = ε(y ),
4. (Ki , L j ) = q 〈αi ,α j 〉,
5. (Ki , Fj ) = 0= (Ei , L j ),

6. (Ei , Fj ) =
δi , j

qi−q−1
i

.

This bilinear form endows the tensor product Uq (b−) ⊗Uq (b+) with a Hopf algebra
structure, which we denote by Dq (g), see [KS97, Section 8.2]. Using Sweedler notation
for the coproduct, the product of y1⊗ x1 and y2⊗ x2 inUq (b−)⊗Uq (b+) is given by

(y1⊗ x1)(y2⊗ x2) =
∑

(x1)(y2)

(x ′1, y ′2 )(x
′′′
1 ,S (y ′′′2 ))y1 y ′′2 ⊗ x ′′1 x2.
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Consequently, both Uq (b−)⊗ 1 and 1⊗Uq (b+) are subalgebras of Dq (g). In the following,
we identify Uq (b−) and Uq (b+) with their images in Dq (g) and will write y x instead of
y ⊗ x .

Proposition 1.4. — The algebra Dq (g) is the associative unital Q(s )-algebra with generators
K ±1

i , L±1
i , Ei and Fi , 1≤ i ≤ n and defining relations

Ki K j = K j Ki , Ki K −1
i = 1= K −1

i Ki ,

L i L j = L j L i , L i L−1
i = 1= L−1

i L i ,

Ki L j = L j Ki ,

Ki E j = q 〈αi ,α j 〉E j Ki , Ki Fj = q−〈αi ,α j 〉Fj Ki ,

L i E j = q 〈αi ,α j 〉E j L i , L i Fj = q−〈αi ,α j 〉Fj L i ,

[Ei , Fj ] =δi , j
Ki − L−1

i

qi −q−1
i

,

1−〈αi ,α∨j 〉
∑

r=0

(−1)r
�

1−〈αi ,α∨j 〉
r

�

qi

E
1−〈αi ,α∨j 〉−r

i E j E r
i = 0, 1≤ i 6= j ≤ n ,

1−〈αi ,α∨j 〉
∑

r=0

(−1)r
�

1−〈αi ,α∨j 〉
r

�

qi

F
1−〈αi ,α∨j 〉−r

i Fj F r
i = 0, 1≤ i 6= j ≤ n .

The elements zi = Ki L−1
i are central andUq (g) is the quotient of Dq (g) by the Hopf ideal

generated by (zi −1)1≤i≤n .
Denote by Dq (g)<0 (resp. Dq (g)0, resp. Dq (g)>0) the subalgebra of Dq (g) generated

by (Ei )1≤i≤n (resp. (Fi )1≤i≤n , resp. (Ki , L i )1≤i≤n ). Multiplication yields an isomorphism
Dq (g)<0⊗Dq (g)0⊗Dq (g)>0 'Dq (g). It is worth mentioning that the coproduct and antipode
of Dq (g) do not restrict to Dq (g)<0 or Dq (g)>0.

The square of the antipode is given by the conjugation by any element of the form
LλK2ρ−λ, λ ∈Q as it is easily checked on the generators.

1.4. Graduation. — There exists a Q -graduation on Dq (g) given by deg(Ki ) = 0= deg(L i ),
deg(Ei ) =αi and deg(Fi ) =−αi . For λ ∈Q , we denote by Dq (g)λ the homogeneous elements
of degree λ. We have

Dq (g)λ = {v ∈Dq (g) | Ki v = q 〈λ,αi 〉v Ki , ∀1≤ i ≤ n}.

The coproduct, the counit and the antipode respect the grading. Moreover, the same
lemma as [Jan96, lemma 4.12] shows that for µ ∈Q , µ≥ 0

∆
�

Dq (g)
>0
µ

�

⊆
⊕

0≤ν≤µ
Dq (g)

>0
ν ⊗KνDq (g)

>0
µ−ν

and
∆
�

Dq (g)
<0
−µ

�

⊆
⊕

0≤ν≤µ
L−1
ν Dq (g)

<0
−(µ−ν)⊗Dq (g)

<0
−ν.

Therefore, for x ∈Dq (g)>0
µ , there are elements ri (x ) and r ′i (x ) in Dq (g)>0

µ−αi
such that
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(1) ∆(x ) ∈ 1⊗ x +
n
∑

i=1

Ei ⊗Ki ri (x ) +
∑

0≤ν≤µ
ν6∈Π

Dq (g)
>0
ν ⊗KνDq (g)

>0
µ−ν,

and

(2) ∆(x ) ∈ x ⊗Kµ+
n
∑

i=1

r ′i (x )⊗Kµ−αi
Ei +

∑

0≤ν≤µ
µ−ν6∈Π

Dq (g)
>0
ν ⊗KνDq (g)

>0
µ−ν.

Similarly, we can define ρi (y ) and ρ′i (y ) for y ∈Dq (g)<0
−µ by the following

∆(y ) ∈ y ⊗1+
n
∑

i=1

L−1
µ−αi

Fi ⊗ρi (y ) +
∑

0≤ν≤µ
µ−ν6∈Π

L−1
ν Dq (g)

<0
−(µ−ν)⊗Dq (g)

<0
−ν,

and

∆(y ) ∈ L−1
µ ⊗ y +

n
∑

i=1

L−1
αi
ρ′i (y )⊗ Fi +

∑

0≤ν≤µ
ν6∈Π

L−1
ν Dq (g)

<0
−(µ−ν)⊗Dq (g)

<0
−ν.

The values of ri , r ′i , ρi and ρ′i can be computed by induction. Compare with [Jan96,
6.14,6.15].

Lemma 1.5. — Let µ,µ′ ∈Q , µ≥ 0 and µ′ ≥ 0.
1. For all x ∈Dq (g)>0

µ and x ′ ∈Dq (g)>0
µ′ ,

ri (x x ′) = q−〈αi ,µ〉x ri (x
′) + ri (x )x

′ r ′i (x x ′) = x r ′i (x
′) +q−〈αi ,µ′〉r ′i (x )x

′.

2. For all y ∈Dq (g)<0
−µ and y ′ ∈Dq (g)<0

−µ′ ,

ρi (y y ′) = yρi (y
′) +q−〈αi ,µ′〉ρi (y )y

′ ρ′i (y y ′) = q−〈αi ,µ〉yρ′i (y
′) +ρ′i (y )y

′.

These elements can also be used to compute some commutators.

Lemma 1.6. — Let µ ∈Q , µ≥ 0. Let x ∈Dq (g)>0
µ and y ∈Dq (g)<0

−µ. Then

x Fi − Fi x =
Ki ri (x )− r ′i (x )L

−1
i

qi −q−1
i

and

Ei y − y Ei =
ρi (y )Ki − L−1

i ρ
′
i (y )

qi −q−1
i

.

Proof. — We only show the first formula, the second one is proven similarly. If x = 1 or
x = Ei , the formula is satisfied. Now, supposing that it is true for x and x ′, we show it for
x x ′:

x x ′Fi − Fi x x ′ = x (x ′Fi − Fi x ′) + (x Fi − Fi x )x ′

= (qi −q−1
i )
−1(x (Ki ri (x

′)− r ′i (x
′)L−1

i ) + (Ki ri (x )− r ′i (x )L
−1
i )x

′)

= (qi −q−1
i )
−1(Ki (q

−〈αi ,µ〉x ri (x
′) + ri (x )x

′)− (x r ′i (x
′) +q−〈αi ,µ′〉r ′i (x )x

′))

= (qi −q−1
i )
−1(Ki ri (x x ′)− r ′i (x x ′)L−1

i ),

where we used Lemma 1.5 in the last equality.
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1.5. Some properties of the pairing. — We gather here some well known properties of
the pairing.

Proposition 1.7. — Let x ∈Dq (g)>0, y ∈Dq (g)<0 and λ,µ ∈Q . Then
1. (Kλx , Lµy ) = (Kλ, Lµ)(x , y ).
2. Suppose λ,µ≥ 0. If x is of weight λ and y of weight −µ then (x , y ) = 0 if λ 6=µ.

Proof. — For the first equality, it suffices to show it for x and y homogeneous. It then
follows easily from (1), (2) and the fact that (Kλ, y ′) = 0 = (x ′, Lµ) for any x ′ ∈ Dq (g)>0 and
y ′ ∈Dq (g)<0.

For the second assertion, we proceed by induction on ht(λ) =
∑n

i=1λi , where λ =
∑n

i=1λiαi . We can suppose that x is a product of the generators Ei . The case ht(λ) = 1, i.e.
λ ∈Π is easily proved by induction on ht(µ). Then, writing x = Ei x ′ and

∆(y ) =
∑

0≤ν≤µ
L−1
ν y ′−(µ−ν)⊗ y ′′−ν, y ′−ν, y ′′−ν ∈Dq (g)

<0
−ν,

one has

(Ei x ′, y ) =
∑

0≤ν≤µ
(x ′, L−1

ν y ′−(µ−ν))(Ei , y ′′−ν) = (x
′, y ′−(µ−αi )

)(Ei , y ′′−αi
).

As λ 6=µ, the two terms can not be simultaneously non-zero.

Using these two facts and an easy induction, one can show that, for 1≤ i ≤ n , and r ∈N,

(E r
i , F r

i ) =
q
− r (r−1)

2
i [r ]qi

!

(qi −q−1
i )r

.

We now turn to the compatibility between the pairing and the ri , r ′i , ρi and ρ′i defined
in section 1.4.

Lemma 1.8. — Let x ∈Dq (g)>0
µ and y ∈Dq (g)<0

−µ. One has

(x , Fi y ) = (Ei , Fi )(ri (x ), y ), (x , y Fi ) = (Ei , Fi )(r
′

i (x ), y ),

(Ei x , y ) = (Ei , Fi )(x ,ρ′i (y )), (x Ei , y ) = (Ei , Fi )(x ,ρi (y )).

Proof. — It follows easily from (1), (2) and Proposition 1.7.

We end this section with [Tan92, Proposition 2.1.4]

Proposition 1.9. — The restriction of the pairing to Dq (g)>0×Dq (g)<0 is non-degenerate.

1.6. Basis for Dq (g). — We introduce the divided power E (r )i and F (r )i for 1≤ i ≤ n :

E (r )i =
E r

i

[r ]qi

and F (r )i =
F r

i

[r ]qi

.

The following is the analogue of [Lus90, Theorem 3.1] for Dq (g).

Proposition 1.10. — For all 1≤ i ≤ n , there exists a unique Q(s )-algebra isomorphism Ti such
that:

Ti (Kλ) = Ksi (λ) Ti (Lλ) = L si (λ), ∀λ ∈Q ,
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and, for 1≤ j ≤ n , setting r =−〈α j ,α∨i 〉,

Ti (E j ) =











−Fi L i if i = j ,
r
∑

k=0

(−1)k q−k
i E (r−k )

i E j E (k )i otherwise,

Ti (Fj ) =











−K −1
i Ei if i = j ,

r
∑

k=0

(−1)k q k
i F (k )i Fj F (r−k )

i otherwise,

We also have the analogue of [Lus90, Theorem 3.2] for Dq (g).

Proposition 1.11. — The (Ti )1≤i≤n satisfy the braid relations and therefore define a morphism
from the braid group of W to the algebra automorphisms of Dq (g).

Choose now a reduced decomposition w0 = si1
si2
· · · sir

of the longest element w0 of W .
The positive roots are then

Φ+ = {si1
si2
· · · sik

(αik+1
) | 0≤ k ≤ r −1}.

For any α= si1
si2
· · · sik

(αik+1
) ∈Φ+ define

Eα = Ti1
Ti2
· · ·Tik

(Eik+1
) and Fα = Ti1

Ti2
· · ·Tik

(Fik+1
)

Note that Eα (resp Fα) is homogeneous of degree α (resp. −α). The choice of a reduced
decomposition of w0 gives an order on Φ+, namely si1

si2
· · · sik

(αik+1
)´ si1

si2
· · · sik+1

(αik+2
) for

every k . All products will be ordered with this order.

Proposition 1.12 ([Lus90, Theorem 6.7]). — The elements
∏

α∈Φ+
E (nα)α , nα ∈N

form a Q(s )-basis of Dq (g)>0.
The elements

∏

α∈Φ+
F (nα)α , nα ∈N

form a Q(s )-basis of Dq (g)<0.

We compute now the dual basis of Dq (g)>0 with respect to (·, ·). The following can be
found in [Jan96, 8.29].

Proposition 1.13. — For any α ∈Φ+, let aα, bα ∈N. We have
�

∏

α∈Φ+
E aα
α ,

∏

α∈Φ+
F bα
α

�

=
∏

α∈Φ+
δaα,bα

q
− aα(aα−1)

2
α [aα]qα !

(qα−q−1
α )aα

.

Therefore, the dual basis of
�

∏

α∈Φ+ E (nα)α

�

(nα)∈NΦ+
is

�

∏

α∈Φ+
q

nα(nα−1)
2

α [nα]qα !(qα−q−1
α )

nαF (nα)α

�

(nα)∈NΦ+
.
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1.7. Quasi-R -matrix. — The algebraDq (g) is not quasi-triangular. Nevertheless, we con-
struct a quasi-R -matrix which will endow the usual category of modules with a braiding
(see section 2.3). We adapt the exposition of Jantzen [Jan96, Chapter 7] to the case of
Dq (g).

For any µ ∈ Q , µ ≥ 0, fix a basis (uµi )i∈Iµ of Dq (g)µ and let (vµi )i∈Iµ the dual basis in
Dq (g)−µ with respect to the pairing D . Set

Θµ =
∑

i∈Iµ

u
µ
i ⊗ v

µ
i ∈Dq (g)⊗Dq (g).

Note that this does not depend on the choice of the basis of Dq (g)µ. A homogeneous basis
of Dq (g)>0 and its dual with respect to D have already been computed above. Following
[Ros90, A.1], we define an algebra automorphism Ψ of Dq (g)⊗Dq (g) by

Ψ(Ki ⊗1) = Ki ⊗1, Ψ(1⊗Ki ) = 1⊗Ki ,

Ψ(L i ⊗1) = L i ⊗1, Ψ(1⊗ L i ) = 1⊗ L i ,

Ψ(Ei ⊗1) = Ei ⊗ L−1
i , Ψ(1⊗Ei ) = K −1

i ⊗Ei ,

Ψ(Fi ⊗1) = Fi ⊗ L i , Ψ(1⊗ Fi ) = Ki ⊗ Fi ,

Proposition 1.14. — Let µ ∈Q , µ≥ 0. We have

Θµ(Ki ⊗Ki ) =Ψ(Ki ⊗Ki )Θµ,

Θµ(L i ⊗ L i ) =Ψ(L i ⊗ L i )Θµ,

Θµ(1⊗Ei ) +Θµ−αi
(Ei ⊗Ki ) =Ψ(Ei ⊗1)Θµ−αi

+Ψ(Ki ⊗Ei )Θµ,

Θµ(Fi ⊗1) +Θµ−αi
(L−1

i ⊗ Fi ) =Ψ(1⊗ Fi )Θµ−αi
+Ψ(Fi ⊗ L−1

i )Θµ.

Proof. — We follow closely the proof of [Jan96, Lemma 7.1]. The first two equations are
trivial. We will use the following fact: for any µ ∈ Q , µ ≥ 0, and any x ∈ Dq (g)>0

µ and
y ∈Dq (g)<0

−µ we have

x =
∑

i

(x , v
µ
i )u

µ
i and y =

∑

i

(uµi , y )vµi .

We set ci = (qi −q−1
i )
−1, and we have

(1⊗Ei )Θµ−Θµ (1⊗Ei ) =
∑

j

u
µ
j ⊗

�

Ei v
µ
j − v

µ
j Ei

�

= ci

∑

j

u
µ
j ⊗

�

ρi

�

v
µ
j

�

Ki − L−1
i ρ

′
i

�

v
µ
j

��

by Lemma 1.6

= ci

∑

j ,k

u
µ
j ⊗

��

u
µ−αi

k ,ρi

�

v
µ
j

��

v
µ−αi

k Ki −
�

u
µ−αi

k ,ρ′i
�

v
µ
j

��

L−1
i v

µ−αi

k

�

= ci

∑

j ,k

u
µ
j ⊗

��

u
µ−αi

k Ei , v
µ
j

�

v
µ−αi

k Ki −
�

Ei u
µ−αi

k , v
µ
j

�

L−1
i v

µ−αi

k

�

by Lemma 1.8

=
∑

k

�

u
µ−αi

k Ei ⊗ v
µ−αi

k Ki −Ei u
µ−αi

k ⊗ L−1
i v

µ−αi

k

�

=Θµ−αi
(Ei ⊗Ki )−

�

Ei ⊗ L−1
i

�

Θµ−αi
,

as expected because Ψ(Ei ⊗1) = Ei ⊗L−1
i and Ψ(Ki ⊗Ei ) = 1⊗Ei . A similar calculation show

the fourth formula.
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Define, as in [Lus10, Chapter 4], the completion Dq (g)⊗̂Dq (g) of Dq (g)⊗Dq (g) with re-
spect to the descending sequence of spaces

(Dq (g)⊗Dq (g))N =Dq (g)⊗
∑

ht(µ)≥N

Dq (g)
>0Dq (g)

0Dq (g)
<0
−µ+

∑

ht(µ)≥N

Dq (g)
<0Dq (g)

0Dq (g)
>0
µ ⊗Dq (g).

The morphism Ψ extends by continuity to Dq (g)⊗̂Dq (g) and we consider the following
element of Dq (g)⊗̂Dq (g)

Θ =
∑

µ∈Q
µ≥0

Θµ.

Then we can rewrite Proposition 1.14 as

Θ∆(u ) =
�

Ψ ◦∆op
�

(u )Θ

for any u ∈Dq (g).
We also have the analogue of [Jan96, Lemma 7.4].

Lemma 1.15. — For µ ∈Q , µ≥ 0, we have

(∆⊗ id)(Θµ) =
∑

0≤ν≤µ
(Θν)13(1⊗Kν⊗1)(Θµ−ν)23,

and
(id⊗∆)(Θµ) =

∑

0≤ν≤µ
(Θν)13(1⊗ L−1

ν ⊗1)(Θµ−ν)12.

Proof. — First, note that for any x ∈Dq (g)>0
µ

∆(x ) =
∑

0≤ν≤µ
i , j

�

x , v νi v
µ−ν
j

�

uνi ⊗Kνu
µ−ν
j ,

and for any y ∈Dq (g)<0
−µ

∆(y ) =
∑

0≤ν≤µ
i , j

�

uνi u
µ−ν
j , y

�

L−1
ν v

µ−ν
j ⊗ v νi .

Therefore

(∆⊗ id)
�

Θµ
�

=
∑

k

∆
�

u
µ
k

�

⊗ v
µ
k

=
∑

0≤ν≤µ
i , j ,k

�

u
µ
k , v νi v

µ−ν
j

�

uνi ⊗Kνu
µ−ν
j ⊗ v

µ
k

=
∑

0≤ν≤µ
i , j

uνi ⊗Kνu
µ−ν
j ⊗ v νi v

µ−ν
j

=
∑

0≤ν≤µ
(Θν)13(1⊗Kν⊗1)(Θµ−ν)23.

The proof of the other formula is similar.
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We can translate this last lemma as equalities in Dq (g)⊗̂Dq (g). Note that for any x ∈
Dq (g)>0

µ and y ∈Dq (g)<0
−µ, we have

Ψ(x ⊗1) = x ⊗ L−1
µ , Ψ(1⊗ x ) = K −1

µ ⊗ x ,

Ψ(y ⊗1) = y ⊗ Lµ, Ψ(1⊗ y ) = Kµ⊗ y .

Therefore, we have

(∆⊗ id)(Θ) =
∑

µ≥0

∑

ν+η=µ

�

Θη
�

13

�

1⊗Kη⊗1
�

(Θν)23

=
∑

µ≥0

∑

ν+η=µ
Ψ23

��

Θη
�

13

�

(Θν)23

=Ψ23 (Θ13)Θ23.

Similarly, we have
(id⊗∆)(Θ) =Ψ12 (Θ13)Θ12.

We now show that the element Θ is invertible. Set Γµ = (S ⊗ id)(Θµ)(Kµ ⊗ 1) and Γ =
∑

µ≥0 Γµ.

Lemma 1.16. — We have ΓΘ = 1=ΘΓ in Dq (g)⊗̂Dq (g).

Proof. — We show that for all µ≥ 0,
∑

λ+ν=µ

ΓλΘν =δµ,0,

and
∑

λ+ν=µ

ΘλΓν =δµ,0.

We start with the first formula. We may and will suppose that µ> 0. As
∑

λ+ν=µ

ΓλΘν =
∑

λ+ν=µ
i , j

S (uλi )Kλuνj ⊗ v λi v νj

is inDq (g)⊗Dq (g)<0
−µ, it suffices to show that applying id⊗(x , ·) gives zero, for all x ∈Dq (g)>0

µ .
But

∆(x ) =
∑

λ+ν=µ
i , j

D
�

x , v λi v νj
�

uλi ⊗Kλuνj ,

so the antipode axiom gives

0= ε(x ) =
∑

λ+ν=µ
i , j

D
�

x , v λi v νj
�

S (uλi )Kλuνj

as desired.
For the second equality, we again apply id⊗(x , ·) to show that

∑

λ+ν=µ

ΘλΓν =
∑

λ+ν=µ
i , j

uλi S (uνj )Kν⊗ v λi v νj = 0.
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The antipode axiom also gives

0= ε(x ) =
∑

λ+ν=µ
i , j

D
�

x , v λi v νj
�

uλi S (uνj )K−λ

which is, after multiplication by Kµ, the result expected.

We therefore have proven:

Proposition 1.17. — The element Θ ∈Dq (g)⊗̂Dq (g) is invertible and
– for all u ∈Uq (g) we have Θ∆(u ) = (Ψ ◦∆op)(u )Θ,
– (∆⊗ id)(Θ) =Ψ23(Θ13)Θ23,
– (id⊗∆)(Θ) =Ψ12(Θ13)Θ12.

Finally, we give an explicit form of Θ (compare with [CP94, 10.1.D])

Θ =
∏

α∈Φ+

�+∞
∑

n=0

q
n (n−1)

2
α [n ]qα !(qα−q−1

α )
n E (n )α ⊗ F (n )α

�

.

2. Representation theory at q generic

We now turn to the representation theory of the quantum group Dq (g), which is quite
similar to the one ofUq (g). We work over the field Q(s ).

2.1. Representations of Dq (g). — We will consider the categoryCq of finite dimensional
Dq (g)-modules M such that

M =
⊕

(λ,µ)∈P×P

M(λ,µ),

where M(λ,µ) denote the weight space of M associated to (λ,µ) ∈ P ×P :

M(λ,µ) = {m ∈M | Ki ·m = q
〈λ,α∨i 〉
i m , L i ·m = q

〈µ,α∨i 〉
i m , ∀1≤ i ≤ n}.

As Dq (g) is a Hopf algebra, Cq is a monoidal rigid abelian category. For (λ,µ) ∈ P ×P
and (λ′,µ′) ∈ P ×P , we write (λ′,µ′)≤ (λ,µ) if (λ′−λ,µ′−µ) =

∑

α∈∆nα(α,α)with nα ∈N.

Proposition 2.1. — A simple module M in Cq is a highest weight module.

Proof. — Let M be a simple module in Cq . Then, there exists a weight (λ,µ) of M such
that for all other weight (λ′,µ′) of M , we have (λ,µ) 6< (λ′,µ′). Such a weight exists because
M is finite dimensional. Pick a non-zero v ∈M(λ,µ). As, by choice of (λ,µ), (λ+αi ,µ+αi ) is
not a weight of M for any i , we have Ei m = 0 for ay i . Hence v is a highest weight vector.

Consider now the Dq (g)-module of M generated by v . As M is simple and v 6= 0, it is
the entire module M : M is a highest weight module.

Proposition 2.2. — Any highest weight (λ,µ) of a module in Cq satisfy λ+µ ∈ 2P +.

Proof. — Let M be a module in Cq and m ∈M a highest weight vector of weight (λ,µ).
Let 1≤ i ≤ n and consider the family (F (k )i m )k∈N of vectors in M . The vector F (k )i m being
of weight (λ,µ)− k (αi ,αi ) and M being finite dimensional, there exists k ∈ N such that
F (k )i m 6= 0 and F (k+1)

i m = 0. Let k be the smallest of these integers. As

[E , F (k+1)] = F (k )
q−k

i Ki −q k
i L−1

i

qi −q−1
i

,
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we have 0= [E , F (k+1)]m =
q
−k+〈λ,α∨i 〉
i −q

k−〈µ,α∨i 〉
i

qi−q−1
i

F (k )m . Therefore 〈λ+µ,α∨i 〉= 2k .

For any λ ∈ P , there exists a one-dimensional Dq (g)-module with unique (hence high-
est) weight (λ,−λ), which we denote by L (λ,−λ). The elements E and F necessarily acts
by 0 and the action of Ki (resp. L i ) is multiplication by q 〈λ,αi 〉 (resp. q−〈λ,αi 〉).

We denote by P̃ the subset of P ×P such that the sum of the two components is in 2P .
These are precisely the weights which appear as weights of objects of the category Cq .

Proposition 2.3. — For any (λ,µ) ∈ P ×P such that λ+µ ∈ 2P +, there exists a simple module
of highest weight (λ,µ).

Proof. — Using the classification ofUq (g)-modules (see [CP94, Proposition 10.1.1]), there
exists a simple Dq (g)-module of highest weight

�

λ+µ
2 , λ+µ2

�

. Tensoring this module with

L
�

λ−µ
2 ,−λ−µ2

�

, we obtain a simple module in Cq of highest weight (λ,µ).

Therefore, simple objects in Cq are classified by (λ,µ) ∈ P ×P such that λ+µ ∈ 2P +. We
denote P̃ + this set of weights and by L (λ,µ) the simple module of highest weight (λ,µ).
Note that we also have a construction of simple modules “à la Verma”.

Proposition 2.4. — The category Cq is semisimple.

Proof. — It suffices to show that there are no extension 0→ L →M →N → 0 of objects in
Cq with M indecomposable and L , N non-trivial. If such an extension exists, for 1≤ i ≤ n
the action of zi on M has a unique eigenvalue. Therefore, for any weight (λ,µ) of M ,
the value λ − µ does not depend on the weight and is in 2P . We tensorize the exact
sequence by the invertible object X = L

�

µ−λ
2 ,−µ−λ2

�

in order to obtain an exact sequence
of Uq (g)-modules. As the category of finite dimensional Uq (g)-modules is split, M ⊗X '
(L ⊗X )⊕ (N ⊗X ). Therefore M ' L ⊕M , contrary to our assumption.

There exists a faithful P -grading on the category Cq given by the action of the central
elements (zi )1≤i≤n

Cq =
⊕

ν∈P

Cq ,ν,

whereCq ,ν is additively generated by simple objects L (λ,µ)with λ−µ= 2ν, i.e. the simple
objects on which the action of the central elements (zi )1≤i≤n acts by 2ν. Each component
Cq ,ν is equivalent to the category of finite dimensional Uq (g)-modules: it is clear for the
trivial component Cq ,0 and tensoring by L (ν,−ν) gives an equivalence between Cq ,0 and
Cq ,ν.

2.2. Character formula. — We now write a character formula, which we obtain easily
using Weyl character formula (see [Hum78, 24.3]). We define an action of the Weyl group
W on P̃ as follows

si (λ,µ) = (λ,µ)−
1

2
〈λ+µ,α∨i 〉(αi ,αi ),

for any 1≤ i ≤ n . It is easily shown, by induction on the length of w ∈W that

w (λ,µ) =
�

w
�

λ+µ
2

�

+
λ−µ

2
, w

�

λ+µ
2

�

−
λ−µ

2

�

.
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We denote by e (λ,µ) ∈Z[P ×P ] the element of the group ring of P ×P over Z correspond-
ing to (λ,µ). The character of a module M in Cq is

χM =
∑

(λ,µ)∈P×P

dim(M(λ,µ))e
(λ,µ).

Almost every term of the sum are zero and the support of χM is included in P̃ .
The usual Weyl character formula gives the character of all simple modules in Cq of

the form L (λ,λ)with λ ∈ P +:

χ(λ,λ) =

∑

w∈W (−1)l (w )e (w (λ+ρ),w (λ+ρ))
∑

w∈W (−1)l (w )e (w (ρ),w (ρ))
.

As, for (λ,µ) ∈ P̃ , we have an isomorphism in Cq

L (λ,µ)' L
�

λ+µ
2

,
λ+µ

2

�

⊗ L
�

λ−µ
2

,−
λ−µ

2

�

,

the character of L (λ,µ) is

χ(λ,µ) =

∑

w∈W (−1)l (w )e
�

w
�

λ+µ
2 +ρ

�

,w
�

λ+µ
2 +ρ

��

∑

w∈W (−1)l (w )e (w (ρ),w (ρ))
e
�

λ−µ
2 ,− λ−µ2

�

,

which is therefore equal to

χ(λ,µ) =

∑

w∈W (−1)l (w )e (w (λ+ρ,µ+ρ))
∑

w∈W (−1)l (w )e (w (ρ,ρ)) .

We rewrite this formula by introducing the dot action w • (λ,µ) =w (λ+ρ,µ+ρ)− (ρ,ρ)
which stabilizes P ×P :

χ(λ,µ) =

∑

w∈W (−1)l (w )e (w •(λ,µ))
∑

w∈W (−1)l (w )e (w •(0,0))
.

2.3. Braiding. — Using the quasi-R -matrix of section 1.7, we endow the tensor category
Cq with a braiding.

First, as any element ofCq has a finite number of weights, we see that for N sufficiently
large and any µ ∈Q , µ ≥ 0 and ht(µ) ≥ N , the element Θµ of section 1.7 acts by 0 on any
tensor product of two elements of Cq . Therefore, for any M and M ′ in Cq , the action of
Θ defines a linear map

ΘM ,M ′ : M ⊗M ′→M ⊗M ′.

Note that this map is not Dq (g)-linear but satisfies for any u ∈Dq (g)

ΘM ,M ′ ◦∆(u ) = (Ψ ◦∆op)(u ) ◦ΘM ,M ′ ,

as linear endomorphisms of M ⊗M ′. This follows immediately from Proposition 1.14.
To construct the braiding, we need one more ingredient. For M and M ′ two objects

of Cq , we introduce a linear map fM ,M ′ : M ⊗M ′ → M ⊗M ′ defined on weight vectors
m ∈Mλ,µ and m ′ ∈M ′

λ′,µ′ by

fM ,M ′ (m ⊗m ′) = q 〈λ,µ′〉m ⊗m ′,

where we write q r = s L r for any r ∈ 1
LZ (recall that s in a L-th root of q , see Section 1.1).

Lemma 2.5. — For any u ∈ Dq (g)⊗Dq (g), we have the following equality as linear endomor-
phisms of M ⊗M ′

u ◦ fM ,M ′ = fM ,M ′ ◦Ψ(u ).



14 A. LACABANNE

Proof. — It suffices to show it on the generators of Dq (g)⊗Dq (g). It is trivial for Ki ⊗ 1,
L i ⊗1, 1⊗Ki and 1⊗ L i . We now verify it for Ei ⊗1. On the one hand,

�

fM ,M ′ ◦ (Ei ⊗ L−1
i )
�

|Mλ,µ⊗M ′
λ′ ,µ′
= q 〈λ+αi ,µ′〉−〈αi ,µ′〉(Ei ⊗1)|Mλ,µ⊗M ′

λ′ ,µ′
.

On the other hand,
�

(Ei ⊗1) ◦ fM ,M ′
�

|Mλ,µ⊗M ′
λ′ ,µ′
= q 〈λ,µ′〉(Ei ⊗1)|Mλ,µ⊗M ′

λ′ ,µ′
,

which concludes the proof for Ei ⊗1. The other cases are similar.

Denote by τ the twist of vector spaces and define

cM ,M ′ =τ ◦ fM ,M ′ ◦ΘM ,M ′ .

It is then a morphism in Cq between M ⊗M ′ and M ′ ⊗M . Indeed, for any u ∈ Dq (g) we
have

cM ,M ′ ◦u |M⊗M ′ =τ ◦ fM ,M ′ ◦ΘM ,M ′ ◦∆(u )|M⊗M ′

=τ ◦ fM ,M ′ ◦ (Ψ ◦∆op)(u )|M⊗M ′ ◦ΘM ,M ′

=τ ◦∆op(u )|M⊗M ′ ◦ fM ,M ′ ◦ΘM ,M ′

=∆(u )|M ′⊗M ◦ cM ,M ′

= u |M ′⊗M ◦ cM ,M ′ .

Proposition 2.6. — The morphisms c defined above endow Cq with a braiding: the hexagon
axioms are satisfied.

Proof. — We check that cM ,M ′⊗M ′′ = (idM ′⊗cM ,M ′′ ) ◦ (cM ,M ′ ⊗ idM ′′ ). It follows from the fol-
lowing calculations, where we denote by τ1,23 : M ⊗ (M ′⊗M ′′)→ (M ′⊗M ′′)⊗M the twist,
which is equal to τ23 ◦τ12:

cM ,M ′⊗M ′′ =τ1,23 ◦ fM ,M ′⊗M ′′ ◦ΘM ,M ′⊗M ′′

=τ23 ◦τ12 ◦ ( fM ,M ′′ )13 ◦ ( fM ,M ′ )12 ◦ (id⊗∆)(Θ)|M⊗M ′⊗M ′′

=τ23 ◦τ12 ◦ ( fM ,M ′′ )13 ◦ ( fM ,M ′ )12 ◦Ψ12 (Θ13) |M⊗M ′⊗M ′′ ◦Θ12|M⊗M ′⊗M ′′

=τ23 ◦τ12 ◦ ( fM ,M ′′ )13 ◦Θ13|M⊗M ′⊗M ′′ ◦ ( fM ,M ′ )12(ΘM ,M ′ ⊗ idM ′′ )

=τ23 ◦ ( fM ,M ′′ )23 ◦ (idM ′⊗ΘM ,M ′′ ) ◦τ12 ◦ ( fM ,M ′ )12(ΘM ,M ′ ⊗ idM ′′ )

= (idM ′⊗cM ,M ′′ ) ◦ (cM ,M ′ ⊗ idM ′′ ).

The other hexagon axiom is shown similarly.

2.4. Duality and pivotal structure. — The algebra Dq (g) being a Hopf algebra, for any
Dq (g)-module M in Cq , the space of linear forms has naturally a structure of left (resp.
right) dual denoted by M ∗ (resp. ∗M ), where the action of u ∈ Dq (g) on ϕ ∈ M ∗ (resp.
ϕ ∈ ∗M ) is given by

(u ·ϕ)(m ) =ϕ(S (u ) ·m ) (resp. (u ·ϕ)(m ) =ϕ(S−1(u ) ·m )).

Let (λ,µ) ∈ P̃ +. The simple module L (λ,µ) is isomorphic to L
�

λ+µ
2 , λ+µ2

�

⊗ L
�

λ−µ
2 ,−λ−µ2

�

and

L (λ,µ)∗ ' L
�

λ−µ
2

,−
λ−µ

2

�∗
⊗ L

�

λ+µ
2

,
λ+µ

2

�∗
.
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But the left dual of a simple Uq (g)-module L (κ,κ) is isomorphic to L (−w0(κ),−w0(κ)) and
the left dual of the invertible module L (κ,−κ) is clearly isomorphic to L (−κ,κ). Conse-
quently,

L (λ,µ)∗ ' L
�

µ−λ
2

,−
µ−λ

2

�

⊗ L
�

−w0

�

λ+µ
2

�

,−w0

�

λ+µ
2

��

' L (−w0(λ,µ)).

Similarly ∗L (λ,µ) ' L (−w0(λ,µ)), which also follows from the pivotal structure given be-
low.

As for any u ∈ Dq (g) we have S 2(u ) = K2ρu K −1
2ρ , we have for any λ ∈Q a pivotal struc-

ture given by

aλ,M :
§

M −→ M ∗∗

m 7−→ ϕ 7→ϕ((LλK2ρ−λ) ·m )
.

We will consider only the pivotal structure given by λ = 2ρ, i.e. we choose L2ρ as
pivotal element. This pivotal structure allows us to compute left and right quantum
dimensions of modules. It follows from the Weyl character formula that

dim+(L (λ,µ)) =

∑

w∈W (−1)l (w )q 〈2ρ,(w •(λ,µ))2〉
∑

w∈W (−1)l (w )q 〈2ρ,w •(0)〉

and

dim−(L (λ,µ)) =

∑

w∈W (−1)l (w )q−〈2ρ,(w •(λ,µ))2〉
∑

w∈W (−1)l (w )q−〈2ρ,w •(0)〉 .

As the actions of L2ρ and K2ρ coincide on anyUq (g)-module, the quantum dimensions
of Lq (κ,κ) viewed as a Dq (g)-module coincide with the quantum dimensions of Lq (κ,κ)
viewed as aUq (g)-module.

3. Specialization at a root of unity and tilting modules

The goal to this section is to construct a fusion category using the representations of
Dq (g). But the category Cq has an infinite number of simple objects. We adapt the con-
struction of the fusion categories attached to quantum groups at roots of unity to Dq (g).
Recall the notationA =Z[s , s−1].

3.1. Lusztig’s integral form. — We introduce a A -subalgebra of Dq (g) which we will
use to specialize Dq (g) at a root of unity. Consider the following elements of Dq (g):

�

Ki ; c
t

�

=
t
∏

r=1

q c−r+1
i Ki −q−c+r−1

i K −1
i

q r
i −q−r

i

,
�

L i ; c
t

�

=
t
∏

r=1

q c−r+1
i L i −q−c+r−1

i L−1
i

q r
i −q−r

i

,

�

Ki ; c ; L i

t

�

=
t
∏

r=1

q c−r+1
i Ki −q−c+r−1

i L−1
i

q r
i −q−r

i

,
�

zi ; c
t

�

=
t
∏

r=1

q c−r+1
i zi −q−c+r−1

i z−1
i

q r
i −q−r

i

for 1≤ i ≤ n , c ∈Z and t ∈N.

We define Dres
q (g) as the A -subalgebra generated by E (r )i , F (r )i , Ki , L i ,

�

Ki ; c
t

�

,
�

L i ; c
t

�

,
�

zi ; c
t

�

and
�

Ki ; c ; L i

t

�

, for 1 ≤ i ≤ n , c ∈ Z and t ∈ N. The coproduct, the counit and the

antipode of Dq (g) restrict to Dres
q (g) and endow Dres

q (g)with a structure of a Hopf algebra.
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The quotient of Dres
q (g) by the Hopf ideal generated by zi −1,

�

zi ; c
t

�

−
�

c
t

�

qi

,
�

Ki ; c ; L i

t

�

−
�

L i ; c
t

�

and
�

Ki ; c ; L i

t

�

−
�

Ki ; c
t

�

, for 1 ≤ i ≤ n is the usual Lusztig’s integral form of Uq (g)

(see [CP94, Section 9.3]).

The element of the form
�

Ki ; c ; L i

t

�

appears naturally in the following identity, proved

by induction

E
(p )
i F (r )i =

min(p ,r )
∑

t=0

F (r−t )
i

�

Ki ; 2t − r −p ; L i

t

�

E
(p−t )
i ,

for any 1≤ i ≤ n , r, s ∈N.
The following formulas for the coproduct will be useful.

Proposition 3.1. — Let 1≤ i ≤ n and t ∈N. Then

1. ∆
��

Ki ; 0
t

��

=
t
∑

r=0

�

Ki ; 0
t − r

�

K −r
i ⊗

�

Ki ; 0
r

�

K t−r
i ,

2. ∆
��

L i ; 0
t

��

=
t
∑

r=0

�

L i ; 0
t − r

�

L−r
i ⊗

�

L i ; 0
r

�

L t−r
i ,

3. ∆
��

Ki ; 0; L i

t

��

=
t
∑

r=0

�

Ki ; 0; L i

t − r

�

L−r
i ⊗

�

Ki ; 0; L i

r

�

K t−r
i ,

4. ∆
��

zi ; 0
t

��

=
t
∑

r=0

�

zi ; 0
t − r

�

z−r
i ⊗

�

zi ; 0
r

�

z t−r
i .

We denote by Dres
q (g)

>0 (resp. Dres
q (g)

0, resp. Dres
q (g)

<0) the intersection of Dres
q (g) with

Dq (g)>0 (resp. Dq (g)0, resp. Dq (g)<0).
It is not hard to show that for any 1≤ i ≤ n , the automorphism Ti restricts to Dres

q (g). As
in Section 1.6, we have:

Proposition 3.2 ([Lus90, Theorem 6.7]). — The elements
∏

α∈Φ+
E (nα)α , nα ∈N

form anA -basis of Dres
q (g)

>0.
The elements

∏

α∈Φ+
F (nα)α , nα ∈N

form anA -basis of Dres
q (g)

<0.

Note that the quasi-R -matrix at the end of Section 1.7 belongs in fact in Dres
q (g) and

the formula for its inverse show that it also belongs to Dres
q (g). We still denote by Θ this

element. Moreover, the algebra endomorphism Ψ of Dq (g)⊗Dq (g) restricts to an algebra
endomorphism of Dres

q (g)⊗D
res
q (g), which we still denote by Ψ. Therefore, we still have

the relations

Θ∆(u ) =
�

Ψ ◦∆op� (u )Θ, (id⊗∆)(Θ) =Ψ12(Θ13)Θ12, and (∆⊗ id)(Θ) =Ψ23(Θ13)Θ23.
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3.2. Specialization at a root of unity. — Let ξ ∈C be a root of unity of order l . Set l ′ = l
if l is odd and l ′ = l

2 if l is even so that l ′ is the order of ξ2. We fix ξ1/L an L-th root of ξ
and consider the morphism of rings

A −→ C
s 7−→ ξ1/L .

The specialization of Dq (g) at ξ is by definition the algebra Dξ(g) =Dres
q (g)⊗A C. Intro-

duce the integers li as the order of ξi = ξ
〈αi ,αi 〉

2 and set l ′i = li if li is odd and l ′i =
li
2 if li is

even so that l ′i is the order of ξ2
i .

The algebra Dξ(g) is generated by elements of the form

E (r )i , F (r )i , K ±1
i , L±1

i ,
�

Ki ; c
t

�

,
�

L i ; c
t

�

,
�

Ki ; c ; L i

t

�

and
�

zi ; c
t

�

,

for 1≤ i ≤ n , r, t ∈N and c ∈Z given by the images in Dξ(g) of the corresponding elements
of Dres

q (g). There exist some relations in Dξ(g) related to the order of the root of the ξi ’s as

E
l ′i
i = 0, F

l ′i
i = 0, K

2l ′i
i = 1, L

2l ′i
i = 1, K

l ′i
i = L

l ′i
i .

We denote by Θξ the specialization of Θ. It is still an invertible element of some comple-
tion ofDξ(g)⊗Dξ(g), and we have an algebra endomorphism Ψξ which is the specialization
of Ψ. They satisfy the usual relations

Θξ∆(u ) =
�

Ψξ ◦∆op� (u )Θξ, (id⊗∆)(Θξ) = (Ψξ)12((Θξ)13)(Θξ)12,

and (∆⊗ id)(Θξ) = (Ψξ)23((Θξ)13)(Θξ)23.

3.3. Representations at a root of unity. — The representation theory of Uξ(g), as well
the one of Dξ(g), is more involved. As explained in [CP94, 11.2.A], defining the weight
space of weight (λ,µ) of a Dres

q (g)-module M as

Mλ,µ = {m ∈M | Ki m = ξ〈λ,αi 〉m , L i m = ξ〈µ,αi 〉m , ∀1≤ i ≤ n}
is rather unsatisfactory: one can not distinguish the weight (λ,µ) form the weight (λ+
li$i ,µ) for example.

The weight space of weight (λ,µ) of M is then defined as

Mλ,µ =

�

m ∈M

�

�

�

�

Ki m = ξ
〈λ,α∨i 〉
i m , L i m = ξ

〈µ,α∨i 〉
i m ,

�

Ki ; 0
l ′i

�

m =
�

〈λ,α∨i 〉
l ′i

�

ξi

,

�

L i ; 0
l ′i

�

m =
�

〈µ,α∨i 〉
l ′i

�

ξi

, ∀1≤ i ≤ n

�

.

Proposition 3.3. — Let (λ,µ) and (λ′,µ′) two weights of a module M . Then Mλ,µ = Mλ′,µ′ if
and only if (λ,µ) = (λ′,µ′).

Proof. — We show that for ζ a root of unity of order d and with d ′ = d if d is odd, d ′ = d
2

if d is even, and r ∈Z, we can recover r knowing only
�

r
d ′

�

ζ

and ζr .

Lemma 3.4. — Let a , b ∈Nwith a ≥ b . Let a = a1d ′+a0 and b = b1d ′+b0 with 0≤ a0, b0 < d ′.
Then

�

a
b

�

ζ

= (−1)(d
′+1)(a1+1)b1

�

ζd ′
�(a1+1)b1+a1b0+a0b1

�

a1

b1

�

�

a0

b0

�

ζ

.
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Proof. — We start with the following equality, valid for any m ∈ N and X an indetermi-
nate

m−1
∏

k=0

�

1+ζ2k X
�

=
m
∑

k=0

ζk (m−1)
�

m
k

�

ζ

X k .

As {ζ−2k | 0≤ k < d ′} is the set of d ′th-roots of 1 and
d ′−1
∏

k=0

�

1+ζ2k X
�

= ζd ′(d ′−1)
d ′−1
∏

k=0

�

X +ζ−2k
�

we have
d ′−1
∏

k=0

�

1+ζ2k X
�

= ζd ′(d ′−1)(X d ′ − (−1)d
′
) = ζd ′(d ′+1)(X d ′ + (−1)d

′+1).

On the one hand we have
a−1
∏

k=0

�

1+ζ2k X
�

=
a
∑

k=0

ζk (r−1)
�

a
k

�

ζ

X k ,

and on the other hand
a−1
∏

k=0

�

1+ζ2k X
�

=
�

ζd ′(d ′+1)
�

X d ′ + (−1)d
′+1
��a1

�a0−1
∏

k=0

�

1+ζ2k X
�

�

= ζd ′(d ′+1)a1

� a1
∑

k=0

�

a1

k

�

(−1)(d
′+1)(a1−k )X k d ′

�� a0
∑

k=0

ζk (a0−1)
�

a0

k

�

ζ

X k

�

.

Comparing the coefficient of X b gives us

ζb (a−1)
�

a
b

�

ζ

= ζd ′(d ′+1)a1+b0(a0−1)(−1)(d
′+1)(a1−b1)

�

a1

b1

�

�

a0

b0

�

ζ

,

which, using the fact that ζd ′(d ′+1) = (−1)d
′+1, leads to the desired formula.

Therefore, for r ∈N, we have

�

d ′

r

�

ζ

=







r1 if d ′ = d ,

(−1)r0+r1+1r1 if d ′ = d
2 and d ′ odd,

(−1)r0 r1 if d ′ = d
2 and d ′ even.

Using
�

−r
d ′

�

ζ

= (−1)d
′
�

r +d ′−1
d ′

�

ζ

, we check that this is still valid for r ∈Z.

We write r = r1d ′ + r0 with 0 ≤ r0 < d ′. Let 0 ≤ r ′ < d be the unique integer such that
ζr = ζr ′ .

First, we suppose d ′ = d , hence d ′ is odd. Lemma 3.4 gives
�

r
d ′

�

ζ

= r1 and we have

r =
�

r
d ′

�

ζ

d ′+ r ′.

Now, we suppose that d is even. Let r ′′ = r ′ if 0≤ r ′ < d ′ and r ′′ = r ′−d ′ otherwise.

We suppose that d ′ = d
2 is odd. Lemma 3.4 gives

�

r
d ′

�

ζ

= (−1)r0+r1+1r1. If r ′′ = r ′ then

r = (−1)r
′′+1

�

r
d ′

�

ζ

+ r ′′, and if r ′′ 6= r ′ then r = (−1)r
′′
�

r
d ′

�

ζ

+ r ′′.
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Finally, if we suppose that d ′ = d
2 is even, Lemma 3.4 gives

�

r
d ′

�

ζ

= (−1)r0 r1 and r =

(−1)r
′′
�

r
d ′

�

ζ

+ r ′′.

Therefore, if for all 1 ≤ i ≤ n , ξ
〈λ,α∨i 〉
i = ξ

〈λ′,α∨i 〉
i and

�

〈λ,α∨i 〉
l ′i

�

ξi

=
�

〈λ′,α∨i 〉
l ′i

�

ξi

, we have

〈λ,α∨i 〉= 〈λ
′,α∨i 〉 for all 1≤ i ≤ n and hence λ=λ′. Similarly µ=µ′.

The formula for the coproduct given in the Proposition 3.1 shows that the tensor prod-
uct of two weight vectors of weight (λ,µ) and (λ′,µ′) is again a weight vector, of weight
(λ+λ′,µ+µ′).

We consider the category Cξ of finite dimensional Dξ(g)-modules M such that

M =
⊕

(λ,µ)∈P×P

Mλ,µ.

As in the generic case we have E (r )i ·Mλ,µ ⊆Mλ+rαi ,µ+rαi
and F (r )i ·Mλ,µ ⊆Mλ−rαi ,µ−rαi

.
Contrary to the generic case, it may happen that λ+µ 6∈ 2P , for example if one of the

li ’s is odd.
One way to construct Dξ(g)-modules is specialization. Let (λ,µ) ∈ P̃ +. We have de-

fined a simple highest weightDq (g)-module L (λ,µ) and we consider a sub-Dres
q (g)-module

L res(λ,µ) generated by a chosen highest weight vector. Define the Weyl module by

Wξ(λ,µ) = L res(λ,µ)⊗A C.

This is a highest weight Dξ(g)-module with highest weight (λ,µ), but it is not always a
simple module. As specialization does not change the weight spaces, it is clear that the
character of Wξ(λ,µ) is still given by the Weyl character formula given in section 2.2. The
Weyl module is a quotient of the Verma module and it has simple head Lξ(λ,µ).

Similarly to the case of q generic, we braid the category of representations as in section
2.3.

3.4. Tilting modules. — As forUξ(g), we consider the tilting modules, which have been
studied for quantum groups at roots of unity by Andersen in [And92].

Definition 3.5. — A Dξ(g)-module M is tilting if both M and M ∗ have a filtration with succes-
sive quotients being Weyl modules.

We refer to [Saw06] for more details in the case ofUξ(g). We remark that weights (λ,µ)
of Weyl modules always satisfy λ+ µ ∈ 2P ; hence only these weights can appear in a
tilting module.

Proposition 3.6. — For any (λ,µ) ∈ P̃ +, there exists an indecomposable tilting module T (λ,µ)
such that T (λ,µ)λ′,µ′ = 0 unless (λ′,µ′)≤ (λ,µ) and T (λ,µ)λ,µ is of dimension one.

Moreover, any indecomposable tilting module is isomorphic to some T (λ,µ).

Proof. — The existence of such tilting modules follows easily from the existence forUξ(g).
Indeed, there exists a tilting module forUξ(g) with a maximal vector of weight λ+µ2 . Ten-
soring it with Lξ

�

λ−µ
2 ,−λ−µ2

�

gives us an indecomposable tilting module with a vector of
highest weight (λ,µ).
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Let T be an indecomposable tilting module. Using the action of the central elements

zi ,
�

zi ; 0
l ′i

�

for 1≤ i ≤ n , one can show that λ−µ does not depend on the weight (λ,µ) of T .

Therefore, tensoring by Lξ
�

µ−λ
2 ,−µ−λ2

�

gives an indecomposable tilting module forUξ(g),
which is isomorphic to T (κ,κ) for some κ ∈ P +.

As a direct summand of a tilting module is again a tilting module, every tilting module
is a direct sum of indecomposable tilting modules. Using the fact that the tensor product
of two tilting modules for Uξ(g) is again a tilting module, we easily show that the tensor
product of two tilting modules for Dξ(g) is again a tilting module.

The full subcategory of Cξ with objects the tilting modules is far from being a fusion
category: it is not abelian, nor semisimple. We want to semisimplify this category; hence
we must understand which indecomposable tilting modules are of non-zero quantum
dimension. As any indecomposable tilting is isomorphic to some T (λ,µ)' T

�

λ+µ
2 , λ+µ2

�

⊗

Lξ
�

λ−µ
2 ,−λ−µ2

�

, we can use the results for Uξ(g). The next theorem follows immediately

from [Saw06, Theorem 2]. Recall that D =maxα,β∈Φ
〈α,α〉
〈β ,β 〉 . Let θ0 be the highest root of Φ if

D | l ′ and be the highest short root of Φ otherwise. Let C be the following set of dominant
weights

C = {λ ∈ P + | 〈λ+ρ,θ0〉< l ′}.

Theorem 3.7. — We suppose that l ′ ≥ D h∨ if D | l ′ and l ′ > h otherwise. Then T (λ,µ) is of
non-zero positive and negative quantum dimension if and only if λ+µ2 ∈ C . Moreover, T (λ,µ) '
Wξ(λ,µ)' Lξ(λ,µ).

3.5. The semisimple category of non-negligible tilting modules. — From now on,
we keep the assumption on l of Theorem 3.7. We construct a fusion category using a
semisimplification of pivotal categories. As the category of tilting modules is neither
abelian, nor spherical, we use the version of semisimplification of pivotal Karoubian cat-
egories as in [EO18, 2.3]. The hypothesis of [EO18, Theorem 2.6] are satisfied since

1. the category of tilting modules is a subcategory of an abelian category,
2. up to an invertible element, the positive and negative quantum dimensions of an

indecomposable tilting module are equal.

We then denote by Tξ the semisimplification of the category of tilting Dξ(g)-modules.
This is a semisimple braided pivotal tensor category and the simple objects are the in-
decomposable tilting modules T (λ,µ) such that λ+µ2 ∈ C . This category admits a faithful
P -grading

Tξ =
⊕

ν∈P

Tξ,ν

where Tξ,ν is additively generated by simple objects Lξ(λ,µ) with λ+µ = 2ν. As in the
case of q generic, each component Tξ,ν is equivalent to the category of tilting modules for
Uξ(g).

We now compute explicitly the S -matrix and the twist for Tξ. The S -matrix is the
matrix indexed by Irr(Tξ) given by

S(λ,µ),(λ′,µ′) = Tr+Lξ(λ,µ)⊗Lξ(λ′,µ′)
(cLξ(λ′,µ′),Lξ(λ,µ) ◦ cLξ(λ,µ),Lξ(λ′,µ′)).
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The twist θ and the pivotal structure a are related using the Drinfeld morphism u (see
[EGNO15, 8.35]): a = uθ . The latter is given by the composition

X X ⊗X ∗⊗X ∗∗ X ∗⊗X ⊗X ∗∗ X ∗∗.
idX ⊗coevX ∗ cX ,X ∗⊗idX ∗∗ evX ⊗ idX ∗∗

We recall the expression of the quasi-R -matrix Θ of Dξ(g)

Θ =
∏

α∈Φ+

�+∞
∑

n=0

q
n (n−1)

2
α [n ]qα !(qα−q−1

α )
n E (n )α ⊗ F (n )α

�

.

Recall also that we have chosen the pivotal structure given by the element L2ρ so that
positive and negative quantum traces of any linear map f : M →M are given by

Tr+M ( f ) = Tr(L2ρ f |M ) and Tr−M ( f ) = Tr( f L−1
2ρ |M ).

Proposition 3.8. — Let (λ,µ) and (λ′,µ′) in P̃ +. Then the S -matrix is given by

S(λ,µ),(λ′,µ′) =

∑

w∈W (−1)l (w )ξ〈2ρ+λ,(w •(λ′,µ′))2〉+〈µ,(w •(λ′,µ′))1+2ρ〉
∑

w∈W (−1)l (w )ξ〈2ρ,w •0〉 ,

and the twist is
θLξ(λ,µ) = ξ

〈λ+2ρ,µ〉 idLξ(λ,µ) .

Proof. — Let Lξ(λ,µ) be a simple object in Tξ. For any other simple object M in Tξ the
map

�

idLξ(λ,µ)⊗Tr+M
�

◦ cM ,Lξ(λ,µ) ◦ cLξ(λ,µ),M

is an endomorphism of the simple object Lξ(λ,µ) hence is a scalar. We compute it on the
highest weight vector vλ,µ of Lξ(λ,µ). Let m ∈M be a vector of weight (λ′,µ′). We have

cM ,Lξ(λ,µ) ◦ cLξ(λ,µ),M (vλ,µ⊗m ) = ξ〈λ,µ′〉cM ,Lξ(λ,µ)(m ⊗ vλ,µ)

as vλ,µ is a vector of highest weight. Now, we take the partial trace of this expression and
are interested only in the component on vλ,µ. As F (n )α vλ,µ is not of weight (λ,µ), this shows
that only the term 1⊗1 in Θ contributes on this component. Therefore

�

idLξ(λ,µ)⊗Tr+M
�

◦ cM ,Lξ(λ,µ) ◦ cLξ(λ,µ),M = Tr+M
�

ϕM
λ,µ

�

idLξ(λ,µ)

where ϕM
λ,µ(m ) = ξ

〈λ,µ′〉+〈λ′,µ〉m for m a vector of weight (λ′,µ′).
Finally, the S -matrix is given by

S(λ,µ),(λ′,µ′) = dim+(Lξ(λ,µ))Tr+
�

ϕ
Lξ(λ′,µ′)
λ,µ

�

.

Using the Weyl character formula, we have

S(λ,µ),(λ′,µ′) =

∑

w∈W (−1)l (w )ξ〈2ρ,(w •(λ,µ))2〉
∑

w∈W (−1)l (w )ξ〈2ρ,w •0〉

∑

w∈W (−1)l (w )ξ〈2ρ+λ,(w •(λ′,µ′))2〉+〈µ,(w •(λ′,µ′))1〉
∑

w∈W (−1)l (w )ξ〈2ρ+λ+µ,w •0〉 .

Note that the assumption on l ensures that the denominators are non-zero. As we have
〈2ρ+λ+µ, w •0〉= 〈2ρ, (w−1 • (λ,µ))2〉− 〈µ, 2ρ〉 the formula for the S -matrix becomes

S(λ,µ),(λ′,µ′) =

∑

w∈W (−1)l (w )ξ〈2ρ+λ,(w •(λ′,µ′))2〉+〈µ,(w •(λ′,µ′))1+2ρ〉
∑

w∈W (−1)l (w )ξ〈2ρ,w •0〉 .

We now turn to the twist. Unrolling the definition of the Drinfeld morphism, one can
show that for vλ,µ the highest weight vector of Lξ(λ,µ)

uLξ(λ,µ)(vλ,µ) =ϕ 7→ ξ−〈λ,µ〉ϕ(vλ,µ),
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whereas

aLξ(λ,µ)(vλ,µ) =ϕ 7→ ξ〈2ρ,µ〉ϕ(vλ,µ).

Therefore we have θLξ(λ,µ) = ξ〈λ+2ρ,µ〉 idLξ(λ,µ).

3.6. A partial modularization. — Contrary to the category of tilting modules for Uξ(g),
Tξ is infinite, since it has an infinite number of non-isomorphic simple objects. Following
Müger [Mü00], we first find some objects in the symmetric center of Tξ, and we add
isomorphism between these objects and the unit object.

Proposition 3.9. — Let ν ∈ (l ′Q∨)∩P . Then the invertible simple object Lξ(ν,−ν) lies in the
symmetric center of Tξ. Its positive and negative quantum dimension is 1 and its twist is 1 or −1.

Proof. — For any simple object Lξ(λ,µ) in Tξ, we compute cLξ(λ,µ),Lξ(ν,−ν) ◦ cLξ(ν,−ν),Lξ(λ,µ).
As Lξ(ν,−ν)⊗ Lξ(λ,µ) is a simple object, the double braiding is the multiplication by a
scalar. By a computation on the highest weight vector, the double braiding is ξ〈ν,µ−λ〉. But
as ν is in l ′Q∨ and µ−λ ∈ 2P , we have 〈ν,µ−λ〉 ∈ 2l ′Z, so that the double braiding is the
identity.

The positive quantum dimension of Lξ(ν,−ν) is given by the action of L2ρ , so is equal
to ξ−〈2ρ,ν〉 = 1 because ρ ∈ P .

The twist is given by ξ〈ν+2ρ,−ν〉 which is obviously equal to ±1 since ν ∈ l ′Q∨.

LetS be the tensor subcategory of Tξ generated by the Lξ(ν,−ν) (which we will denote
by S (ν)), with ν ∈ (l ′Q∨) ∩ P and of twist 1. We recall the construction of the category
TξoS of [Mü00, Definition 3.12], which is simpler in our case since the objects in S are
all of dimension 1. We choose for any ν,ν′ ∈ (l ′Q∨)∩P an isomorphism ϕν,ν′ in the one
dimensional space HomS (S (ν)⊗S (ν′),S (ν+ν′)) such that the following commutes

S (ν)⊗S (ν′)⊗S (ν′′) S (ν+ν′)⊗S (ν′′)

S (ν)⊗S (ν′+ν′′) S (ν+ν′+ν′′)

ϕν,ν′⊗id

id⊗ϕν′ ,ν′′ ϕν+ν′ ,ν′′

ϕν,ν′+ν′′

.

To do so, choose in any S (ν) a non-zero vector vν. Then ϕν,ν′ sends vν⊗ vν′ to vν+ν′ .
We consider the category Tξ o0S with the same objects as Tξ and with space of mor-

phisms between two objects X and Y

HomTξo0S (X , Y ) =
⊕

ν∈P∩Q∨
HomTξ (X ,S (ν)⊗Y ).

The composition of f ∈ HomTξ (X ,S (ν)⊗ Y ) and of g ∈ Hom(Y ,S (ν′)⊗ Z ) in Tξ oS is
given by

X S (ν)⊗Y S (ν)⊗S (ν′)⊗Z S (ν+ν′)⊗Z
f id⊗g ϕν,ν′⊗id

.

Due to the compatibility of the maps ϕ, it is easy to check that this defines an associative
composition.

This category has tensor products: on objects the tensor product is the same as the one
in Tξ and if f ∈ HomTξ (X ,S (ν)⊗ Y ) and g ∈ HomTξ (X

′,S (ν′)⊗ Y ′), their tensor product is
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defined as the composition

X ⊗X ′ S (ν)⊗Y ⊗S (ν′)⊗Y ′ S (ν)⊗S (ν′)⊗Y ⊗Y ′

S (ν+ν′)⊗Y ⊗Y ′.

f ⊗g id⊗cY ,S (ν′)⊗id

ϕν,ν′⊗id

Again, the compatibility of ϕ ensures that this tensor product endows Tξ o0 S with a
structure of a semisimple tensor category, see [Mü00, Section 3.2] for further details.

The duality on Tξ extends to a duality on Tξ o0 S . One may check that the pivotal
structure in Tξ induces a pivotal structure on Tξ o0S . It is crucial that the objects in S
are of twist 1.

Finally, the category Tξ o0S is braided because S is a subcategory of the symmetric
center of Tξ (see [Mü00, Lemma 3.10]).

Now, in the general case, it can happen that the category constructed above is not
idempotent complete. This happens exactly when tensoring by a non-trivial simple object
of S has a fixed point on the set of simple objects of Tξ. But the object S (ν) is in the
component Tξ,ν of the grading, thus tensoring by this object has no fixed points on the
set of simples, provided that ν 6= 0. Therefore the idempotent completion TξoS of Tξo0S
is Tξo0S itself.

Proposition 3.10. — The category TξoS is finite.

Proof. — Indeed, denoting by G the quotient of P by {v ∈ (l ′Q∨)∩P | θS (ν) = 1}, TξoS is
a G -graded category, with each homogeneous component equivalent to the category of
tilting modules forUξ(g)

TξoS =
⊕

ν∈G

(TξoS )ν.

Therefore, TξoS has |C ||G | simple objects. Note that G is indeed finite since P /((l Q∨)∩P )
surjects on G .

3.7. An integral subcategory. — We consider the full subcategory of Tξ additively gen-
erated by the Lξ(λ,µ) with λ+µ ∈ 2C and µ ∈ Q . This subcategory is stable by tensor
product: we can easily see this at the level of Dξ(g)-modules. We denote this category
by Z

�

Tξ
�

. In the case of the tilting category for Uξ(sln+1), Masbaum and Wenzl [MW98]
show that an analogue of this subcategory is a modular category provided that l is even
and l ′ and n +1 are relatively prime.

As for the category Tξ, there are an infinite number of simple objects. But the objects
of the form S (ν)with ν ∈ (l ′Q∨)∩Q are in the symmetric center of Z

�

Tξ
�

.

Lemma 3.11. — The twist of S (ν) is 1 for any ν ∈ (l ′Q∨)∩Q .

Proof. — In type A, D or E we have Q∨ = Q and therefore (l ′Q∨)∩Q = l ′Q . Hence for
ν= l ′

∑n
i=1νiαi , νi ∈Z, we have

〈ν,ν〉= l ′2

 

∑

1≤i< j≤n

2νiν j 〈αi ,α j 〉+
n
∑

i=1

ν2
i 〈αi ,αi 〉

!

≡ 0 mod 2l ′

so that all S (ν)with ν ∈ (l ′Q∨)∩Q are of twist 1.
In type B , let α1, . . . ,αn−1 be the long roots of ∆ and αn the short one. We have α∨i =

αi
2

for 1≤ i ≤ n −1 and α∨n = αn . If l ′ is odd, then (l ′Q∨)∩Q = l ′Q and 〈ν,ν〉 ≡ 0 mod 2l ′ as in
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the simply laced case. If l ′ is even, then (l ′Q∨)∩Q = l ′Q∨ and for ν= l ′
2

∑n−1
i=1 νiαi +l ′νnαn ,

νi ∈Z, we have

〈ν,ν〉=
l ′2

4

∑

1≤i , j≤n−1

νiν j 〈αi ,α j 〉+
l ′2

2

n−1
∑

i=1

νiνn 〈αi ,αn 〉+ l ′2ν2
n 〈αn ,αn 〉

= l ′2

 

n−1
∑

i=1

ν2
i +

1

2

∑

1≤i< j≤n−1

νiν j 〈αi ,α j 〉−νn−1νn +2ν2
n

!

and since 〈αi ,α j 〉 is even for 1 ≤ i < j ≤ n − 1, 〈ν,ν〉 ≡ 0 mod l ′2. As l ′ is even, we have
l = 2l ′ and 〈ν,ν〉 ≡ 0 mod l .

In type C , let α1, . . . ,αn−1 be the short simple roots and αn be the long simple root.
We have α∨i = αi for 1 ≤ i ≤ n − 1 and α∨n =

αn
2 . If l ′ is odd, then (l ′Q∨) ∩Q = l ′Q and

〈ν,ν〉 ≡ 0 mod 2l ′ as in the simply laced case. If l ′ is even, (l ′Q∨) ∩Q = l ′Q∨ and for
ν= l ′

∑n−1
i=1 νiαi +

l ′
2 νnαn , νi ∈Z, we have

〈ν,ν〉= l ′2
�

∑

1≤i≤n−1

νiν j 〈αi ,α j 〉+
n−1
∑

i=1

νnνi 〈αi ,αn 〉+
ν2

n

4
〈αn ,αn 〉

�

and as 〈αn ,αn 〉= 4, we have 〈ν,ν〉 ≡ 0 mod l ′2. As l ′ is even, we have l = 2l ′ and 〈ν,ν〉 ≡ 0
mod l .

In type F4, let α1 and α2 the long simple roots and α3 and α4 the short simple roots.
We have α∨1 =

α1
2 , α∨2 =

α2
2 , α∨3 = α3 and α∨4 = α4. If l ′ is odd, then (l ′Q∨) ∩Q = l ′Q and

〈ν,ν〉 ≡ 0 mod 2l ′ as in the simply laced case. If l ′ is even, (l ′Q∨) ∩Q = l ′Q∨ and for
ν= l ′

�ν1
2 α1+

ν2
2 α2+ν3α3+ν4α4

�

, νi ∈Z, we have

〈ν,ν〉= l ′2(ν2
1+ν

2
2+2ν2

3+2ν2
4−ν1ν2−2ν2ν3−2ν3ν4)

and therefore 〈ν,ν〉 ≡ 0 mod l .
Finally, in type G2, let α1 be the short simple root and α2 the long one. We have α∨1 =α1

and α∨2 =
α2
3 . If l ′ is not divisible by 3, then (l ′Q∨)∩Q = l ′Q and 〈ν,ν〉 ≡ 0 mod 2l ′ as in the

simply laced case. If l ′ is divisible by 3 then (l ′Q∨)∩Q = l ′Q∨ and for ν= l ′ν1α1+
l ′
3 ν2α2,

νi ∈Z, we have

〈ν,ν〉= l ′2
�

2ν2
1−2ν1ν2+

2

3
ν2

2

�

= 2l ′
l ′

3
(3ν2

1−3ν1ν2+ν
2
2)

and therefore 〈ν,ν〉 ≡ 0 mod 2l ′.

Hence, we have shown that for any ν ∈ (l ′Q∨)∩Q , S (ν) is of quantum dimension 1 and of
twist 1. We again construct the category Z(Tξ)oS and we obtain a P /((l ′Q∨)∩Q )-graded
category

Z(Tξ)oS =
⊕

ν∈P /((l ′Q∨)∩Q )

Z(Tξ)ν.

Note that we do not have an equivalence of category between Z(Tξ)ν and Z(Tξ)0 if ν 6∈Q .
But we have an equivalence between Z(Tξ)ν and Z(Tξ)ν′ if ν= ν′ in P /Q .

Proposition 3.12. — The category Z(Tξ)oS is finite and has |C ||Q/((l ′Q∨)∩Q )| simple objects.

Proof. — If we choose some representatives ν1, . . . ,νk of P /Q in P /((l ′Q∨)∩Q ), we have |C |
simple objects in

⊕k
i=1Z(Tξ)νi

. Therefore Z(Tξ)oS has |C ||Q/((l ′Q∨)∩Q )| simple objects.



TILTING MODULES FOR DRINFELD DOUBLE OF QUANTUM GROUPS 25

We end this part with some notation. Denote by C̃ the following set of weights

C̃ = {(λ,µ) ∈ P ×Q |λ+µ ∈ 2C }.

This set parametrizes the simple objects of Z(Tξ) and the group l ′Q∨ ∩Q acts on it by

ν · (λ,ν) = (λ+ν,µ−ν)

for (λ,µ) ∈ C̃ and ν ∈ (l ′Q∨)∩Q . The set C = C̃ /((l ′Q∨)∩Q ) parametrizes the simple objects
of Z(Tξ)oS .

3.8. Non-degeneracy of TξoS and degeneracy of Z(T )ξoS . — In this subsection, we
suppose that l = 2D d for d ≥ h∨. Then l ′ = D d and D dQ∨ ⊆Q and by Lemma 3.11 for
any ν ∈D dQ∨, we have θS (ν) = 1.

Proposition 3.13. — The category TξoS is non-degenerate.

Proof. — Using the proof of [BK01, Theorem 3.3.20], we show that the square of the S -
matrix of TξoS is invertible. as for any w ∈W and (λ,µ) ∈ P̃ we have

w • (λ,µ) =
�

w •
λ+µ

2
+
λ−µ

2
, w •

λ+µ
2
−
λ−µ

2

�

,

we can rewrite the S -matrix of TξoS as

S(λ,µ),(λ′,µ′) = ξ
〈2ρ,µ−η+µ′−η′〉−2〈µ−η,µ′−η′〉 s̃η,η′

where λ+µ = 2η, λ′ +µ′ = 2η′ and s̃ is the S -matrix of the modular category of tilting
modules for Uξ(g) (see proof of [BK01, Theorem 3.3.20]). The simple objects of Tξ oS
are indexed by {(λ,µ) ∈ P ×P | λ+µ ∈ 2C }/D dQ∨ which is in bijection with C ×P /D dQ∨

sending (λ,µ) to (η,µ). Therefore

(S 2)(λ,µ),(λ′′,µ′′) = ξ
〈2ρ,µ−η+µ′′−η′′〉

∑

η′∈C

s̃η,η′ s̃η′,η′′ξ
−2〈η′,2ρ+η−µ+η′′−µ′′〉

∑

µ′∈P /D dQ∨

ξ2〈µ′,2ρ+η−µ+η′′−µ′′〉

︸ ︷︷ ︸

=|P /D dQ∨|δ2ρ+η−µ+η′′−µ′′∈D dQ∨

= |P /D dQ∨|δ2ρ+η−µ+η′′−µ′′∈D dQ∨ξ
〈2ρ,2ρ〉

∑

η′∈C

s̃η,η′ s̃η′,η′′

=δ2ρ+η−µ+η′′−µ′′∈D dQ∨δη′′,−w0(η)κ

=δη′′,−w0(η)δµ′′∈2ρ+η−µ−w0(η)+D dQ∨κ,

where κ is a non-zero constant. As µ ∈ P /D dQ∨, the matrix S 2 is, up to a non-zero
constant, the invertible permutation matrix (δ(λ′′,µ′′),(−2ρ,2ρ)−w0(λ,µ))(λ,µ),(λ′′,µ′′).

The square of the S -matrix is not given by the duality: this is due to the fact that TξoS
is not spherical, but only pivotal.

Now we turn to the category Z(T )ξoS which is degenerate in general.

Theorem 3.14. — The symmetric center of Z(T )ξoS contains |P /Q | simple objects. Therefore,
the category Z(T )ξoS is non-degenerate if and only if g is of type F4, G2 or E8.

Proof. — Using [EGNO15, Lemma 8.20.9], the simple object Lξ(λ,µ) is in the symmetric
center of Z(T )ξoS if and only if

(hλ,µ, h0,0)Z(T )ξoS =
∑

(λ′,µ′)∈C

dim−(Lξ(λ′,µ′))

dim+(Lξ(λ′,µ′))
S(λ,µ),(λ′,µ′)S(λ′,µ′),(0,0) 6= 0.
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As in the proof of Proposition 3.13, we let 2η=λ+µ and 2η′ =λ+µ′, which are elements
in C . We then have

(hλ,µ, h0,0)Z(T )ξoS =
∑

η′∈C

∑

µ′∈Q/D dQ∨

ξ2〈2ρ,η′−µ′〉ξ〈2ρ,µ−η+µ′−η′〉−2〈µ−η,µ′−η′〉 s̃η,η′ξ
〈2ρ,µ′−η′〉 s̃η′,0

= ξ〈2ρ,µ−η〉
∑

η′∈C

ξ−2〈η′,η−µ〉 s̃η,η′ s̃η′,0
∑

µ′∈Q/D dQ∨

ξ2〈µ′,η−µ〉

︸ ︷︷ ︸

|Q/D dQ∨|δµ−η∈D d P∨

= |Q/D dQ∨|δµ−η∈D d P ∨

∑

η′∈C

s̃η,η′ s̃η′,0ξ
2〈ρ+η′,µ−η〉.

Lemma 3.15. — Let γ ∈D d P ∨. For any w ∈W , we have γ−w (γ) ∈D dQ∨.

Proof. — We proceed by induction on the length of w ∈W . If l (w ) = 0, the result is trivial.
If l (w ) = 1, we have w = sα for some α ∈Π. Then we have

γ− sα(γ) = 〈γ,α〉α∨,

and since γ ∈D dQ∨, the scalar product 〈γ,α〉 is in D dZ. Now suppose l (w )> 1 and write
w = sαw ′ for some w ′ ∈W , α ∈Π such that l (w ′) = l (w )−1. We have

γ−w (γ) = γ−w ′(γ) +w ′(γ)− sα(w
′(γ)),

which is the sum of two elements in D dQ∨.

Now, fix γ ∈D d P ∨. Following [BK01, Section 3.3], we have an action of the affine Weyl
group W a = W nD dQ∨ on P such that C contains exacly one element for every orbit
with trivial stabilizer for the dot action (note that in [BK01, Section 3.3], the translation
subgroup of W a is generated by dQ∨, but Q∨ is embedded in P using D −1〈·, ·〉, so that it
coincides with our notations). Using the fact that s̃η,w •η′ = (−1)l (w ) s̃η,η′ and Lemma 3.15,
we see that s̃η,η′ s̃η′,0ξ

2〈ρ+η′,µ−η〉 is invariant by the action of W a . We therefore can replace
the summation on C by a summation on P /D dQ∨ and we obtain, using the formula of s̃
in the proof of [BK01, Theorem3.3.20]:

∑

η′∈C

s̃η,η′ s̃η′,0ξ
2〈ρ+η′,γ〉 =

1

|W |κ

∑

w ,w ′∈W

(−1)l (w )+l (w ′)
∑

η′∈P /D dQ∨

ξ2〈η′+ρ,w (η+ρ)+w ′(ρ)+γ〉

=
|P /D dQ∨|
|W |κ

∑

w ,w ′∈W

(−1)l (w )+l (w ′)δw (η+ρ)+w ′(ρ)+γ∈D dQ∨ ,

where κ is a non-zero constant.
As γ ∈D d P ∨ the stabilizer of γ for the dot action is trivial, and there exist a unique γ̃ ∈C

and w̃ ∈W such that γ+ρ ∈ w̃ (γ̃+ρ)+D dQ∨. Now w (η+ρ)+w ′(ρ)+γ ∈D dQ∨ if and only
if w (η+ρ) ∈ −γ−w ′(ρ) +D dQ∨. But w ′(ρ) ∈ −w ′(γ) +w ′w̃ (γ̃+ρ) +D dQ∨ and therefore,
using Lemma 3.15, w (η+ρ)+w ′(ρ)+γ ∈D dQ∨ if and only if η+ρ ∈w−1w ′w̃ w0(−w0(γ̃)+
ρ) +D dQ∨. But this is possible if and only if η=−w0(γ̃) and w =w ′w̃ w0 and therefore

∑

η′∈C

s̃η,η′ s̃η′,0ξ
2〈ρ+η′,γ〉 = κ(−1)l (w̃ )+l (w0)δη,−w0(γ̃).

Therefore, the simple objects in the symmetric center of Z(T )ξ oS are indexed by
(λ,µ) ∈ C where µ−λ

2 = γ ∈D d P ∨/D dQ∨ and µ+λ
2 =−w0(γ̃), where γ̃ is the only element in

C in the orbit of γ under the dot action of W a .
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4. The type A

In this section, we investigate in details the category Z(Tξ)oS for sln at an even root
of unity.

Notations. In this section g = sln+1 and ξ is a primitive 2d -th root of unity,
where d ≥ n +1. To be consistent with the notation of Section 3 we set l = 2d
and l ′ = d . We use the conventions of [Bou68, Planche I] for the labelling of
roots.

4.1. The category Z(Tξ)oS . — In type A, we have Q∨ =Q therefore this category has
|C ||Q/dQ |= d n |C | simple objects. From the description of C given in Section 3.4, we have

C =

¨

n
∑

i=1

ηi$i ∈ P +

�

�

�

�

�

n
∑

i=1

ηi ≤ d − (n +1)

«

so that |C |=
�d−1

n

�

. Recall the notations C̃ and C at the end of Section 3.7.
The category Z(Tξ)oS is not modular by Theorem 3.14. To compute the n + 1 simple

objects in the symmetric center of Z(Tξ)oS , we follow the proof of Theorem 3.14: for
every γ ∈ d P ∨/dQ∨, we find a representative γ̃ ∈ C of γ for the dot action of the affine
Weyl group W a . The group d P ∨/dQ∨ is generated by the image of d$n and we have

sn sn−1 · · · s1(d$n +ρ)−ρ ≡ d$n −
n
∑

i=1

sn sn−1 · · · sn+2−i (αn+1−i ) mod dQ∨.

But sn sn−1 · · · sn+2−i (αn+1−i ) =
∑n

j=n+1−i α j and therefore

sn sn−1 · · · s1 • (d$n )≡ d$n − (n +1)$n mod dQ∨,

which is indeed an element of C . Therefore the element

I = Lξ((d − (n +1))$1−d$n , (d − (n +1))$1+d$n )

is in the symmetric center of Z(Tξ) oS . As $1 +$n ∈ Q∨, we have an isomorphism
I ' Lξ((2d − (n +1))$1,−(n +1)$1) in Z(Tξ)oS .

Proposition 4.1. — The symmetric center of Z(Tξ)oS is generated by I as a tensor category.
The object I is of positive and negative quantum dimension (−1)n and of twist 1. Moreover,
tensorisation by I has no fixed points on the set of simple objects of Z(Tξ)oS .

Proof. — First, the object I is invertible because the object Lξ((d−(n+1))$1, (d−(n+1))$1)
in Tξ is invertible and the tensor product Lξ((d − (n + 1))$1, (d − (n + 1))$1) ⊗ Lξ(η,η),
η=

∑n
i=1ηi$i ∈C , is given by

Lξ((d − (n +1))$1, (d − (n +1))$1)⊗ Lξ(η,η)' Lξ

�

n
∑

i=1

ηi−1$i ,
n
∑

i=1

ηi−1$i

�

,

where we set η0 = d − (n + 1)−
∑n

i=1ηi ≥ 0 (see the proof of [Bru00, Lemme 5.1]). Let
(λ,µ) ∈ C̃ . Write this weight as

µ=
n
∑

i=1

µiαi and λ=−µ+2
n
∑

i=1

ηi$i
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with µi ∈Z, ηi ∈N and
∑n

i=1ηi ≤ d − (n +1). Therefore, using the braiding, we have

I ⊗ Lξ(λ,µ)' Lξ

�

λ+
n
∑

i=1

(ηi−1−ηi )$i +d$1,µ+
n
∑

i=1

(ηi−1−ηi )$i −d$1

�

.

From this, we see that the objects I ⊗k for 0≤ k ≤ n are non-isomorphic. Since I is in the
symmetric center of Z(Tξ)oS , which contains |P /Q |= n +1 simple objects, all the simple
objects in this symmetric center are given by the powers of I .

We can compute the quantum dimension directly in Cξ. As a Uξ(sln+1)-module, the
quantum dimension of Lξ((d − (n + 1))$1, (d − (n + 1))$1) is 1: this object is invertible
and its quantum dimension is positive [BK01, Theorem 3.3.9]. Therefore, the positive
quantum dimension of I is the one of Lξ(d$1,−d$1)which is ξ−d 〈2ρ,$1〉 = (−1)n .

The twist is given by ξ〈(2d−(n+1))$1+2ρ,−(n+1)$1〉 = ξ−2d n = 1. The last assertion is easy,
since the grading of I is d$1 6∈ dQ .

4.2. Dimension of Z(Tξ) o S and renormalization. — Thanks to the decomposition
Lξ(λ,µ) ' Lξ

�

λ+µ
2 , λ+µ2

�

⊗ Lξ
�

λ−µ
2 ,−λ−µ2

�

the squared norm of Lξ(λ,µ) is the same as the

one of Lξ
�

λ+µ
2 , λ+µ2

�

. Therefore

dim(Z(Tξ)oS ) = d n N ,

where N is the dimension of the fusion category of tilting modules for Uξ(sln+1), which
is well known (see [BK01, Theorem 3.3.20], except our N is their D 2)

N = (n +1)d n (−1)|Φ
+|
∏

α∈Φ+

1

(ξ〈α,ρ〉−ξ−〈α,ρ〉)2
.

The Weyl character formula gives
∏

α∈Φ+
ξ〈α,ρ〉−ξ−〈α,ρ〉 = ξ−2〈ρ,ρ〉

∑

w∈Sn+1

(−1)l (w )ξ〈2ρ,w •0〉.

Now, as the category Z(Tξ)oS is degenerate, we construct a non-degenerate category
from it. If n is even, all elements in the symmetric center are of quantum dimension 1
and of twist 1: adding an isomorphism between I and 1 as in Sections 3.6 and 3.7 yields
a non-degenerate category of dimension

dim(Z(Tξ)oS )
n +1

= d 2n (−1)|Φ
+|ξ−〈2ρ,2ρ〉

 

∑

w∈Sn+1

(−1)l (w )ξ〈2ρ,w •0〉

!−2

.

If n is odd, one half of the objects of the symmetric center are of quantum dimension
1 and of twist 1 and the other half is of quantum dimension −1 and of twist 1. We first
add an isomorphism between I ⊗ I and 1 and we obtain a slightly degenerate category of
superdimension

dim(Z(Tξ)oS )
n +1

= d 2n (−1)|Φ
+|ξ−〈2ρ,2ρ〉

 

∑

w∈Sn+1

(−1)l (w )ξ〈2ρ,w •0〉

!−2

,

see [Lac18] for more details. By adding an isomorphism of odd degree between I and 1,
we obtain a braided pivotal superfusion category, as in [Lac18, Section 3].

In both cases, the category obtained is not spherical and we renormalize the S -matrix
by a factor involving the dimension on a certain object 1̄ introduced in [Lac18]: it is an
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object X such that the character induced by X on Gr(Z(Tξ)oS ) is the negative quantum di-
mension. If such an object exists, it is not unique as tensorization by the symmetric center
leaves invariant the character induced at the level of the Grothendieck group. Therfore,
if n is even, 1̄ is well defined in the modularization of Z(Tξ)oS , and if n is odd, it is well
defined in the super category associated to Z(Tξ)oS .

Proposition 4.2. — The object 1̄ belongs to the orbit of Lξ(−2ρ, 2ρ) under tensorisation by the
symmetric center.

Proof. — We show that the character of Gr(Z(Tξ)oS ) induced by Lξ(−2ρ, 2ρ) is the neg-
ative quantum dimension. Denote by χ the character of Gr(Z(Tξ)oS ) defined by

χ(X ) =
SLξ(−2ρ,2ρ),X

dim+(Lξ(−2ρ, 2ρ))
.

The formula for the S -matrix, together with dim+(Lξ(−2ρ, 2ρ)) = ξ〈2ρ,2ρ〉 gives

χ(Lξ(λ,µ)) =

∑

w∈Sn+1
(−1)l (w )ξ〈λ+2ρ,(w •(−2ρ,2ρ))2〉+〈(w •(−2ρ,2ρ))1+2ρ,µ〉

ξ〈2ρ,2ρ〉
∑

w∈Sn+1
(−1)l (w )ξ〈2ρ,w •0〉 .

It is easy to check that w • (−2ρ, 2ρ) =w • (0, 0) + (−2ρ, 2ρ) and therefore

〈λ+2ρ, (w • (−2ρ, 2ρ))2〉+ 〈(w • (−2ρ, 2ρ))1+2ρ,µ〉− 〈2ρ, 2ρ〉

= 〈λ+µ+2ρ, w (ρ)〉+


λ−µ
2
−ρ, 2ρ

·

=


w−1 •
λ+µ

2
, 2ρ

·

+


λ−µ
2

, 2ρ
·

.

Then, the value of χ at Lξ(λ,µ) is given by

χ(Lξ(λ,µ)) = ξ
¬

λ−µ
2 ,2ρ

¶

∑

w∈Sn+1
(−1)l (w )ξ

¬

w • λ+µ2 ,2ρ
¶

∑

w∈Sn+1
(−1)l (w )ξ〈2ρ,w •0〉

= dim−
�

Lξ

�

λ−µ
2

,−
λ−µ

2

��

dim±
�

Lξ

�

λ+µ
2

,
λ+µ

2

��

= dim−(Lξ(λ,µ)),

as stated.

Finally, we renormalize S with a square root of

dim(Z(Tξ)oS )
n +1

dim+(1) = d 2n (−1)|Φ
+|+n

 

∑

w∈Sn+1

(−1)l (w )ξ〈2ρ,w •0〉

!−2

,

which is

d n i |Φ
+|+n

 

∑

w∈Sn+1

(−1)l (w )ξ〈2ρ,w •0〉

!−1

up to a sign.
We choose for each orbit of simple objects of Z(Tξ)oS a representative of the orbit

under tensorisation by the symmetric center, such that 1 is the representative of the orbit
of 1 and I ⊗ Lξ(−2ρ, 2ρ) is the representative of the orbit of Lξ(−2ρ, 2ρ). This choice will
be explained in Section 5.4.
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Theorem 4.3. — If n is even, the category Z(Tξ) oS gives rise to a non-degenerate braided
pivotal fusion category. If n is odd, the category Z(Tξ)oS gives rise to a non-degenerate braided
pivotal superfusion category. In both cases the renormalized S -matrix is given by

S̃(λ,µ),(λ′,µ′) = i−n−|Φ+|
∑

w∈W (−1)l (w )ξ〈2ρ+λ,(w •(λ′,µ′))2〉+〈µ,(w •(λ′,µ′))1+2ρ〉

d n

and the twist by

θλ,µ = ξ
〈λ+2ρ,µ〉.

5. Malle Z-modular datum

We refer to [Mal95] and [Cun07] for most of the materials of this section. Let ζ be a
primitive d -th of unity.

5.1. Set up. — Let Y = {1, 2, . . . , nd + 1} of cardinal nd + 1 and π: Y → N be the map
defined by

π(k ) =

¨

n if 1≤ k ≤ n +1
�

k−n−2
d−1

�

if n +2≤ k ≤ nd +1
.

Let Ψ(Y ,π) be the set of maps f : Y → {0, 1, . . . , d − 1} such that f is strictly increasing on
each π−1(i ), 0 ≤ i ≤ n . Since for 0 ≤ i ≤ n − 1 the set π−1(i ) is of cardinal d − 1, there exists
a unique element ki ( f ) ∈ {0, . . . , d −1} such that {0, . . . , d −1}= f (π−1(i ))∪{ki ( f )}. Note that
f is then determined by the values of f (1) < · · · < f (n + 1) and of k0( f ), . . . , kn−1( f ). For
f ∈Ψ(Y ,π), we set

ε( f ) = (−1)|{(y ,y ′)∈Y ×Y |y<y ′ and f (y )< f (y ′)}|.

Let V be a C-vector space of dimension d with basis (vi )0≤i≤d−1. We denote by S
the square matrix (ζi j )0≤i , j≤d−1 and we will view it as an endomorphism of V . We set
τ(d ) = (−1)d (d−1)/2 det(S ) =

∏

0≤i< j≤d−1(ζ
i −ζ j ). We consider the automorphism of the vec-

tor space
�

∧n+1 V
�

⊗
�

∧d−1 V
�⊗n

given by
�

∧n+1S
�

⊗
�

∧d−1S
�⊗n

. This space has a basis
given by

v f = (v f (1) ∧ · · · ∧ v f (n+1))⊗ (v f (n+2) ∧ · · · ∧ v f (n+d ))⊗ · · ·⊗ (v f (n+2+(n−1)(d−1)) ∧ · · · ∧ v f (nd+1))

for f ∈Ψ(Y ,π). Denote by S the matrix of
�

∧n+1S
�

⊗
�

∧d−1S
�⊗n

in the basis (v f ) f ∈Ψ(Y ,π)

�
�

∧n+1S
�

⊗
�

∧d−1S
�⊗n�

(v f ) =
∑

g∈Ψ(Y ,π)

Sg , f vg .

The following lemma follows immediately from [BR17, Lemma 6.2].

Lemma 5.1. — Let f , g ∈Ψ(Y ,π). Then we have

S f ,g = (−1)
∑n−1

i=0 (ki ( f )+ki (g )) (−1)nd (d−1)/2τ(d )n

d n

n−1
∏

i=0

ζ−ki ( f )ki (g )
∑

σ∈Sn+1

(−1)l (σ)
n+1
∏

i=1

ζ f (i )g (σ(i )).
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5.2. Malle Z-modular datum. — Following [Mal95], we consider the familyF of unipo-
tent characters of G

�

d , 1, n (n+1)
2

�

parametrized by reduced d -symbols with values in the
multiset

{0d−1, 1d−1, . . . , (n −1)d−1, n n+1}.
These d -symbols are in bijection with the set

Ψ#(Y ,π) =

(

f ∈Ψ(Y ,π)

�

�

�

�

�

∑

y ∈Y

f (y )≡ n

�

d

2

�

mod d

)

.

Indeed to f ∈ Ψ#(Y ,π) we associate the reduced d -symbol S = (S0, . . . ,Sd−1) with entries
i ∈ Sj for all j ∈ f (π−1(i )). We define for f ∈Ψ#(Y ,π)

Fr( f ) = ζnd (1−d 2)
∗

∏

y ∈Y

ζ−6( f (y )2+d f (y )
∗ ,

where ζ∗ is a primitive 12d -th root of unity such that ζ12
∗ = ζ. Denote by T the diagonal

matrix with entries (Fr( f )) f ∈Ψ#(Y ,π).
Following [Cun07, Section 5], we denote by S = (S f ,g ) f ,g∈Ψ#(Y ,π) the square matrix de-

fined by

S f ,g =
(−1)n (d−1)

τ(d )n
S f ,g .

Define f0 ∈ Ψ#(Y ,π) by f (i ) = i − 1 for 1 ≤ i ≤ n + 1 and k j ( f ) = j + 1 for 0 ≤ j ≤ n − 1.
Note that S f0,g 6= 0 for all g ∈ Ψ(Y ,π) as it is, up to a non-zero constant, the value of a
Vandermonde determinant. The following is due to Malle [Mal95, 4.15].

Proposition 5.2. — We have
1. S4 = (ST)3 = [S2,T] = 1.
2. S is symmetric and unitary.
3. For all f , g , h ∈Ψ#(Y ,π) the numbers

N h
f ,g =

∑

k∈Ψ#(Y ,π)

S f ,kSg ,kSh ,k

S f0,k

belong to Z.

The special symbol also parametrizes a complex representation of G
�

d , 1, n (n+1)
2

�

and
the complex conjugate of this representation is parametrized by the cospecial symbol, see
[Mal95, 2.A, 2.D] for more details. Explicitely, the cospecial symbol fco is given by

f (i ) =

¨

0 if i = 1

d −n + i −2 otherwise
and ki ( f ) = d − i −1.

We will compare this modular datum to the one constructed in Theorem 4.3. For this,
we rewrite the expressions of S and T. First, note that f ∈Ψ(Y ,π) is in Ψ#(Y ,π) if and only
if

n+1
∑

i=1

f (i )≡
n−1
∑

i=0

ki ( f ) mod d .

Therefore, we get rid of f (n +1) in the expressions of S and T.
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Proposition 5.3. — For f , g ∈Ψ#(Y ,π) we have

Fr( f ) = ζ
∑n

i=1(ki−1( f )− f (i ))
�

∑i
j=1 f ( j )−

∑i−1
j=1 k j−1( f )

�

and

S f ,g =
1

d n
ε( f )ε(g )(−1)

∑n
i=1(ki−1( f )+ki−1(g ))

∑

σ∈Sn+1

(−1)l (σ)ζ
∑n

i=1

�

(ki−1( f )− f (i ))
�

∑i
j=1(σ·g )( j )−

∑i−1
j=1 k j−1(σ·g )

�

+(ki−1(σ·g )−(σ·g )(i ))
�

∑i
j=1 f ( j )−

∑i−1
j=1 k j−1( f )

��

Proof. — Let us begin by the value of Fr( f ). By definition, Fr( f ) = ζα∗ where

α= nd (1−d 2)−6
∑

y ∈Y

( f (y )2+d f (y )).

which we consider α as an element of Z/12dZ. First, as {0, . . . , d − 1} = f (π−1(i ))∪ {ki ( f )}
for 0≤ i ≤ n −1, we have

∑

y ∈Y

( f (y )2+d f (y )) =
n+1
∑

i=1

( f (i )2+d f (i ))+n
d−1
∑

i=0

(i 2+d i )−
n
∑

i=1

(ki−1( f )
2+d ki−1( f )).

But 6
∑d−1

i=0 (i
2+d i ) = (d −1)d (2d −1) +3d 2(d −1) = d (d −1)(5d −1) and therefore

d (1−d 2)−6
d−1
∑

i=0

(i 2+d i ) = 6d 2(1−d )≡ 0 mod 12d ,

so that

α=−6

�

n+1
∑

i=1

( f (i )2+d f (i ))−
n
∑

i=1

(ki−1( f )
2+d ki−1( f ))

�

.

Fix η ∈Z such that f (n +1) =
∑n

i=0(ki−1( f )− f (i ))+ηd , so that we have

f (n +1)2+d f (n +1) =

�

n
∑

i=1

(ki−1( f )− f (i ))

�2

+d
n
∑

i=1

(ki−1( f )− f (i ))

+2dη
n
∑

i=1

(ki−1( f )− f (i ))+d 2η(1+η)
︸ ︷︷ ︸

≡0 mod 2

≡

�

n
∑

i=1

(ki−1( f )− f (i ))

�2

+d
n
∑

i=1

(ki−1( f )− f (i )) mod 2d .

Finally

α=−6

 

�

n
∑

i=1

(ki−1( f )− f (i ))

�2

+
n
∑

i=1

(ki−1( f )
2− f (i )2)

!

= 12

 

n
∑

i=1

f (i )(ki−1( f )− f (i ))−2
∑

1≤ j<i<n

(ki−1( f )− f (i ))(k j−1( f )− f ( j ))

!

= 12
n
∑

i=1

(ki−1( f )− f (i ))

 

i
∑

j=1

f ( j )−
i−1
∑

j=1

k j−1( f )

!

which gives the expected formula for Fr( f ).
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We now turn to the formula for S. Since τ(d ) = (−1)(d−1)(d−2)/2τ(d )we have

S f ,g =
(−1)

∑n−1
i=0 (ki ( f )+ki (g ))

d n

n−1
∏

i=0

ζki ( f )ki (σ·g )
∑

σ∈Sn+1

ε(σ)
n+1
∏

i=1

ζ− f (i )(σ·g )(i ).

Fix σ ∈Sn+1 and let h =σ · g . Then

n
∑

i=1

ki−1( f )ki−1(h )−
n+1
∑

i=1

f (i )h (i )

=
n
∑

i=1

(ki−1( f )ki−1(h )− f (i )h (i ))−
∑

1≤i , j≤n

(ki−1( f )− f (i ))(ki−1(h )−h (i ))

=
n
∑

i=1

(ki−1( f )− f (i ))h (i ) +
n
∑

i=1

(ki−1(h )−h (i )) f (i )−
∑

1≤i 6= j≤n

(ki−1( f )− f (i ))(ki−1(h )−h (i ))

=
n
∑

i=1



(ki−1( f )− f (i ))

 

i
∑

j=1

h ( j )−
i−1
∑

j=1

k j−1(h )

!

+ (ki−1(h )−h (i ))

 

i
∑

j=1

f ( j )−
i−1
∑

j=1

k j−1( f )

!



 .

Hence, taking the sum on σ ∈Sn+1, we obtain the second formula.

5.3. Ennola duality. — For each d -symbol S in the family F , Malle defined a polyno-
mial γS (q ), which have similar properties to the degree of a unipotent character for a finite
group of Lie type. These polynomials satisfy the Ennola property: there exists a bijection
E :F →F such that for every symbol S in the familyF , γS (ζq ) =±γE (S ). The symbol E (S )
is explicitly given in the proof of [Mal95, Folgerung 3.11]. We describe it at the level of
functions in Ψ#(Y ,π). Let f ∈Ψ#(Y ,π), its Ennola dual E ( f ) is given by the unique function
g such that

ki (g ) =
�

ki ( f ) + i −
n (n +3)

2

�res

and

{g (i ) | 1≤ i ≤ n +1}=
�

�

f (i )−
n (n +1)

2

�res

| 1≤ i ≤ n +1

�

,

(k )res being the remainder in the Euclidean division of k by d .

5.4. Comparison with the modular datum of the category Z(Tξ)oS . — We now com-
pare the modular datum of Malle with the modular datum of Theorem 4.3, from which
we use the notation. To each function f ∈ Ψ#(Y ,π) we associate µ =

∑n
i=1µiαi ∈ Q and

λ=−µ+2
∑n

i=1ηi$i ∈ P with

µi =
i−1
∑

j=1

k j−1( f )−
i
∑

j=1

f ( j ) and ηi = f (i +1)− f (i )−1.

As f takes its values in {0, . . . , d − 1} and is strictly increasing on {1, . . . , n + 1} we have
∑n

i=1ηi ≤ d −1−n and therefore λ+µ ∈ 2C . We then obtain a map

ι :

�

Ψ#(Y .π) −→ C
f 7−→ (λ f ,µ f )

.
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Note that the special symbol f0 is sent to (0, 0) and the cospecial symbol is sent to (−2ρ+
(2d − (n + 1))$1, 2ρ− (n + 1)$1. We define a left inverse to ι as follows. Let (λ,µ) ∈ C and
define fλ,µ as the unique function f ∈Ψ(Y ,π) such that

{ f (1), . . . , f (n +1)}=

( 

−〈µ,$1〉+
i−1
∑

j=1



λ+µ
2
+ρ,α j

·

!res

| 1≤ i ≤ n +1

)

and

ki−1( f ) =

 

i
∑

j=1



λ−µ
2
+ρ,α j

·

!res

.

An easy computation shows that fλ,µ belongs to Ψ#(Y ,π) and that fι( f ) = f for any f ∈
Ψ#(Y ,π). A straightforward computation shows the following lemma.

Lemma 5.4. — Let f , g ∈Ψ#(Y ,π). With the previous notation we have

〈λ f +2ρ,µg 〉+ 〈λg +2ρ,µ f 〉=−
n
∑

i=1

(ki−1( f )− f (i ))

 

i
∑

j=1

g ( j )−
i−1
∑

j=1

k j−1(g )

!

−
n
∑

i=1

(ki−1(g )− g (i ))

 

i
∑

j=1

f ( j )−
i−1
∑

j=1

k j−1( f )

!

Now, let ζ= ξ−2. It follows immediately that

T f = θLξ(λ f ,µ f ).

and noticing that ι(σ · f ) = s • ι( f ) (where we extend ι to all functions f : Y →{0, · · · , d −1}
such that f is injective on each π−1(i ), the action of Sn+1 being induced by the action on
the {1, . . . , n +1} ⊂ Y ) we have

S f ,g =

∑

w∈Sn+1
(−1)l (w )ξ〈2ρ,w •0〉

d n
ε( f )ε(g )(−1)

∑n
i=1(ki−1( f )+ki−1(g ))S(λ f ,µ f ),(λg ,µg ).

Let P be the diagonal matrix with diagonal entries (ε( f )(−1)
∑n

i=1 ki−1( f )) f ∈Ψ#(Y ,π). We can
now state the main theorem of this paper.

Theorem 5.5. — If n is even (resp. odd) the braided pivotal fusion category (resp. braided pivotal
superfusion category) of 4.3 is a categorification of the Malle Z-modular datum:

S f ,g = i−|Φ
+|−n P Sι( f ),ι(g )P

−1 and T f = θLξ(ι( f )).

Remark. — The image of ι contains exactly one representative of each orbit of simple
objects of Z(Tξ)oS under tensorisation by the symmetric center. As I ⊗ Lξ(−2ρ, 2ρ) is in
the image of ι, this justifies our choice of 1̄ made in Section 4.1.

5.5. Categorification of the Ennola property. — The Ennola duality gives a bijection E
on Ψ#(Y ,π) and satisfies Ed = id. Consider (−γ,γ) in C given by γ= (n+1)(n+2)

2 $1−ρ.

Proposition 5.6. — Tensoring by Lξ(−γ,γ) is a categorification the Ennola duality. For any
f ∈Ψ#(Y ,π) we have

Lξ(ι( f ))⊗ Lξ(−γ,γ)' Lξ(ι(E ( f ))),
the isomorphism being understood in the non-degenerate (super)fusion category associated to
Z(Tξ)oS .
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As γ belongs to Q∨, it is clear that Lξ(−γ,γ)⊗d ' 1.

Proof. — We write γ on the basis of simple roots

γ=
1

2

n
∑

i=1

(n − i +1)(n − i +2)αi .

Let f ∈ Ψ#(Y ,π) and let (λ,µ) = ι( f ) + (−γ,γ). Writing as usual µ =
∑n

i=1µiαi and λ =
−µ+2

∑n
i=1ηi$i we have

µi =
i−1
∑

j=1

k j−1( f )−
i
∑

j=1

f ( j ) +
(n − i +1)(n − i +2)

2
and ηi = f (i +1)− f (i )−1.

By definition, fλ,µ is the unique function g ∈Ψ#(Y ,π) such that

{g (1), . . . , g (n +1)}=

( 

−〈µ,$1〉+
i−1
∑

j=1



λ+µ
2
+ρ,α j

·

!res

| 1≤ i ≤ n +1

)

and

ki−1(g ) =

 

i
∑

j=1



λ−µ
2
+ρ,α j

·

!res

.

But as

−〈µ,$1〉+
i−1
∑

j=1



λ+µ
2
+ρ,α j

·

= f (i )−
n (n +1)

2

and
i
∑

j=1



λ−µ
2
+ρ,α j

·

= f (i +1)−
n (n +1)

2
+µi+1−µi

= ki−1( f )−
n (n +1

2
+
(n − i )(n − i +1)

2
−
(n − i +1)(n − i +2)

2

= ki−1( f ) + i −1−
n (n +3)

2
.

we have fλ,µ = fι(E ( f )). As the fibres of the map (λ,µ) 7→ fλ,µ are exactly the orbits under
tensorisation by the symmetric center on the set of simple objects of Z(Tξ)oS , there exists
k ∈Z such that Lξ(ι( f ))⊗ Lξ(−γ,γ)' Lξ(ι(E ( f )))⊗ I ⊗k .

6. Z-modular data associated to exceptional complex reflection groups

The notion of “unipotent characters” has been defined for some exceptional com-
plex reflection group by Broué, Malle and Michel [BMM99], [BMM14], which are called
spetsial. The notion of families of such characters, as well as of Fourier transform and
eigenvalues of the Frobenius exists, and are available in the package CHEVIE of GAP
[GHL+96], [Mic15]. In this section, we categorify some of these Z-modular data using
subcategories of Z(Tξ)oS , for a well suited simple complex Lie algebra g and ξ a well
chosen root of unity. The unipotent characters of a complex reflection group G are ob-
tained in CHEVIE and displayed with the following command (we do the example of
G4):
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gap> G:=ComplexReflectionGroup(4);;
gap> U:=UnipotentCharacters(G);;
gap> Display(U,rec(byFamily:=true));
Unipotent characters for G4

Name | Degree FakeDegree Eigenvalue Label
________________________________________________________________
*phi{1,0} | 1 1 1
________________________________________________________________
*phi{2,1} |(3-ER(-3))/6qP’3P4P"6 qP4 1 1.E3
#phi{2,3} |(3+ER(-3))/6qP"3P4P’6 q^3P4 1 1.E3^2
Z3:2 | -ER(-3)/3qP1P2P4 0 E3^2 E3.E3^2
________________________________________________________________
*phi{3,2} | q^2P3P6 q^2P3P6 1
________________________________________________________________
*phi{1,4} | -ER(-3)/6q^4P"3P4P"6 q^4 1 1.-E3^2
phi{2,5} | 1/2q^4P2^2P6 q^5P4 1 1.E3^2
G4 | -1/2q^4P1^2P3 0 -1 -E3^2.-1
Z3:11 | -ER(-3)/3q^4P1P2P4 0 E3^2 E3.-E3
#phi{1,8} | ER(-3)/6q^4P’3P4P’6 q^8 1 -1.E3^2

One can access to a family, to its Fourier matrix and to the eignevalues of the Frobenius
as follows (continuing the same example):

gap> f:=U.families[2];
Family("RZ/3^2",[6,5,8])
gap> f.fourierMat;
[ [ -2/3*E(3)-1/3*E(3)^2, -1/3*E(3)-2/3*E(3)^2, -1/3*E(3)+1/3*E(3)^2 ],

[ -1/3*E(3)-2/3*E(3)^2, -2/3*E(3)-1/3*E(3)^2, 1/3*E(3)-1/3*E(3)^2 ],
[ -1/3*E(3)+1/3*E(3)^2, 1/3*E(3)-1/3*E(3)^2, 1/3*E(3)-1/3*E(3)^2 ] ]

gap> f.eigenvalues
[ 1, 1, E(3)^2 ]

6.1. Two families attached to G27. — We consider the complex reflection group denoted
by G27 in the classification of Shephard-Todd [ST54]. Two families of unipotent characters
are of cardinal 18, the second one and the last but one. The Z-modular datum they define
are complex conjugate to each other, hence we will only consider the second family of
unipotent characters of G27. The Z-modular datum is in fact the tensor product of a Z-
modular datum of cardinal 3 and of a N-modular datum of cardinal 6.

6.1.1. The Z-modular datum of cardinal 3. — The Fourier matrix and the eigenvalues of the
Frobenius are

S =
1

3





1−ζ3 1−ζ2
3 ζ3−ζ3

3
1−ζ2

3 1−ζ3 ζ2
3−ζ3

ζ3−ζ2
3 ζ2

3−ζ3 ζ3−ζ2
3



 and T =





1 0 0
0 1 0
0 0 ζ2

3





where ζ3 is a primitive third root of unity. It is easily checked that it coincides with the
Z-modular datum associated to the non-trivial family of the cyclic complex reflection
group G (3, 1, 1). By Theorem 5.5, this Z-modular datum is categorifed by the braided
pivotal slightly degenerate fusion category Z(Tξ)oS for g= sl2 and ξ a sixth root of unity
such that ξ2 = ζ−1

3 .
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6.1.2. The N-modular datum of cardimal 6. — The Fourier matrix and the eigenvalues of
the Frobenius are

S =
1

10









−ζ4
5+ζ

3
5+ζ

2
5−ζ5 −ζ4

5+ζ
3
5+ζ

2
5−ζ5 2(−ζ4

5+ζ
3
5+ζ

2
5−ζ5) 2(−ζ4

5+ζ
3
5+ζ

2
5−ζ5) −5 −5

−ζ4
5+ζ

3
5+ζ

2
5−ζ5 −ζ4

5+ζ
3
5+ζ

2
5−ζ5 2(−ζ4

5+ζ
3
5+ζ

2
5−ζ5) 2(−ζ4

5+ζ
3
5+ζ

2
5−ζ5) 5 5

2(−ζ4
5+ζ

3
5+ζ

2
5−ζ5) 2(−ζ4

5+ζ
3
5+ζ

2
5−ζ5) 2(3ζ4

5+2ζ3
5+2ζ2

5+3ζ5) 2(−2ζ4
5−3ζ3

5−3ζ2
5−2ζ5) 0 0

2(−ζ4
5+ζ

3
5+ζ

2
5−ζ5) 2(−ζ4

5+ζ
3
5+ζ

2
5−ζ5) 2(−2ζ4

5−3ζ3
5−3ζ2

5−2ζ5) 2(3ζ4
5+2ζ3

5+2ζ2
5+3ζ5) 0 0

−5 5 0 0 5 −5
−5 5 0 0 −5 5









and

T =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 ζ3

5 0 0 0
0 0 0 ζ2

5 0 0
0 0 0 0 −1 0
0 0 0 0 0 1















,

where ζ5 is a primitive fifth root of unity.

Notation. In this section, g is of type B2 with Cartan matrix
�

2 −2
−1 2

�

.

The short simple root is denoted by α1 and the long simple root is denoted by
α2. The fundamental weights are$1 =α1+

1
2α2 and$2 =α1+α2.

Let ξ be a primitive twentieth root of unity such that ξ4 = ζ5 and consider the full
subcategory C of Z(Tξ)oS for g of type B2 generated by the objects of grading 0 and
5$1. As 10$1 ∈ 10Q∨ ∩Q , {0, 5$1} is a subgroup of P /(10Q∨ ∩Q ). Hence C is stable by
tensor product. The fundamental chamber C is given by

C = {λ1$1+λ2$2 ∈ P +|λ1+λ2 < 3}= {0,$1,$2,$1+$2, 2$1, 2$2}.

Therefore, there are 6 simple objects in C which are labelled by:
– in degree 0: (0, 0), ($2,$2), (2$1, 2$1) and (2$2, 2$2),
– in degree 5$1: (6$1,−4$1) and (6$1+$2,−4$1+$2).
We choose the following set of representatives of the fusion category C :

{Lξ(0, 0), Lξ(2$2, 2$2), Lξ(2$1, 2$1), Lξ($2,$2), Lξ(6$1+$2,−4$1+$2), Lξ(6$1,−4$2)}

With this order, the S -matrix and the T -matrix of the twist of C are

SC =











1 1 2 2 ζ4
5−ζ

3
5−ζ

2
5+ζ5 ζ4

5−ζ
3
5−ζ

2
5+ζ5

1 1 2 2 −ζ4
5+ζ

3
5+ζ

2
5−ζ5 −ζ4

5+ζ
3
5+ζ

2
5−ζ5

2 2 2ζ4
5+2ζ5 2ζ3

5+2ζ2
5 0 0

2 2 2ζ3
5+2ζ2

5 2ζ4
5+2ζ5 0 0

ζ4
5−ζ

3
5−ζ

2
5+ζ5 −ζ4

5+ζ
3
5+ζ

2
5−ζ5 0 0 −ζ4

5+ζ
3
5+ζ

2
5−ζ5 ζ4

5−ζ
3
5−ζ

2
5+ζ5

ζ4
5−ζ

3
5−ζ

2
5+ζ5 −ζ4

5+ζ
3
5+ζ

2
5−ζ5 0 0 ζ4

5−ζ
3
5−ζ

2
5+ζ5 −ζ4

5+ζ
3
5+ζ

2
5−ζ5











,

and

TC =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 ζ3

5 0 0 0
0 0 0 ζ2

5 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
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Renormalizing SC with the square root of 20, which is the dimension ofC , gives us the
opposite of the matrix S .

Theorem 6.1. — The S -matrix and the T -matrix of the modular category C satisfy

SCp
20
=−S TC = T .

Remark. — The category C is indeed ribbon since every object is self dual.

6.2. Two families attached to G24. — We consider the complex reflection group denoted
by G24 in the classification of Shephard-Todd [ST54]. Two families of unipotent characters
are of cardinal 7, the second one and the last but one. The Z-modular datum they define
are complex conjugate to each other, hence we will only consider the last but one family
of unipotent characters of G24.

The Fourier matrix and the eigenvalues of the Frobenius are

S =
1

14











−
p
−7

p
−7 7 7 −2

p
−7 −2

p
−7 −2

p
−7p

−7 −
p
−7 7 7 2

p
−7 2

p
−7 2

p
−7

7 7 7 −7 0 0 0
7 7 −7 7 0 0 0

−2
p
−7 2

p
−7 0 0 2ζ6

7+4ζ4
7−4ζ3

7−2ζ7 −4ζ6
7+2ζ5

7−2ζ2
7+4ζ7 −4ζ5

7−2ζ4
7+2ζ3

7+4ζ2
7

−2
p
−7 2

p
−7 0 0 −4ζ6

7+2ζ5
7−2ζ2

7+4ζ7 −4ζ5
7−2ζ4

7+2ζ3
7+4ζ2

7 2ζ6
7+4ζ4

7−4ζ3
7−2ζ7

−2
p
−7 2

p
−7 0 0 −4ζ5

7−2ζ4
7+2ζ3

7+4ζ2
7 2ζ6

7+4ζ4
7−4ζ3

7−2ζ7 −4ζ6
7+2ζ5

7−2ζ2
7+4ζ7











and

T =



















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 ζ3

7 0 0
0 0 0 0 0 ζ5

7 0
0 0 0 0 0 0 ζ6

7



















,

where ζ7 is a primitive seventh root of unity and
p
−7= ζ7+ζ2

7−ζ
3
7+ζ

4
7−ζ

5
7−ζ

6
6.

In [Cun05, Section 8.2.1 Beispiel 15], Cuntz showed that the fusion algebra associated
to this modular datum is related to the Verlinde algebra of type B3 at a twenty-eighth root
of unity.

Let ξ be a primitive twenty-eighth root of unity such that ξ4 = ζ7 and consider the
category Z(Tξ)oS for g of type B3.

Notations. In this section, g is of type B3 with Cartan matrix




2 −2 0
−1 2 −1
0 −1 2



 .

The short simple root is denoted by α1 and the two long simple roots are de-
noted by α2 and α3. The fundamental weights are $1 =

3
2α1 + α2 +

1
2α3,

$2 = 2α1+2α2+α3 and$3 =α1+α2+α3.

We have$1 =
3
2α
∨
1 +2α∨2 +α

∨
3 and therefore the subgroup of P /(14Q∨∩Q ) generated by

7$1 is {0, 7$1, 14$1, 21$1}. Let C be the full subcategory of Z(Tξ)oS generated by the



TILTING MODULES FOR DRINFELD DOUBLE OF QUANTUM GROUPS 39

objects of grading in {0, 7$1, 14$1, 21$1}. This category is then stable by tensor product.
The fundamental chamber C is

C = {λ1$1+λ2$2+λ3$3 ∈ P +|λ1+2λ2+λ3 < 3}= {0,$1,$2,$3, 2$1, 2$3,$1+$3}.

Therefore, there are 14 simple objects in C which are labelled by:

– in degree 0: (0, 0), ($2,$2), ($3,$3), (2$1, 2$1) and (2$3, 2$3),
– in degree 7$1: (8$1,−6$1) and (8$1+$3,−6$1+$3),
– in degree 14$1: (14$1,−14$1), (14$1+$2,−14$1+$2), (14$1+$3,−14$1+$3),
(16$1,−12$1) and (14$1+2$3,−14$1+2$3)

– in degree 21$1: (22$1,−20$1) and (22$1+$3,−20$1+$1).

Proposition 6.2. — The category C is slightly degenerate. The non-unit objecct of its symmet-
ric center is Lξ(14$1+2$3,−14$1+2$3) which is of dimension −1 and of twist 1.

We choose the following set of representatives of the superfusion category ÒC :

{Lξ(0, 0), Lξ(14$1,−14$1), Lξ(22$1,−20$1), Lξ(22$1+$1,−20$1+$3),

Lξ($3,$3), Lξ($2,$2), Lξ(2$1, 2$1)}.

With this order, the S -matrix and the T -matrix of the twist of ÒC are

S
ÒC =



















1 −1
p
−7

p
−7 2 2 2

−1 1
p
−7

p
−7 −2 −2 −2p

−7
p
−7

p
−7 −

p
−7 0 0 0p

−7
p
−7 −

p
−7

p
−7 0 0 0

2 −2 0 0 2ζ6
7+2ζ7 2ζ5

7+2ζ2
7 2ζ4

7+2ζ3
7

2 −2 0 0 2ζ5
7+2ζ2

7 2ζ4
7+2ζ3

7 2ζ6
7+2ζ7

2 −2 0 0 2ζ4
7+2ζ3

7 2ζ6
7+2ζ7 2ζ5

7+2ζ2
7



















and

T
ÒC =



















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 ζ3

7 0 0
0 0 0 0 0 ζ5

7 0
0 0 0 0 0 0 ζ6

7



















This category is not spherical and the object 1̄ is Lξ(14$1,−14$1), which is of dimen-
sion −1. Therefore following [Lac18, Theorem 2.7], we renormalise S

ÒC with the square
root of −28, which is sdim(C )dim+(1̄).

Theorem 6.3. — The S -matrix and the T -matrix of the superfusion category ÒC satisfy

S
ÒC

i
p

28
= S T

ÒC = T ,

where i = ξ7.
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