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SLIGHTLY DEGENERATE CATEGORIES AND Z-MODULAR DATA

by

Abel Lacabanne

An N-modular datum over C is a finite set I , a distinguished element i0 ∈ I , a square
matrix S ∈MI (C), a diagonal matrix T ∈MI (C) such that

1. for any i ∈ I , Si0,i 6= 0,
2. S is unitary, symmetric and S 4 = In , (ST )3 =λIn and [S 2, T ] = In ,
3. for any i , j , k ∈ I ,

N k
i , j =

∑

l∈I

Si ,l Sj ,l Sk ,l

Si0,l

belongs to N.

Modular categories naturally give rise to modular data [EGNO15, Section 8.16] and
given a modular datum, one can ask the question of finding a modular category with
this modular datum. In [Lus94], Lusztig gives a slightly more restrictive definition of
modular datum, and associate a modular datum to each dihedral group.

In order to generalize Lusztig’s work for imprimitive complex reflection groups, Malle
[Mal95] defines a fusion datum, but such that the integers N k

i , j are in Z, which we will call
Z-fusion datum. The question of finding a categorification of these data is much more
complicated, as a modular category always defines an N-modular datum: the integers
N k

i , j are the multiplicities of the object k in the tensor product i ⊗ j .
In [BR17] Bonnafé and Rouquier gave a categorification of the Malle Z-fusion datum

associated with cyclic groups, by constructing a tensor triangulated category with extra
structure.

In this article, we explain how slightly degenerate categories [EGNO15, Definition
9.15.3] give rise to Z-modular datum. This is also related to braided pivotal superfusion
categories. Note that there exist two pivotal structures on supervector spaces, one of
which is unitary (and therefore all simple objects have positive dimension), and one of
which is not (the two simple objects are of dimension 1 and −1). We will show that
with the non-unitary structure, a slightly degenerated category gives rise to a Z-modular
datum.

As an application, we will reinterprete the example of Bonnafé and Rouquier in this
setting of slightly degenerate categories. This approach will be generalized in [Lac18].
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1. Categorical preliminaries

Let | be an algebraically closed field of characteristic 0 andC be a tensor category over
|, as defined in [EGNO15, Definition 4.1.1]: C is a locally finite |-linear rigid monoidal
category (with unit object denoted by 1) such that the bifunctor ⊗:C×C →C is |-bilinear
on morphisms and EndC (1) = |. We denote by aX ,Y ,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z ) the
associativity constraint, but will often omit it. The left (resp. right) dual of an object
X ∈C is denoted by X ∗ (resp. ∗X ) with evaluation and coevaluation morphism

evX : X ∗⊗X → 1 and coevX : 1→ X ⊗X ∗

(resp.
ev′X : X ⊗ ∗X → 1 and coev′X : 1→ ∗X ⊗X )

such that the following compositions are identities

X X ⊗X ∗⊗X X ,
coevX ⊗ idX idX ⊗evX

X ∗ X ∗⊗X ⊗X ∗ X ∗.
idX ∗ ⊗coevX evx ⊗ idX ∗

One can define, for any f : X → Y with X and Y having left duals, the left dual of f as
the map f ∗ : Y ∗→ X ∗ given by the composition

Y ∗ Y ∗⊗X ⊗X ∗ Y ∗⊗Y ⊗X ∗ X ∗,
idY ∗ ⊗coevX idY ∗ ⊗ f ⊗idX ∗ evY ⊗ idX ∗

and similarly there exists the right dual of a map.
We assume that C is equipped with a pivotal structure [EGNO15, Definition 4.7.8]:

there is a family of natural isomorphisms aX : X → X ∗∗ such that aX⊗Y = aX ⊗ aY . For
f ∈ HomC (X , X ), we can define two traces which are elements of EndC (1) = |. The left
quantum trace Tr+X ( f ) is given by the composition

1 X ⊗X ∗ X ∗∗⊗X ∗ 1,
coevX (aX ◦ f )⊗idX ∗ evX ∗

and the right quantum trace Tr−X ( f ) is given by the composition

1 X ∗⊗X ∗∗ X ∗⊗X 1.
coevX ∗ idX ∗ ⊗( f ◦a−1

X ) evX

It is well known that for any f ∈ EndC (X ), Tr+X ∗ ( f
∗) = Tr−X ( f ). We also define the partial

traces of f ∈ EndC (X ⊗Y ) by

idX ⊗Tr+Y ( f ): X X ⊗Y ⊗Y ∗ X ⊗Y ∗∗⊗Y X
coevY ((idX ⊗aY )◦ f )⊗idY evY

and

Tr−X ⊗ idY ( f ): Y X ∗⊗X ∗∗⊗Y X ∗⊗X ⊗Y Y .
coevX ∗ idX ∗ ⊗( f ◦(a−1

X ⊗idY )) evX

Finally, denote by Tr−+X⊗Y ( f ) the endomorphism of 1 given by Tr−X (idX ⊗Tr+Y ( f )) which is
then equal to Tr+Y (Tr−X ⊗ idY ( f )).

The left and right quantum dimensions are

dim+(X ) = Tr+X (idX ) and dim−(X ) = Tr−X (idX )

which therefore satisfy dim+(X ∗) = dim−(X ). Define the squared norm of an object X by

|X |2 = dim+(X )dim−(X ) = dim+(X )dim+(X ∗).
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We further assume thatC is braided: there exists a family of bifunctorial isomorphisms
cX ,Y : X ⊗ Y → Y ⊗ X such that the hexagon axioms are satisfied [EGNO15, Definition
8.1.1].

For a rigid braided tensor category, there exists a natural isomorphism uX : X → X ∗∗,
called the Drinfeld morphism, defined as the composition

X X ⊗X ∗⊗X ∗∗ X ∗⊗X ⊗X ∗∗ X ∗∗.
coevX ∗ cX ,X ∗ evX

It satisfies for all X , Y ∈C ,

uX ⊗uY = uX⊗Y ◦ cY ,X ◦ cX ,Y .

To give a pivotal structure a on C is therefore equivalent to give a twist on C , which is a
natural isomorphism θX : X → X satisfying for all X , Y ∈C

θX⊗Y = (θX ⊗θY ) ◦ cY ,X ◦ cX ,Y .

1.1. Semi-simplification. — We recall the procedure of semi-simplification for pivotal
categories (which are not necessarily spherical) which is given in [EO18]. Let C be a
braided pivotal tensor category over |. Denote by aX : X → X ∗∗ the pivotal structure.

A morphism f ∈ HomC (X , Y ) is said to be left (resp. right) negligible if for all g ∈
HomC (Y , X ) one has Tr+X (g ◦ f ) = 0 (resp. Tr−X (g ◦ f ) = 0). An application of [Bru00, Proposi-
tion 1.5.1] shows that the notions of left and right negligible morphisms coincide because
C is braided. Therefore the left quantum dimension of an object is zero if and only if
its right quantum dimension is zero: the assumption (2) of [EO18, Theorem 2.6] is satis-
fied. We then denote by Homnegl(X , Y ) the subspace of negligible morphisms. Define a
category C ss with the same objects as C and HomC ss (X , Y ) =HomC (X , Y )/Homnegl(X , Y ).

Proposition 1.1 ([EO18, Theorem 2.6]). — Let C be a braided pivotal tensor category. The
category C ss is a semisimple braided pivotal tensor category whose simple objects are the inde-
composable objects of C with left quantum dimension 0.

1.2. S-matrices and symmetric center. — We suppose in the following that the category
C is a braided pivotal fusion category. Denote by Irr(C ) the set of isomorphism classes of
simple objects inC and by Gr(C ) its Grothendieck ring. For X , Y , Z ∈ Irr(C ), we denote by
N Z

X ,Y the multiplicity of Z in the tensor product X ⊗Y . Then Gr(C ) is a freeZ -algebra with
basis Irr(C ) and the structure constants are given by the positive integers N Z

X ,Y . For any
simple object X , its left and right quantum dimensions are non-zero [EGNO15, Proposi-
tion 4.8.4]. If X and Y are objects of C , we set

s+X ,Y = (idX ⊗Tr+Y )(cY ,X ◦ cX ,Y ) ∈ EndC (X )

and
s−X ,Y = (Tr−X ⊗ idY )(cY ,X ◦ cX ,Y ) ∈ EndC (Y ).

These induce two morphisms of abelian groups

s+X :

�

Gr(C ) −→ EndC (X )
Y 7−→ s+X ,Y

and s−Y :

�

Gr(C ) −→ EndC (Y )
X 7−→ s−X ,Y

.

Proposition 1.2 ([EGNO15, Proposition 8.3.11]). — Let C be a braided pivotal fusion cate-
gory. If X ∈C is simple then s+X : Gr(C )→ | and s−X : Gr(C )→ | are morphisms of rings.
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We now consider the matrices S++, S−+ and S−− in MatIrr(C )(|) defined by

S++X ,Y = Tr+X⊗Y (cY ,X ◦ cX ,Y ) = Tr+X (s
+
X ,Y ),

S−−X ,Y = Tr−X⊗Y (cY ,X ◦ cX ,Y ) = Tr−Y (s
−
X ,Y ),

S−+X ,Y = Tr+Y (s
−
X ,Y ) = Tr−X (s

+
X ,Y ).

These three matrices are related as follow
dim−(X )
dim+(X )

S++X ,Y = S−+X ,Y =
dim+(Y )
dim−(Y )

S−−X ,Y .

Remark. — The matrices S++ and S−− are symmetric but S−+ is not in general; if the
pivotal structure is spherical, these three matrices are equal.

As for any f ∈HomC (X , X ) we have Tr+X ( f ) = Tr−X ∗ ( f
∗), the following relations are satis-

fied:

S++X ∗,Y ∗ = S−−X ,Y

S−+X ∗,Y ∗ = S−+Y ,X .

Hence the matrix S = (S−+X ,Y ∗ )X ,Y ∈Irr(C ) is symmetric.

The following definition is due to Müger [Müg03, Definition 2.9].

Definition 1.3. — The symmetric center C ′ of a braided monoidal category C is the full subcat-
egory of C with objects X such that

∀Y ∈C , cY ,X ◦ cX ,Y = idX⊗Y .

We say that C is non-degenerate if 1 is the unique simple object in C ′.

It is clear that if X ∈ Irr(C ′) then for all Y ∈ Irr(C ) we have S ?,?′

X ,Y = dim?(X )dim?′ (Y ), for
(?, ?′) ∈ {(+,+), (−,+), (−−)}.

Proposition 1.4 ([EGNO15, Proposition 8.20.5]). — Let C be a braided pivotal fusion cate-
gory and X be a simple object in C . The following are equivalent:

1. X ∈C ′,
2. for all Y ∈ Irr(C ) we have S−,+

X ,Y = dim−(X )dim+(Y ),
3. for all Y ∈ Irr(C ) we have S+,+

X ,Y = dim+(X )dim+(Y ),
4. for all Y ∈ Irr(C ) we have S−,−

X ,Y = dim−(X )dim−(Y ).

The category C can be endowed with another braiding, namely the reverse braiding.
We denote it by c rev

X ,Y and it is defined by c rev
X ,Y = c −1

Y ,X . We denote by C rev the category C
equipped with the reverse braiding, and by S rev,++, S rev,−− and S rev,−+ the corresponding
S -matrices. Note that we use the same pivotal structure on C and C rev for the computa-
tion of the traces.

Proposition 1.5. — Let C a braided pivotal fusion category. Then for any X and Y simple
objects we have

S rev,−+
X ,Y = S++Y ,X ∗ .

Proof. — We start with a lemma, which is a direct consequence of [EGNO15, Proposition
8.9.1].

Lemme 1.6. — Let C be a braided rigid tensor category. Then for every X and Y objects in C
we have:
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1. (evX ⊗ idY ) ◦ (idX ∗ ⊗cY ,X ) = (idY ⊗evX ) ◦ (c −1
Y ,X ∗ ⊗ idX ),

2. (cX ,Y ⊗ idY ∗ ) ◦ (idX ⊗coevY ) = (idY ⊗c −1
X ,Y ∗ ) ◦ (coevY ⊗ idX ).

Now, by definition

S rev,−+
X ,Y = (evX ⊗evY ∗ ) ◦ (idX ∗⊗X ⊗aY ⊗ idY ∗ ) ◦ (idX ∗ ⊗c −1

X ,Y ⊗ idY ∗ )

◦ (idX ∗ ⊗c −1
Y ,X ⊗ idY ∗ ) ◦ (idX ∗ ⊗a−1

X ⊗ idY ⊗Y ∗ ) ◦ (coevX ∗ ⊗coevY ).

By naturality of the braiding and using Lemma 1.6 we have

(evX ⊗ idY ∗∗ ) ◦ (idX ∗⊗X ⊗aY ) ◦ (idX ∗ ⊗c −1
X ,Y ) = (evX ⊗ idY ∗∗ ) ◦ (idX ∗ ⊗c −1

X ,Y ∗∗ ) ◦ (idX ∗ ⊗aY ⊗ idX )

= (idY ∗∗ ⊗evX ) ◦ (cX ∗,Y ∗∗ ⊗ idX ) ◦ (idX ∗ ⊗aY ⊗ idX ).

Similarly,

(idX ∗ ⊗c −1
Y ,X )◦ (idX ∗ ⊗a−1

X ⊗ idY )◦ (coevX ∗ ⊗ idY ) = (idX ∗⊗Y ⊗a−1
X )◦ (cY ,X ∗ ⊗ idX ∗∗ )◦ (idY ⊗coevX ∗ ).

Therefore

S rev,−+
X ,Y = evX⊗Y ∗ ◦(cX ∗,Y ∗∗ ⊗ idX⊗Y ∗ ) ◦ (idX ∗ ⊗aY ⊗a−1

X ⊗ idY ∗ ) ◦ (cY ,X ∗ ⊗ idX ∗∗⊗Y ∗ ) ◦ coevY ⊗X ∗

= evX⊗Y ∗ ◦(aY ⊗ id∗X ⊗a−1
X ⊗ idY ∗ ) ◦ (cX ∗,Y ⊗ idX ∗∗⊗Y ∗ ) ◦ (cY ,X ∗ ⊗ idX ∗∗⊗Y ∗ ) ◦ coevY ⊗X ∗ .

Finally, using that (a−1
X )
∗ = aX ∗ and that for any f : W → Z we have evW ◦(idW ⊗ f ∗) =

evZ ◦( f ⊗ idZ ∗ ), we obtain S rev,−+
X ,Y = S++Y ,X ∗ .

1.3. Non-degenerate pivotal categories. — It is well known that a modular category
gives rise to a projective representation of S L2(Z). We aim to generalize this result to
categories with a pivot which is not spherical.

Hypothesis. In this section, we suppose that the category C is a non-
degenerate braided pivotal fusion category.

All the characters of the ring Gr(C ) are then of the form s+X for X a simple object of
C . The map Y 7→ s+X (Y

∗) is a character of Gr(C ) hence equal to s+
X̄

for some X̄ ∈ Irr(C ).
This defines an involution ¯ on Irr(C ). Note that if the pivotal structure is spherical, this
involution is nothing more than the duality.

If the pivotal structure is spherical, the square of the S -matrix is well known: up to a
scalar multiple, it is the permutation matrix given by the duality on simple objets (see
[EGNO15, 8.14] for further details). Recall the definition of the categorical dimension
dim(C ) of a fusion category

dim(C ) =
∑

X ∈Irr(C )
|X |2.

Proposition 1.7. — The object 1̄ is invertible and X̄ ' X ∗⊗ 1̄.
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Proof. — Let X be a simple object. We compute s+X (1̄⊗ 1̄∗):

s+X (1̄⊗ 1̄∗) = s+X (1̄)s
+
X (1̄

∗) =
S++

X ,1̄
S++

X ,1̄∗

dim+(X )2

=
dim+(1̄)

dim+(X )2
s+1̄ (X )S

−−
X ∗,1̄

=
dim+(1̄)

dim+(X )2
s+1 (X

∗)
dim−(X ∗)dim−(1̄)
dim+(X ∗)dim+(1̄)

S++X ∗,1̄

=
dim+(1̄)dim−(1̄)

dim+(X )
s+1̄ (X

∗)

= dim+(1̄)dim−(1̄).

The element 1̄⊗1̄∗−|1̄|21 is then killed by any character of Gr(C ). So 1̄⊗1̄∗ is isomorphic
to a multiple of 1. But N 1

X ,X ∗ = 1 for any simple object X and we can conclude that 1̄⊗ 1̄∗ '
1, hence 1̄ is invertible.

Now, as 1̄ is invertible, X ⊗1̄ is simple for any simple object X . Showing that s+
X ∗⊗1̄
(Y ) =

s+X (Y
∗) for any simple object Y ends the proof:

s+X ∗⊗1̄(Y ) =
dim+(Y )

dim+(X ∗⊗ 1̄)
s+Y (X

∗⊗ 1̄) =
dim+(Y )

dim+(X ∗⊗ 1̄)
s+Y (X

∗)s+Y (1̄)

=
S++Y ,X ∗

dim+(X ∗)dim+(Y )
s+1̄ (Y )

=
S−−Y ∗,X

dim+(X ∗)dim+(Y )
dim+(Y ∗)

=
S++Y ∗,X

dim+(X )
= s+X (Y

∗).

Let E be the square matrix such that EX ,Y =δX ,Ȳ .

Proposition 1.8. — Let C be a non-degenerate braided pivotal fusion category. Then (S++)2 =
dim(C )dim+(1̄)E .

Proof. — Since C is non-degenerate, for X , Y ∈ Irr(C ), the equality s+X = s+Y as characters
of Gr(C ) holds if and only if X = Y .

Suppose Y 6= Z̄ . We have, thanks to the orthogonality of characters [EGNO15, Lemma
8.14.1],

∑

X ∈Irr(C )

S++Y ,X S++X ,Z = dim+(Y )dim+(Z )
∑

X ∈Irr(C )
s+Y (X )s

+
Z̄ (X

∗) = 0.

It remains to compute (S++)2
Y ,Ȳ

:
∑

X ∈Irr(C )

S++Y ,X S++X ,Ȳ =
∑

X ,W ∈Irr(C )
N W

Y ,Ȳ dim+(X )S++X ,W

=
∑

W ∈Irr(C )
dim+(W )N W

Y ,Ȳ

∑

X ∈Irr(C )
dim+(X )s+W (X )
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As dim+(X ) = s+1 (X ) = s+
1̄
(X ∗), the second sum is zero unless W = 1̄ and is equal to

∑

X ∈Irr(C )
dim+(X )s+1̄ (X ) =

∑

X ∈Irr(C )
dim+(X )dim−(X ) = dim(C ).

Moreover, as Ȳ ' Y ∗⊗ 1̄, we have N 1̄
Y ,Ȳ
= 1 and (S++)2

Y ,Ȳ
= dim+(1̄)dim(C ).

Corollary 1.9 (Verlinde formula). — Let C be a non-degenerate braided pivotal fusion cate-
gory and X , Y , Z ∈ Irr(C ). The structure constants of Gr(C ) are given by

N Z
X ,Y =

1

dim(C )dim+(1̄)

∑

W ∈Irr(C )

S++W ,X S++W ,Y S++
W ,Z̄

dim+(W )
.

Recall that giving a pivotal structure on a braided monoidal category is equivalent to
endowing the category with a twist. The T -matrix of C is the diagonal matrix given
by the action of the inverse of the twist θ on simple objects. For X a simple object, we
identify θX ∈ EndC (X )with the scalar λ ∈ | such that θX =λ idX .

Proposition 1.10. — For X ∈ C simple, we have θX ∗ dim+(X ) = dim−(X )θX , θX̄ = θ1̄θX and
moreover θ 2

1̄
= 1.

Proof. — A non-spherical version of [EGNO15, Exercise 8.10.15] yields for X ∈C simple

θ−1
X dim+(X ) = Tr−+X⊗X (c

−1
X ,X ).

As for f : X ⊗Y → X ⊗Y , Tr−+Y ∗⊗X ∗ ( f
∗) = Tr−+X⊗Y ( f ), we have

θ−1
X ∗ dim+(X ∗) = Tr−+X ∗⊗X ∗ (c

−1
X ∗,X ∗ ) = Tr−+X ∗⊗X ∗ ((c

∗
X ,X )

−1)

= Tr−+X⊗X (c
−1
X ,X )

= θ−1
X dim+(X ).

Taking the trace of θX ∗⊗1̄ = θX ∗ ⊗θ1̄ ◦ c1̄,X ∗ ◦ cX ∗,1̄, we have

θX̄ dim+(X̄ ) = θX ∗θ1̄S++X ∗,1̄ = θX ∗θ1̄ dim+(1̄)s+1̄ (X
∗)

= θX ∗θ1̄ dim+(1̄)dim+(X ).

As X̄ ' X ∗⊗ 1̄, the equality θX̄ = θ1̄θX follows immediately.
Finally, taking the trace of θ1̄⊗1̄∗ = θ1̄⊗θ1̄∗ ◦ c1̄∗,1̄ ◦ c1̄,1̄∗ , we find

1= θ1̄θ1̄∗S
++
1̄,1̄∗ = θ1̄θ1̄∗ dim+(1̄)s+1̄ (1̄

∗) = θ1̄θ1̄∗ dim+(1̄)2,

as |1̄|2 = 1.

Definition 1.11. — Let θ̃ be a twist onC , not necessarily the one related to the pivotal structure.
The Gauss sums of the category C with twist θ̃ are defined by

τ±(C , θ̃ ) =
∑

X ∈Irr(C )
θ̃±X |X |

2.

If the twist θ̃ is the one related to the pivotal structure, we denote these sums simply
by τ±(C ). Note that all the dimensions are computed using the pivotal structure of C .
The following lemma is a non-spherical version of [EGNO15, Lemma 8.15.3] with a twist
non-necessarily related to the pivotal structure.
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Lemme 1.12. — Let Y be a simple object in a braided pivotal fusion categegory C with twist θ̃ .
Then

∑

X ∈Irr(C )
θ̃X dim−(X )S++X ,Y = θ̃

−1
Y dim+(Y )τ+(C , θ̃ ).

Proof. — The proof is essentially the same as in [EGNO15]. By definition of the twist, for
any X and Y we have θ̃X⊗Y = θ̃X ⊗ θ̃Y ◦ cY ,X ◦ cX ,Y . Therefore, taking the left trace of this
expression, we obtain

∑

Z∈Irr(C )
N Z

X ,Y dim+(Z )θ̃Z = θ̃X θ̃Y S++X ,Y .

Now, we compute
∑

X ∈Irr(C )
θ̃X dim−(X )S++X ,Y = θ̃

−1
Y

∑

X ,Z∈Irr(C )
N Z

X ,Y dim+(Z )dim−(X )θ̃Z

= θ̃−1
Y

∑

Z∈Irr(C )
dim+(Z )θ̃Z

∑

X ∈Irr(C )
N X ∗

Z ∗,Y dim+(X )

= θ̃−1
Y dim+(Y )

∑

Z∈Irr(C )
θ̃Z |Z |2.

We now obtain a similar formula with θ−1 using the fact that θX ∗ dim+(X ) = θX dim−(X ).
Note that the twist is here the one coming from the pivotal structure.

Lemme 1.13. — Let Y be a simple object in a braided pivotal fusion categegory C . Let θ be the
twist associated to the pivotal structure. Then

∑

X ∈Irr(C )
θ−1

X dim+(X )S++X ,Y = θY dim+(Y )τ−(C ).

Proof. — Using that θX ∗ dim+(X ) = θX dim−(X ) and that dim−(X )S rev,++
X ,Y = dim+(X )S++X ∗,Y ,

which follows from Proposition 1.5, we have
∑

X ∈Irr(C )
θ−1

X dim+(X )S++X ,Y =
∑

X ∈Irr(C )
θ−1

X dim+(X )S++X ∗,Y

=
∑

X ∈Irr(C )
θ rev

X dim−(X )S rev,++
X ,Y

= (θ rev
Y )

−1 dim+(Y )τ+(θ rev,C rev),

where the last equality follows from Lemma 1.12. But τ+(θ rev,C rev) =τ−(C ) and (θ rev
Y )

−1 =
θY , which conclude the proof.

As in the case of a spherical category [EGNO15, Proposition 8.15.4], the Gauss sums
satisfy τ+(C )τ−(C ) = dim(C ) and hence are non-zero.

Proposition 1.14. — Let C be a non-degenerate braided pivotal fusion category. Then θ1̄ = 1,
where θ is the twist associated to the pivotal structure.

Proof. — Using the fact that C is non-degenerate, we have, as in [EGNO15, Corollary
8.15.5]

∑

X ∈Irr(C )
θ−1

X dim+(X )S++X ,Y = θȲ dim−(Ȳ )τ−(C )dim+(1̄).
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As Ȳ ' Y ∗⊗ 1̄, θȲ = θ1̄θY and |1|2 = 1 we have
∑

X ∈Irr(C )
θ−1

X dim+(X )S++X ,Y = θ1̄θY dim+(Y )τ−(C ).

This equality for Y = 1, together with Lemma 1.13, show that θ1̄ = 1.

The modular group is S L2(Z) and has presentation

〈s, t | s4 = 1, (st)3 = s2〉

by choosing

s=
�

0 −1
1 0

�

and t=
�

1 1
0 1

�

.

The categorical dimension of C being a totally positive number [EGNO15, Theorem
7.21.12], we denote its positive square root by

p

dim(C ). We moreover choose a square
root

p

dim+(1̄) of dim+(1̄). We have the non-sperical analogue of [EGNO15, Theorem
8.16.1]

Theorem 1.15. — Let C be a non-degenerate braided pivotal fusion category. We have (ST )3 =
τ−(C )S 2 and S 4 = (dim(C )dim+(1̄))2 id. Therefore

s 7→
1

p

dim+(1̄)
p

dim(C )
S and t 7→ T

define a projective representation of S L2(Z).

We can show that that S and T satisfy (ST −1)3 = τ+(C )dim(C )dim+(1̄)2 id. Indeed, we
have

ST S =τ−(C )T −1ST −1.

Multiplying by S on both sides, using Proposition 1.8 and the fact that θX̄ = θX , we have

dim(C )2 dim+(1̄)2T =τ−(C )ST −1ST −1S ,

which gives (ST −1)3 =τ+(C )dim(C )dim+(1̄)2 id since τ+(C )τ−(C ) = dim(C ).
Define ξ(C ) = τ+(C )p

dim(C )

p

dim+(1̄) so that the images of s and t satisfy

s4 = id, (st)3 = ξ(C )−1s2 and (st−1)3 = ξ(C ) id .

2. Slightly degenerate fusion category

The main object of study of this section is slightly degenerate fusion categories. These
are braided fusion categories with symmetric center equivalent to superspaces. We give
an analogue of the Verlinde formula, the structure constants involved are the ones of a
quotient of the Grotehndieck ring of C ; these structure constants can be negative.

Hypothesis. In this section, we assume that C is a slightly degenerate
braided pivotal fusion category.

Denote by ε the invertible object generating the symmetric center of C . As C ′ ' sVect,
the twist of ε is either 1 or −1. In the first case, ε is of quantum dimension −1 whereas in
the second case, it is of quantum dimension 1.

Tensoring by ε gives an involution on the set of isomorphism classes of simple ob-
jects. According to [EGNO15, Proposition 9.15.4], this involution has no fixed points. We
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choose J ⊆ Irr(C ) a set of representatives of orbits of this involution such that 1 ∈ J . The
S -matrix of C is then of rank half its size by [EGNO15, Theorem 8.20.7] and s+X = s+Y if
and only if X ' Y or X ' Y ⊗ ε by [EGNO15, Lemma 8.20.8].

The following is related to [BGH+17, Question 2.8]

Conjecture 2.1. — If X , Y , Z are simple objects then N Z
X ,Y N Z⊗ε

X ,Y = 0.

Lemme 2.2. — The S -matrix gives the characters of the quotient ring Gr(C )/([ε]−dim(ε)[1]).

Proof. — Denote by A the ring Gr(C )/([ε]− dim(ε)[1]). It has a Z-basis given by the ele-
ments of J and for X , Y , Z ∈ J , the structure constants in A are given by

s N Z
X ,Y =N Z

X ,Y +dim(ε)N Z⊗ε
X ,Y .

As ε is in the symmetric center, S++X ,Y ⊗ε = dim(ε)S++X ,Y . Therefore, for W , X , Y ∈ J

s+W (X ⊗Y ) =
∑

Z∈Irr(C )
N Z

X ,Y s+W (Z )

=
∑

Z∈J

(N Z
X ,Y s+W (Z ) +N Z

X ,Y s+W (Z ⊗ ε))

=
∑

Z∈J

s N Z
X ,Y s+W (Z ),

and s+W is indeed a character of A.

As in section 1.3, we define an involution ¯ on J : for any X ∈ J , there exists a unique
X̄ ∈ J such that for all Y ∈ J

s+X (Y
∗) = s+X̄ (Y ).

Again, if the pivotal structure is spherical, then X̄ ' X ∗ or X̄ ' X ∗ ⊗ ε whether X ∗ in in J
or not.

For a slightly degenerate category, we define its superdimension by

sdim(C ) =
∑

X ∈J

|X |2 =
1

2
dim(C ).

Note that this does not depend on the choice of J .

Proposition 2.3. — Let C be a slightly degenerate braided pivotal fusion category satisfying
Conjecture 2.1. Then the simple object 1̄ is invertible and for X ∈ J we have X̄ ' X ∗ ⊗ 1̄ or
X̄ ' X ∗⊗ 1̄⊗ ε.

Proof. — The same computations as in the proof of Proposition 1.7 show that 1̄⊗1̄∗ = |1̄|21
in Gr(C )/([ε]−dim(ε)[1]). But s N 1

X ,X ∗ =N 1
X ,X ∗+dim(ε)N ε

X ,X ∗ , N 1
X ,X ∗ = 1 and N ε

X ,X ∗ =N 1
X ,X ∗⊗ε =

0 as X ∗ 6' X ∗⊗ ε. Hence in Gr(C )/([ε]−dim(ε)[1])we have 1̄⊗ 1̄∗ = 1.
Therefore in Gr(C )we have

1̄⊗ 1̄∗ = 1+
∑

X ∈J \{1}
nX (X −dim(ε)X ⊗ ε),

with nX ∈Z.
If dim(ε) = 1, the object 1̄⊗ 1̄∗ being in C , the image of 1̄⊗ 1̄∗ in Gr(C ) is in the monoid

generated by Irr(C ). Hence we necessarily have 1̄⊗ 1̄∗ = 1 in Gr(C ) and therefore 1̄ is
invertible.

If dim(ε) =−1, then the hypothesis made on C shows that nX = 0 for all X ∈ J \ {1}.
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As in the proof of 1.7, a simple calculation shows that s+
X ∗⊗1̄
(Y ) = s+X (Y

∗) for any simple
object Y . Therefore X̄ ' X ∗⊗ 1̄ if X ∗⊗ 1̄ ∈ J and X̄ ' X ∗⊗ 1̄⊗ ε otherwise.

Hypothesis. In the following, we suppose that the object 1̄ is invertible.

Let E be the square matrix such that EX ,Y = (dim(ε))δX ∗⊗1̄ 6∈J δX ,Ȳ for X and Y in J .

Proposition 2.4. — Let C be a slightly degenerate pivotal braided fusion category. The matrix
S= (S++X ,Y )X ,Y ∈J satisfies S2 = sdim(C )dim+(1̄)E .

Proof. — First, note that if χ1 and χ2 are two different characters of Gr(C ) such that χ1(ε) =
χ2(ε) then

∑

W ∈J

χ1(W )χ2(W
∗) = 0.

Indeed, by the usual orthogonality of characters,

0=
∑

W ∈J

χ1(W )χ2(W
∗) +

∑

W ∈J

χ1(W ⊗ ε)χ2(W
∗⊗ ε) = 2

∑

W ∈J

χ1(W )χ2(W
∗).

Using the fact that for X , Y ∈ J , s+X = s+Y if and only if X = Y we show as in the non-
degenerate case that (S2)X ,Y = 0 and that (S2)X ,X̄ = sdim(C )dim+(1̄)s N 1̄

X ,X̄
. It is then easy to

see that s N 1̄
X ,X̄
= 1 if X ∗⊗ 1̄ ∈ J and s N 1̄

X ,X̄
= dim(ε) if X ∗⊗ 1̄ 6∈ J .

Corollary 2.5 (Verlinde formula). — Let C be a slightly degenerate braided pivotal fusion
category and X , Y , Z ∈ J . The structure constants of Gr(C )/([1]−dim(ε)[ε]) are given by

s N Z
X ,Y =

(dim(ε))δX ∗⊗1 6∈J

sdim(C )dim+(1̄)

∑

W ∈J

SW ,X SW ,Y SW ,Z̄

dim+(W )

We now study the T -matrix of a slightly degenerate braided pivotal fusion category.
The equality θX ∗ dim+(X ) = θX dim−(X ) has been proven without assumption on the de-
generacy of the category C . As in the non-degenerate setting, it is easy to prove that
θX̄ = θX θ1̄ if X ∗⊗ 1̄ ∈ J and θX̄ = θX θ1̄θε otherwise. Moreover, θ 2

1̄
= 1. For X and Y ∈ J , we

have the relation

θX θY SX ,Y =
∑

Z∈Irr(C )
N Z

X ,Y dim+(Z )θZ

=
∑

Z∈J

(N Z
X ,Y +dim(ε)θεN Z⊗ε

X ,Y )dim+(Z )θZ .

But dim(ε)θε =−1 by definition of ε.

Hypothesis. From now on, we suppose that dim(ε) = −1 and θε = 1: sVect
is equipped with its non-unitary pivotal structure.

With these assumptions, the structure constants of Gr(C )/([1] + [ε]) appear naturally:

(1) θX θY SX ,Y =
∑

Z∈J

s N Z
X ,Y dim+(Z )θZ

for any X , Y ∈ J .
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We define the Gauss sums of the slightly degenerate category C as

sτ±(C ) =
∑

X ∈J

|X |2θ±1
X =

1

2
τ±(C ).

Note that these are independent of the choice of J since θε = 1.

Proposition 2.6. — The twists and the S -matrix satisfy for all Y ∈ J
∑

X ∈J

θX dim−(X )SX ,Y = θ
−1
Y dim+(Y )sτ+(C )

and
∑

X ∈J

θ−1
X dim+(X )SX ,Y = θ1̄θY dim+(Y )sτ−(C ).

Proof. — Using the equation (1) we show that

∑

X ∈J

θX dim−(X )SX ,Y = θ
−1
Y

∑

Z∈J

θZ dim+(Z )

�

∑

X ∈J

s N Z
X ,Y dim−(X )

�

.

But s N Z
X ,Y = s N X ∗

Y ,Z ∗ and therefore
∑

X ∈J

s N Z
X ,Y dim−(X ) =

∑

X ∈J

s N X ∗

Y ,Z ∗ dim−(X ) =
∑

X ∈Irr(C )
N X

Y ,Z ∗ dim+(X )

= dim+(Y ⊗Z ∗).

Hence
∑

X ∈J

θX dim−(X )SX ,Y = θ
−1
Y dim+(Y )

∑

Z∈J

θZ |Z |2

as stated.
Now multiply this relation by SY ,Z and sum over Y ∈ J :

∑

Y ∈J

θ−1
Y dim+(Y )sτ+(C )SY ,Z =

∑

Y ,X ∈J

θX dim−(X )SX ,Y SY ,Z

=
∑

X ∈J

θX dim−(X )
∑

Y ∈J

SX ,Y SY ,Z

= sdim(C )dim+(1̄)θZ̄ dim−(Z̄ )(−1)δZ ∗⊗1̄∈J .

But in any cases, we check that dim+(1̄)θZ̄ dim−(Z̄ )(−1)δZ ∗⊗1̄∈J = θ1̄θZ dim+(Z ). Therefore
∑

X ∈J

θ−1
X dim+(X )SX ,Y = θ1̄θY dim+(Y )

sdim(C )
sτ+(C )

.

We conclude by noting that, as in the non-degenerate case, we have

sdim(C ) = sτ+(C )sτ−(C ).

Corollary 2.7. — Let C be a slightly degenerate braided pivotal fusion category. Then θ1̄ = 1.

Proof. — Same as Proposition 1.14.
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We finally conclude this section by giving an analogue of Theorem 1.15 in the setting of
slightly degenerate braided pivotal fusion category. We denote by T the diagonal matrix
with entries θ−1

X for X ∈ J . We denote the positive square root of sdim(C ) by
p

sdim(C ).
We moreover choose a square root

p

dim+(1̄) of dim+(1̄).

Theorem 2.8. — LetC be a slightly degenerate braided pivotal fusion category. We have (ST)3 =
sτ−(C )S2 and S4 = (sdim(C )dim+(1̄))2 id. Therefore

s 7→
1

p

dim+(1̄)
p

sdim(C )
S and t 7→ T

define a projective representation of S L2(Z).

Remark. — If dim(ε) = 1 and θε = −1, the S and T -matrices do not necessarily give a
representation of S L2(Z).

Consider the Verlinde modular category C (sl2, q ) where q is a 16-th root of unity
[EGNO15, Section 8.18.2]. It has 7 simple objects V0 = 1, . . . V6. Let C be the full sub-
category of C (sl2, q ) generated by V0, V2, V4, V6. The S -matrix and the T -matrix of C are

S =







1 [3] [3] 1
[3] −1 −1 [3]
[3] −1 −1 [3]
1 [3] [3] 1






and T =







1 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −1






,

where [3] = q−2+1+q 2 and i = q 4 is a primitive fourth root of unity. It is immediate that
the symmetric center of C is generated by V6 as a tensor category, and V6 is of dimension
1 and of twist −1. The symmetric center of C is then equivalent to sVect, the matrices S
and T are

S=
�

1 [3]
[3] −1

�

and T=
�

1 0
0 −i

�

and they do not define a projective representation of S L2(Z).

3. Braided fusion supercategory associated to a slighty degenerate braided fusion
category

In this section, we recall the notion of a superfusion category, which is a fusion category
enriched over super vector spaces. We then construct, following [BE17] and [BCK17],
a superfusion category Ĉ associated to a slightly degenerate fusion category C . The
braiding and the pivotal structure of C naturally endow the supercategory Ĉ with a
braiding and a pivotal structure. The S -matrix of C gives then the structure constants of
a quotient of the super Grothendieck ring of Ĉ .

3.1. Superfusion categories. — By a superspace, we mean a Z/2Z-graded vector space.
We denote by |v | the parity of an homogeneous element v of a superpace, by sVect the
category of superspaces of finite dimension with morphisms even linear maps (i.e. map-
ping even degree to even degree and odd one to odd one). This category is monoidal
with (V ⊗W )0 = V0⊗W0⊕V1⊗W1 and (V ⊗W )1 = V0⊗W1⊕V1⊗W0, braided with braiding
defined by

cV ,W (v ⊗w ) = (−1)|v ||w |w ⊗ v,

for v and w homogeneous elements; this braiding is symmetric.
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Remark. — The category of superspaces with even and odd morphisms is not monoidal.
This is due to the following relation, known as superinterchange law

(g ⊗ g ′) ◦ ( f ⊗ f ′) = (−1)|g
′|| f |(g ◦ f )⊗ (g ′ ◦ f ′),

for f and g homogeneous morphisms. The definition of a monoidal supercategory will
naturally satisfy this superinterchange law.

A supercategory is a sVect-enriched category; a superfunctor between two supercate-
gories is a sVect-enriched functor; a supernatural transformation between two superfunc-
tors is a sVect-enriched natural transformation (see [Kel05, Section 1.2] for more details).
A supernatural transformation is said to be even if all its components are even.

Now, given two supercategories A and B , we define A �B as the supercategory
whose objects are pairs (X , Y ) with X ∈ A and Y ∈ B and whose morphisms are given
by HomA�B ((X , X ′), (Y , Y ′)) = HomA (X , Y )⊗HomB (X ′, Y ′), the tensor product being the
one of superpaces. The composition inA �B is defined using the braiding in sVect:

(g ⊗ g ′) ◦ ( f ⊗ f ′) = (−1)|g
′|| f |(g ◦ f )⊗ (g ′ ◦ f ′).

Definition 3.1 ([BE17, Definition 1.4]). — A monoidal supercategory is a sextuple (C ,⊗, a ,
1, l , r ) where C is a supercategory, ⊗: C �C → C is a superfunctor, 1 is the unit object, and
a : (−⊗−)⊗−→−⊗ (−⊗−), l : 1⊗−→− and r : −⊗1→− are even supernatural isomorphisms
satisfying axioms analogous to the ones of a monoidal category.

A monoidal superfunctor between two monoidal supercategories C and D is a pair (F, J )
where F : C → D is a superfunctor and J : F (−) ⊗ F (−) → F (− ⊗ −) is an even supernatural
isomorphism satisfying axioms analogus to the ones for a monoidal functor and such that F (1C )
is evenly isomorphic to 1D .

We now define the notion of braided monoidal supercategory [BCK17, Section 2.2]. First,
let τ:C �C →C denote the superfunctor sending (X , Y ) on Y ⊗X and f ⊗g on (−1)| f ||g |g ⊗
f . A braiding on C is then an even supernatural isomorphism c : −⊗−→ τ satisfying the
usual hexagon axioms of a braided monoidal category.

In a monoidal supercategory C , a left dual of an object X ∈C is a triple (X ∗, evX , coevX )
where X ∗ ∈C , evX : X ∗⊗X → 1 and coevX : 1→ X ⊗X ∗ are even morphisms satisfying the
same axioms of duality in a rigid monoidal category. Similarly, there is a notion of right
dual. A monoidal supercategory in which any object has a left and right dual is called
rigid. In a rigid monoidal supercategory, we define the dual f ∗ ∈ HomC (Y ∗, X ∗) of f ∈
HomC (X , Y ) as in any rigid monoidal category. Note that we have (g ◦ f )∗ = (−1)| f ||g | f ∗◦g ∗

for two homogeneous morphisms f and g , the sign being due to the superinterchange
law.

Finally, a superfusion category is a semisimple rigid monoidal supercategory with finite
number of simple objects, finite dimensional spaces of morphisms and simple unit object
1.

A pivotal structure on a rigid monoidal supercategory is an even or odd monoidal su-
pernatural isomorphism a : −→−∗∗. As in the usual case of pivotal monoidal categories,
we have the notion of left and right quantum traces. Note that for f : X → Y and g : Y → X
homogeneous morphisms we have

Tr+X (g ◦ f ) = (−1)| f ||g |Tr+Y ( f ◦ g )

and similarly for the right quantum trace.
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3.2. Super Grothendieck ring. — Let Zε = Z[ε]/(ε2 − 1). The super Grothendieck group
sGr(C ) of a supercategory C is the Zε-module generated by isomorphism classes [X ] of

objects in C modulo the following relations: if 0 → X
f
→ Y

g
→ Z → 0 is a short exact

sequence with homogeneous maps, then [Y ] = ε| f |[X ] + ε|g |[Z ].
There is a map sGr(C )/(ε − 1) → Gr(C ) which is clearly surjective but not necessarily

injective.
If C is monoidal, then tensor product in C endow sGr(C ) with a structure of an asso-

ciative algebra. If moreover C is braided, the multiplication is commutative.
In a superfusion category, the super Grothendieck ring is not necessarily a free Zε-

algebra as it may exist simple objects with odd automorphisms. It is nevertheless free as
a Z-algebra.

3.3. Braided monoidal supercategory associated to a slightly degenerate braided cat-
egory. — In this section, we fix a slightly degenerate pivotal braided tensor category
C . We denote by ε the unique non-unit simple object of C ′. We fix an isomorphism
ξ: ε⊗ ε→ 1.

Define a supercategory Ĉ with the same objects as C and superspaces of morphisms
being:

HomĈ (X , Y )0 =HomC (X , Y ) and HomĈ (X , Y )1 =HomC (X ,ε⊗Y ).

The composition of f ∈ HomĈ (X , Y ) and g ∈ HomĈ (Y , Z ) is obviously defined except
when f and g are odd morphisms. In this case, g ◦ f is the map given by the following
composition

X ε⊗Y ε⊗ ε⊗Z Z .
f idε ⊗g ξ⊗idY

By a case-by-case checking, we see that the composition above is indeed associative.
The category Ĉ is equipped with a tensor product. On objects, the tensor product is

the same as in C . On morphisms, we define the tensor product f ⊗̂ f ′ on homogeneous
morphisms f ∈HomĈ (X , Y ) and f ′ ∈HomĈ (X

′, Y ′) as follows:
– if f and f ′ are both even, f ⊗̂ f ′ = f ⊗ f ′,
– if f is even and f ′ odd, f ⊗̂ f ′ = (cY ,ε ⊗ idY ′ ) ◦ f ⊗ f ′,
– if f is odd and f ′ even, f ⊗̂ f ′ = f ⊗ f ′,
– if f and f ′ are both odd, f ⊗̂ f ′ = (ξ⊗ idY ⊗Y ′ ) ◦ (idε⊗cY ,ε ⊗ idY ′ ) ◦ f ⊗ f ′

As for the associativity, we check case-by-case, that ⊗̂ satisfies the superinterchange
law.

The braiding in C gives an even morphism cX ,Y ∈HomĈ (X ⊗Y , Y ⊗X ).

Proposition 3.2. — Let C be a slightly degenerate braided category. The braiding in C endows
Ĉ with a structure of a braided supercategory.

Proof. — We have to check that for any two homogenous morphisms f ∈ HomĈ (X , X ′)
and g ∈HomĈ (Y , Y ′) the diagram

X ⊗Y Y ⊗X

X ′⊗Y ′ Y ′⊗X ′

cX ,Y

f ⊗̂g g ⊗̂ f

cX ′ ,Y ′

is (−1)| f ||g |-commutative in Ĉ . If X ′ = X and f = idY , the commutativity follows from the
naturality of the braiding in C and from one of the hexagon axioms. If Y = Y ′, g = idX
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and f is of even degree it is trivially commutative; if f is of odd degree, we have to show
that

ε⊗X ′⊗Y Y ⊗ ε⊗X ′

ε⊗Y ⊗X ′

cε⊗X ′ ,Y

idε ⊗cX ′ ,Y
cY ,ε⊗idX ′

is commutative in C , which follows from one of the hexagon axioms and the fact that ε
is in the symmetric center of C . The general case now follows from the superinterchange
law.

The category Ĉ is also rigid, the evaluations and coevaluations being the same as in
C . The dual of a morphism of odd degree f ∈HomĈ (X , Y ) is then given by the following
map f þ ∈HomC (Y ∗,ε⊗X ∗)

Y ∗ Y ∗⊗X ⊗X ∗ Y ∗⊗ ε⊗Y ⊗X ∗ ε⊗Y ∗⊗Y ⊗X ∗⊗

ε⊗X ∗.

coevX f cY ∗ ,ε

evY

Proposition 3.3. — If u−1
ε aε = 1 the pivotal structure on C induces an even pivotal structure

on Ĉ .

Proof. — We check that for f ∈HomĈ (X , Y ) of odd degree, the diagram

X Y

X ∗∗ Y ∗∗

f

aX aY

f ∗∗

is commutative or anti-commutative in Ĉ . Define θ̃ = u−1a . Then θ̃ is a twist and we
have θ̃Y ◦ f = θ̃ε f ◦ θ̃X as morphisms in Ĉ . From the fact that in any rigid monoidal
supercategory, for any g : W → Z

1 W ⊗W ∗

Z ⊗Z ∗ Z ⊗W ∗

coevW

coevZ g⊗id

id⊗g ∗

and
Z ∗⊗W W ∗⊗W

Z ∗⊗Z 1

g ∗⊗id

id⊗g evW

evZ

commute, it follows that uY ◦ f = f ∗∗ ◦uX . Therefore aY ◦ f = θ̃ε f ∗∗ ◦aX .

Remark. — In most of the situations, we work with a pivotal structure a and a twist θ
related by a = uθ .

The quotient Gr(C )/([1] + [ε]) can then be seen as a quotient of the super Grothendieck
ring of Ĉ

Gr(C )/([1] + [ε])' sGr(Ĉ )/(1+ ε).

The quotient ring sGr(Ĉ )/(1−ε) is moreover isomorphic to Gr(Ĉ ). Defining the S -matrix in
Ĉ as we did in C , the Verlinde formula gives us the structure constants of sGr(Ĉ )/(1+ε).
One may interpret tensorisation by ε as the parity shift.
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4. An application to Bonnafé-Rouquier asymptotic cell category

In this section, we consider the example of Bonnafé and Rouquier [BR17] and give
another interpretation of their categorification of a Z-fusion datum. We fix an integer
d ≥ 2 and ζ a primitive d -th root of unity. The algebra D (B ) is the algebra with generators
K , z , E , F satisfying the following relations:

K d = z d = 1,

E d = F d = 0,

[z , E ] = [z , F ] = [z , K ] = 0,

K E = ζE K ,

K F = ζ−1F K ,

[E , F ] = K − z K −1.

The category D (B )-mod of finite dimensional D (B )-modules has d 2 simple modules.
For each integer 1≤ l ≤ d there exists d simple modules of dimension l denoted by Ml ,p ,
p ∈Z/dZ (see [BR17, 2.A] for further details).

As the algebra D (B ) is a braided Hopf algebra, the category D (B )-mod is a braided
tensor category. We endow it with a pivotal structure whose pivot is given by z−1K .
We denote by C the semi-simplification of the category D (B )-mod. The simple modules
in this category are the indecomposable finite dimensional D (B )-modules with non-zero
positive and negative quantum dimension. In particular, the modules Ml ,p for 1 ≤ l < d
and p ∈Z/dZ are simple in C and the modules Md ,p are isomorphic to 0.

Proposition 4.1. — The full subcategory D of C generated by the simple modules Ml ,p for
1≤ l < d and p ∈Z/dZ is stable by tensor product.

Proof. — As the categoryC is semi-simple and Ml ,p 'Ml ,0⊗M1,p , it suffices to show that,
for 1≤ l ≤ l ′ < d and p ∈Z/pZ, the simple constituents in C of Ml ,0⊗Ml ′,p are of the form
Mn ,q . We proceed by induction on l , the case l = 1 being trivial. For l = 2, this follows
from [BR17, Theorem 3.3] :

M2,0⊗Ml ′,p '







M2,p if l ′ = 1,

Ml ′+1,p ⊕Ml ′−1,p+1 if 1< l ′ < d −1,

Md−2,p+1 if l ′ = d −1.

Now, for l ≥ 3 and l ′ ≥ l , the module Ml ,0 ⊗Ml ′,p embeds in Ml ,0 ⊗ (Ml ′,p ⊕Ml ′−2,p+1) '
Ml ,0⊗Ml ′−1,p ⊗M2,0. By induction, the module Ml ,0⊗Ml ′−1,p is in C̃ , and therefore Ml ,0⊗
(Ml ′,p ⊕Ml ′−2,p+1). The module Ml ,0 ⊗Ml ′,p is finally a direct summand of an object of C̃
which is semisimple, so it is in C̃ .

The category D is then a fusion category with d (d − 1) simple objects. The positive
S -matrix S++ has been computed by Bonnafé-Rouquier [BR17, Corollary 5.5] :

S++(l ,p ),(l ′,p ′) =
ζ

1−ζ
ζ−l l ′−l p ′−p l ′−2p p ′ (1−ζl l ′ ).

The twist is given by

θl ,p = ζ
p (l+p ).
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We denote by ε the object Md−1,1 which is of positive and negative quantum dimension
−1 and of twist 1. An easy calculation shows that

S++(l ,p ),(d−1,1) =−dim+(Ml ,p ),

and therefore ε lies in the symmetric center of the category D. As this S -matrix has rank
d (d−1)

2 , ε is the only non-trivial simple object in the symmetric center. Therefore

D ′ ' sVect,

so that the category D is slighty degenerate. We then compute the action of tensoring by
ε on the set of simple objects.

Proposition 4.2. — In D we have ε⊗Ml ,p 'Md−l ,l+p .

Proof. — We proceed by induction on l , the case l = 1 being trivial. For l = 2, the
computation is done in the proof of Proposition 4.1. Suppose that l ≥ 3. We embed
Ml ,p ⊗ ε in M2,0 ⊗Ml−1,p ⊗ ε as in the proof of 4.1. Therefore, by induction, Ml ,p ⊗ ε em-
beds in Md−l ,l+p ⊕Md−l+2,l−1+p . As Ml−2,p+1 ⊗ ε ' Md−l+2,p+l−1 we finally deduce that
Ml ,p ⊗ ε 'Md−l ,l+p .

We then choose {Ml ,p | 0 ≤ p < l + p < d } as a set of representatives of the action on
simples given by tensorisation by ε.

We now compute explicitely the object X̄ , which can be reduced to the computation of
the invertible object 1̄.

The dual of Ml ,p is given by Ml ,1−l−p and therefore

s+1 (M
∗
l ,p ) = ζ

p ζ
l −1

ζ−1
= s+Md−1,0

(Ml ,p )

shows that 1̄=Md−1,0 and dim+(1̄) =−ζ.
Following section 2, we define the normalised S -matrix of the slightly degenerate piv-

otal braided fusion category D by

SX ,Y =
S++X ,Y

Æ

sdim(C̃ )
p

dim(1̄)
.

As sdim(C̃ ) = d
1−ζ (see [BR17, Section 5.C]), we have

S(l ,p ),(l ′,p ′) =
ζ−l l ′−l p ′−p l ′−2p p ′ (ζl l ′ −1)

d
.

We therefore recover the S and T -matrices of Bonnafé-Rouquier by the means of a slightly
degenerate fusion category.

Theorem 4.3. — The braided pivotal superfusion category D̂ categorifies the Malle Z-fusion da-
tum associated to the non-trivial family of the cyclic group.
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