Warith Harchaoui
email: warith.harchaoui@oscaro.com

Pierre-Alexandre Mattei

Andrés Alamansa
email: andres.almansa@parisdescartes.fr

Charles Bouveyron
email: charles.bouveyron@math.cnrs.fr

Wasserstein Adversarial Mixture Clustering

Clustering complex data is a key element of unsupervised learning which is still a challenging problem. In this work, we introduce a deep approach for unsupervised clustering based on a latent mixture living in a low-dimensional space. We achieve this clustering task through adversarial optimization of the Wasserstein distance between the real and generated data distributions. The proposed approach also allows both dimensionality reduction and model selection. We achieve competitive results on difficult datasets made of images, sparse and dense data.

Introduction

Clustering [START_REF] Duda | Pattern classification[END_REF] is the task of making groups without the need of any manual annotations. Dimensionality reduction give clues to the underlying structure of the data. Along with dimensionality reduction, clustering is a desirable goal in data analysis, visualization and is often a preliminary step in many algorithms for example in computer vision [START_REF] Ponce | Computer vision: a modern approach[END_REF] and natural language processing [START_REF] Goldberg | Neural network methods for natural language processing[END_REF].

In this paper, the clustering is achieved from a new space through a combination of a Wasserstein Generative Adversarial Network [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] and a Gaussian mixture model [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF] optimized in a stochastic gradient fashion. We propose an algorithm to perform unsupervised classification (a.k.a. clustering) within this framework that we call "WAMiC" for Wasserstein Adversarial Mixture Clustering. We postulate that a generative approach, namely a tuned Gaussian mixture model, can capture an explicit latent model that is the cause of the observed data, in the original space through a latent embedding.

Related Work

The purpose of this research is to build a linear-complexity algorithm that uses a non-linear embedding into a code space. Indeed, in the clustering literature, one can distinguish two kinds of clustering algorithms with respect to their speed and memory complexity in the number of examples. On one side, we have linear algorithms such as k-means (KM) and Preprint. Work in progress.

Gaussian Mixture Models (GMM), which usually work directly on the data (i.e. without any medium such as embeddings). On the other side, we also have quadratic and cubic algorithms such as Hierarchical Clustering [START_REF] Duda | Pattern classification[END_REF] and Spectral Clustering [START_REF] Andrew | On spectral clustering: Analysis and an algorithm[END_REF][START_REF] Zelnik | Self-tuning spectral clustering[END_REF][START_REF] Von | A tutorial on spectral clustering[END_REF] that use pairwise similarities to emphasize the latent clustering structure lying on the data. The proposed approach belongs to the first category although similar approaches to ours such as [START_REF] Yang | Joint Unsupervised Learning of Deep Representations and Image Clusters[END_REF] fall in the second category. Our proposed WAMiC algorithm is meant to work in a scalable fashion with any cluster shapes thanks to a latent space equipped with a tunable mixture distribution.

Clustering-aware representation learning

The importance of finding a suitable representation for clustering was first highlighted by Chang [START_REF] Chang | On using principal components before separating a mixture of two multivariate normal distributions[END_REF], who showed that embeddings based on principal component analysis were often unfit for clustering purposes.

The problem of learning representations from data in an unsupervised manner is a longstanding problem in machine learning [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF][START_REF] Lecun | Deep learning[END_REF]. Principal Components Analysis (PCA) and auto-encoders (AE) which can be seen as non-linear extension of PCA [START_REF] Baldi | Neural networks and principal component analysis: Learning from examples without local minima[END_REF] have been used for representing faces [START_REF] Matthew | Face recognition using eigenfaces[END_REF] or to produce a hierarchy of features [START_REF] Chan | Pcanet: A simple deep learning baseline for image classification[END_REF]. Other techniques have been used such as sparse coding [START_REF] Mairal | Sparse representation for color image restoration[END_REF] where the representation of one image is a linear combination of a few elements in a dictionary of features. More recently Bojanowski and Joulin [START_REF] Bojanowski | Unsupervised learning by predicting noise[END_REF] learned features unsupervisedly by a procedure that consists in mapping a large collection of images to noise vectors through a deep convolutional neural networks. Their work has a clustering objective but they do not report clustering results as their real goal is unsupervised feature learning.

When it comes to compressing data while limiting loss of reconstruction information, autoencoders have proved efficient [START_REF] Vincent | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[END_REF]. Briefly, an auto-encoder is a neural network made of two parts: (i) the encoder maps the data in a low-dimension space, (ii) the decoder maps them back to the original space. An auto-encoder is usually trained to reconstruct the data in the original space in a least squares fashion. At the end, if the reconstruction error is low, one can consider that the code resulting from the encoder has compressed the data without loosing too much information. The assumption is that the input data space of high dimensionality contains structure that could be successfully embedded in a lower-dimensionality manifold [START_REF] Alain | What regularized auto-encoders learn from the data-generating distribution[END_REF][START_REF] Sonoda | Decoding stacked denoising autoencoders[END_REF].

In our work, we try to accomplish representation learning for clustering. The first work we saw doing clustering in the code space of an auto-encoder is the one of Song et al. [START_REF] Song | Deep auto-encoder based clustering[END_REF] and more recently, but independently, Yang et al. [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF]. More precisely, they considered a KM-regularized auto-encoder loss to get a code space that is more easily clustered with KM namely their loss is the sum of the reconstruction and the KM residual. This philosophy is the one adopted for our own approach but with GMM. In our experiments, we found that optimizing the KM objective (online) when doing joint clustering and feature learning did not work well. We believe this is because it creates high magnitude gradients for points that are far away from cluster centers and there are sharp discontinuities at cluster boundaries whereas GMM diminishes that effect thanks to low density/probability values for far points. In a similar spirit, Xie et al. [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF] embrace the t-SNE framework [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF] in a clustering context through an auto-encoder in a non-model-based fashion. All these works tend to show that simultaneous representation learning and clustering do help each other. The reader will find an excellent review in the work of Aljalbout et al. [START_REF] Aljalbout | Clustering with deep learning: Taxonomy and new methods[END_REF].

In our preliminary experiments, a Gaussian Mixture Model trained with Expectation-Maximization [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] on codes coming from a vanilla MLP1 auto-encoder without convolutions is able to reach approximately 80% of unsupervised clustering accuracy on the famous digits MNIST images dataset2 directly on raw pixels. The idea of our work is based on the fact that clustering and compression (dimensionality reduction) seem to be closely related tasks that auto-encoders accomplish well. Our approach is an attempt to take advantage of that empirical fact.

Deep Generative Models

In the recent literature, we observe three kinds of inference techniques for Deep Generative Models (DGM) based on likelihood, variational auto-encoders and GANs. The goal of the likelihood-based approach is to minimize the Kullback-Leibler divergence between the original data distribution and the generated data distribution. A recent example of that kind is the work of Dinh et al. [START_REF] Dinh | Density estimation using real nvp[END_REF]. On the other hand, Kingma and Welling [START_REF] Diederik | Auto-encoding variational bayes[END_REF] allow to directly specify a prior distribution over the code space of a variational auto-encoder (VAE). Inference is done using stochastic gradient variational Bayes (SGVB), a method based on a reparametrization of the variational lower bound. Deep generative models for clustering may be built using a mixture model as prior distribution. This approach was recently explored by [START_REF] Dilokthanakul | Deep unsupervised clustering with gaussian mixture variational autoencoders[END_REF] and [START_REF] Jiang | Variational deep embedding: A generative approach to clustering[END_REF] who used a GMM prior. Finally, GAN approaches minimize the Jensen-Shannon divergence in the original paper of GAN [START_REF] Goodfellow | Generative adversarial nets[END_REF] and more recently the Wasserstein distance [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] through the Wasserstein GAN (WGAN). Inspired by recent advances in Optimal Transport theory [START_REF] Villani | Optimal transport: old and new[END_REF], Cuturi [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] has developped an efficient and differentiable way to compute a regularized version of the Wasserstein distance between two empirical distributions [START_REF] Genevay | Learning Generative Models with Sinkhorn Divergences[END_REF] called the Sinkhorn algorithm. For this current work, we have chosen the WGAN approach because of the remarkable quality of the data generation.

Wasserstein Adversarial Mixture Clustering

Clustering is the machine learning task of inferring a function to describe hidden structure from unlabeled data. We aim at clustering a dataset of N points x 1 , ..., x i , ..., x N samples of the random variable x living in a space X (say a D-dimensional space or even more complex). At the heart of our model, there is an auto-encoder made of: (i) an encoder network E (parametrized by θ E) and (ii) a decoder network D (parametrized by θ D). That auto-encoder plays the role of a bridge between the data space and a latent space more akin to clustering.

Concretely, clustering is the task of gathering the data in K homogeneous groups. Most of the time even the number K of groups can be found through model selection. This model selection step is discussed at the end of this section and briefly illustrated on synthetic data in section 3.4.

Model

We build a generative model based on two assumptions. First, we believe the data are living on a low-dimensional manifold which is a common assumption in the Machine Learning literature. Thus, there exists a latent code space Z of a low dimension d (say d = 10) such that there is a mapping D from Z to X connecting the random variable x in X to its latent counterpart z in Z. Second, we also assume that z follows a mixture distribution.

In details, our model consists in saying that the data have been generated as follows. First the clustering variable c c ∼ Cat(π)

corresponds to a categorical (multinomial) random variable for clustering with proportions defined in vector π. In this generative process, once the cluster k is chosen, one can generate a code in Z which implies a mixture marginal for z:

z|c = k ∼ g k z ∼ K k=1 π k g k
with proportions π and components (g k) K k=1 . Ultimately a point in X is generated:

x|z ∼ N (D(z), σ 2 I p) (2)
To translate the assumption that the code data lie extremely close to a low-dimensional manifold, we further assume that σ → 0. In this context, the posterior probability needed to cluster x is given by

p(c = k|x) = E z∼p(z|x) [p(c = k|z)] (3)

Inference

In order to fit our generative model, we build a random variable y to match x in terms of Wasserstein distance in an adversarial fashion. We only have access to samples of x (through the dataset) and y (through a random generator and D), thus we use a WGAN to fit our model. Fig. 1 summarizes the modeling proposed here.

The posterior probability p(z|x) is intractable in Eq. (3) because of its decoder part. But, as in the work of Kingma and Welling [START_REF] Diederik | Auto-encoding variational bayes[END_REF], we can approximate it using a variational inference network q(z|x) built according to the encoder E. As emphasized by Kingma and Welling [START_REF] Diederik | Auto-encoding variational bayes[END_REF], minimizing the Kullback-Leibler divergence between the true posterior and q(z|x) leads to minimizing a penalized quadratic auto-encoder loss. Since σ → 0, the dominating term in this loss will precisely be the loss of a vanilla auto-encoder which is what we do in practice for the sake of simplicity. Eventually, we can compute an approximation of p(c = k|x) by simply replacing the true posterior by the approximation, which leads to using the maximum-a-posteriori (MAP) rule in code space:

p(c = k|x) ≈ π k N (m k , Σ k)(E(x)) K k =1 π k N (m k , Σ k)(E(x)) . (4
)
Given a real data distribution p x (generating variable x) and a generated data distibution p y (generating variable y), a WGAN [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] minimizes the Kantorovich-Rubinstein duality of the Wasserstein distance between these two distributions:

max ∇f ≤1 E x [f (x)] -E y [f (y)] (5)
with f called the critic and implemented in practice by a neural network of parameters θ f and constrained by an augmented Lagrangian (see [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] for details):

max θ f E x [f (x)] -E y [f (y)] -λE x (∇f (x) -1) 2 (6)
where x is sampled from segments between x and y.

In the work of Gulrajani et al. [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF], a WGAN usually uses a simple fixed distribution (Gaussian or uniform) for the random noise generator that is transformed by a neural network called the generator to fit the data distribution in the Wasserstein sense. We use a tunable mixture distribution instead for clustering purposes.

Inspired by the work of Kingma and Welling [START_REF] Diederik | Auto-encoding variational bayes[END_REF], we need to specify for each cluster k a differentiable reparametrization. The codes z k coming from each Gaussian with full covariance matrices Σ k follow: z k = S k e + m k (7) and y k = D(z k) (8) are our generated data for each cluster k where: e ∼ N (0, I) and S k is a Cholesky decomposition (with only non-zeros in the lower-triangular part) of the full covariance Σ k (with positive diagonal entries in S k parametrized with exponentials). The Kantorovich-Rubinstein duality Eq. (5) becomes:

max ∇f ≤1 E x [f (x)] - K k=1 π k E y k [f (y k)] (9)
and:

max θ f E x [f (x)] - K k=1 π k E y k [f (y k)] -λE x (∇f (x) -1) 2 (10)
is the regularized version of Eq. (9) for unconstrained optimization purposes.

Following the work of Gulrajani et al. [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] for WGAN, we are trying to make our generated data "indistinguishable" from the real data in the Wasserstein distance sense. In our case, the source of generated noise is coming from our mixture M through the generator/decoder D. Thus, we optimize: min

θ D ,θ M L(θ D , θ M) (11)
where:

L(θ D , θ M) = max θ f E x [f (x)] - K k=1 π k E y k [f (y k)] -λE x (∇f (x) -1) 2 (12)

Algorithm

Our WAMiC algorithm can be decomposed in four different steps:

1. Auto-Encoder Initialization: We train a classic auto-encoder (E, D) (for an encoder E and decoder D):

(θ 0 E , θ 0 D) = arg min θ E ,θ D E x∼Data D • E(x) -x 2 2 (13)

EM-based Gaussian Mixture Initialization:

We fit a Gaussian Mixture Model M with the Expectation-Maximization algorithm [START_REF] Arthur P Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] on the encoded data:

θ 0 M = arg max θ M E x∼Data log K k=1 π k N (m k , Σ k) E 0 (x) (14)
3. Clustered Data Generation: We optimize the mixture M and the decoder D (that now plays the role of a generator) to minimize the regularized Wasserstein distance presented above with the initialization coming from the two previous steps;

(θD , θM) = arg min

θ D ,θ M L (15
)
from Eq. (12) 4. Clustering Decoding: We train a new encoder E with an auto-encoder quadratic loss with the decoder D just found maintained fixed.

θE = arg min

θ E E x∼Data D • E(x) -x 2 2 (16
)
Steps 1 and 2 are just intuitive initialization of step 3.

Step 4 can be seen as an ad hoc way of inverting the decoder D. Several other strategies have been proposed for that purpose (e.g. [START_REF] Vincent Dumoulin | Adversarially learned inference[END_REF][START_REF] Tolstikhin | Wasserstein auto-encoders[END_REF]). We use the MAP rule in the code space in order to finally cluster the data points which makes our simple approach particularly fit for clustering.

Model Selection

Step 3 of section 3.3 minimizes an estimated Wasserstein distance between the real and generated data distribution. That step's role is to generate clustered data close to the real data in terms of distributions for the Wasserstein criteria. Once trained, we can measure the Wasserstein distance between generated data and some held-out validation data to check under/over-fitting and ultimately choose the number of classes.

Traditionally, model selection is accomplished according to the likelihood (or completed likelihood) itself related to the Kullback-Leibler divergence (see [START_REF] Schwarz | Estimating the dimension of a model[END_REF] for example). One of the originality of our approach is that our model selection technique is done according to an other divergence which is the Wasserstein distance. This parallel allows us to use the historical likelihood-based literature by replacing the well-known Kullback-Leibler divergence by the Wasserstein distance.

More concretely, to choose the number of clusters, we first train step 1 of section 3.3 once for all, then for each number of clusters, we do steps 2 and 3 in parallel. At the end, one can take the best Wasserstein distance and do step 4 to get the best clustering according to these models. For our numerical optimizations, we estimate the Wasserstein distance on batches only. So, the Wasserstein score that we use for model selection is simply the mean of our batch Wasserstein estimations once our f function is finally trained.

Numerical Experiments

Implementation details

We did our experiments in Python by using the PyTorch [START_REF] Paszke | Automatic differentiation in pytorch[END_REF] and Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] libraries. with the same learning rate of 10 -5 with the Adam optimization strategy [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] everywhere.

Given a clustering result and the ground truth, one can measure the quality of the clustering result according to what we call the "accuracy" computed with the Hungarian Method [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF][START_REF] Stephens | Dealing with label switching in mixture models[END_REF] on the confusion matrix.

Synthetic Experiment

To illustrate our approach, we first work on a toy dataset that we call "Three Moons" with 1000 points for each of the 3 classes in 2 dimensions as presented in Fig. 2(a). With a code space of dimension 1, even though the clusters are not linearly separable in the original data space, our system is able to cluster them with 100% of accuracy.

For that simple toy dataset, most of the clustering work is done by the vanilla auto-encoder. Indeed, once the auto-encoder is trained, we observed that the 1D codes are already separated according to the cluster labels. Here, we just wanted to see if model selection was plausible in a simple scenario.

For the number of clusters, without labels in our unsupervised context, while a classificationscore-based cross-validation is not an option, one can still measure an estimate of the Wasserstein distance (our loss) but on a validation set. The intuition behind is that if we did not overfit, our loss function will still be satisfactory on that validation set (that was not seen during training). After running our four steps algorithm, we can train a new neural network f to measure the Wasserstein distance between a held-out validation dataset and some generated data empirical distributions. More precisely, we find the results presented in Fig. 2(b) actually selecting 3 clusters which is satisfactory.

Real-world Experiments

For the real-world experiments, we were interested in 4 datasets that are different in nature (images, sparse and dense data):

• MNIST: 70 000 handwritten digits images dataset living in dimension 784 (for 28×28 pixels); • Reuters: English news stories labeled with a category tree [START_REF] David D Lewis | Rcv1: A new benchmark collection for text categorization research[END_REF]. Following DEC [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF], we used 4 root categories: corporate/industrial, government/social, markets, and economics as labels and discarded all documents with multiple labels. We computed tf-idf features on the 2000 most frequent words to represent all articles;

• Reuters-10k: a random subset of Reuters with only 10 000 examples (selected with the same random seed as DEC);

• HHAR: The Heterogeneity Human Activity Recognition (HHAR) dataset [START_REF] Stisen | Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition[END_REF] contains 10299 sensor records from smart phones and smart watches. All samples are partitioned into 6 categories of human activities and each sample is of 561 dimensions.

Throughout the experiments, we used the same architecture from Xie et al. [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF] D-500-500-2000-d (D is the dimensionality of the input space e.g. 784 for MNIST and d = 10 is the dimensionality of the code space) for the encoder for fair comparisons with VaDE [START_REF] Jiang | Variational deep embedding: A generative approach to clustering[END_REF].

The most difficult and longest part of the optimization is step 3 of section 3.3. Indeed, this is a min-max optimization that is inherent to WGANs. As we can see in Fig. (3), at the beginning, the Wasserstein distance is not correctly estimated and is even negative: one has to wait for a good critic in the first 50k iterations before seeing the loss actually decreasing meaningfully. 4), we generated data further and further in random directions from the centroids: we see that the digits get fancier away from the centroids. The good quality of the generation is comparable to those of regular GANs but in a cluster-wise fashion.

Results

The results of our approach compare favorably to the deep clustering state-of-the-art in Table . (1). First, we observe that there is an improvement over standard baseline algorithms (GMM and KM) when fed with the output of an AE which is coherent with the results of Xie et al. [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF]. Furthermore, there is a supplementary significant adversarial improvement for WAMiC . 1: Experimental accuracy results (%, the higher, the better) based on the Hungarian method. The top four lines correspond to the same architecture. networks with just a few layers of the 1990s3 . On MNIST, our unsupervised neural network is almost competitive with its supervised counterparts which is surprising and tells us this dataset is not anymore a difficult one even in the non-convolutional unsupervised context.

WAMiC compares favorably to the other frameworks that share the same network architecture (VaDE and DEC). On MNIST, the important performance gap between VaDE and GMAC can be explained by the fact that variational auto-encoders have difficulties with data that lie extremely close to low-dimensional manifolds, like images (see e.g. [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF]). In that regard, our algorithm inherits the strenghts of WGAN and models image data much more faithfully.

Conclusion

We present WAMiC a mixture-based Deep Generative Model for Clustering by combining WGAN and variational inference. Empirically, we observe some symbiosis operating between clustering and non-linear embedding. For future work, we want to explore a great advantage of our generative approach: Wasserstein model selection on real data for selecting the number of clusters.

Figure 1 :

 1 Figure 1: WAMiC Optimization Scheme

Figure 2 :

 2 Figure 2: Wasserstein model selection on the three moons dataset for the number of clusters on a validation dataset, (on 30 runs for each number of clusters)

Figure 3 :

 3 Figure 3: Mini-Batch Wasserstein Distance Estimated on Reuters-10k through Iterations (with rolling mean in red)

Figure 4 :

 4 Figure 4: Generated digits images. From left to right, we have the ten classes found by WAMiC and ordered thanks to the Hungarian algorithm. From top to bottom, we go further and further in random directions from the centroids (the first row being the decoded centroids). More specifically, u is sampled from the uniform random density on the unit hypersphere in the code space.

 These good results are comparable to those of supervised non-convolutional

	Datasets	MNIST Reuters Reuters-10k HHAR
	WAMiC (ours)	98.42	79.24	79.87	81.42
	VaDE [22]	94.06	79.38	79.83	84.46
	DEC [45]	84.30	75.63	72.17	79.82
	AE + GMM (full covariance)	82.56	70.98	70.12	78.48
	IMSAT ([21], different architecture)	98.40	-	71.00	-
	GAR ([23], convolutional net)	98.32	-	-	-
	DEPICT ([13], convolutional net)	96.50	-	-	-
	GMM (diagonal covariance)	53.73	55.81	54.72	60.34
	KM	53.47	53.29	54.04	59.98
	Table				

Multi-Layered Perceptron

http://yann.lecun.com/exdb/mnist/

see http://yann.lecun.com/exdb/mnist for a complete MNIST benchmark

Acknowledgments

The authors would like to thank Vincent Delaitre from Deepomatic.com, Olivier Grisel from INRIA, Georges Oppenheim from Université de Paris Sud and Université Paris Est and Pierre Roussillon from Université Paris Saclay for fruitful discussions and valuable inputs. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. Finally, we thank Oscaro.com for the funding and support.