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Abstract

Clustering complex data is a key element of unsupervised learning which is
still a challenging problem. In this work, we introduce a deep approach for
unsupervised clustering based on a latent mixture living in a low-dimensional
space. We achieve this clustering task through adversarial optimization of
the Wasserstein distance between the real and generated data distributions.
The proposed approach also allows both dimensionality reduction and model
selection. We achieve competitive results on difficult datasets made of
images, sparse and dense data.

1 Introduction

Clustering [14] is the task of making groups without the need of any manual annotations.
Dimensionality reduction give clues to the underlying structure of the data. Along with
dimensionality reduction, clustering is a desirable goal in data analysis, visualization and is
often a preliminary step in many algorithms for example in computer vision [34] and natural
language processing [18].
In this paper, the clustering is achieved from a new space through a combination of a
Wasserstein Generative Adversarial Network [3, 19, 20] and a Gaussian mixture model [16]
optimized in a stochastic gradient fashion. We propose an algorithm to perform unsupervised
classification (a.k.a. clustering) within this framework that we call “WAMiC” for Wasserstein
Adversarial Mixture Clustering. We postulate that a generative approach, namely a tuned
Gaussian mixture model, can capture an explicit latent model that is the cause of the
observed data, in the original space through a latent embedding.

2 Related Work

The purpose of this research is to build a linear-complexity algorithm that uses a non-linear
embedding into a code space. Indeed, in the clustering literature, one can distinguish two
kinds of clustering algorithms with respect to their speed and memory complexity in the
number of examples. On one side, we have linear algorithms such as k-means (KM) and
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Gaussian Mixture Models (GMM), which usually work directly on the data (i.e. without
any medium such as embeddings). On the other side, we also have quadratic and cubic
algorithms such as Hierarchical Clustering [14] and Spectral Clustering [31, 48, 44] that use
pairwise similarities to emphasize the latent clustering structure lying on the data. The
proposed approach belongs to the first category although similar approaches to ours such
as [47] fall in the second category. Our proposed WAMiC algorithm is meant to work in a
scalable fashion with any cluster shapes thanks to a latent space equipped with a tunable
mixture distribution.

2.1 Clustering-aware representation learning

The importance of finding a suitable representation for clustering was first highlighted by
Chang [8], who showed that embeddings based on principal component analysis were often
unfit for clustering purposes.
The problem of learning representations from data in an unsupervised manner is a long-
standing problem in machine learning [5, 27]. Principal Components Analysis (PCA) and
auto-encoders (AE) which can be seen as non-linear extension of PCA [4] have been used for
representing faces [41] or to produce a hierarchy of features [7]. Other techniques have been
used such as sparse coding [30] where the representation of one image is a linear combination
of a few elements in a dictionary of features. More recently Bojanowski and Joulin [6] learned
features unsupervisedly by a procedure that consists in mapping a large collection of images
to noise vectors through a deep convolutional neural networks. Their work has a clustering
objective but they do not report clustering results as their real goal is unsupervised feature
learning.
When it comes to compressing data while limiting loss of reconstruction information, auto-
encoders have proved efficient [43]. Briefly, an auto-encoder is a neural network made of two
parts: (i) the encoder maps the data in a low-dimension space, (ii) the decoder maps them
back to the original space. An auto-encoder is usually trained to reconstruct the data in the
original space in a least squares fashion. At the end, if the reconstruction error is low, one can
consider that the code resulting from the encoder has compressed the data without loosing
too much information. The assumption is that the input data space of high dimensionality
contains structure that could be successfully embedded in a lower-dimensionality manifold
[1, 37].
In our work, we try to accomplish representation learning for clustering. The first work
we saw doing clustering in the code space of an auto-encoder is the one of Song et al. [36]
and more recently, but independently, Yang et al. [46]. More precisely, they considered a
KM-regularized auto-encoder loss to get a code space that is more easily clustered with KM
namely their loss is the sum of the reconstruction and the KM residual. This philosophy is
the one adopted for our own approach but with GMM. In our experiments, we found that
optimizing the KM objective (online) when doing joint clustering and feature learning did
not work well. We believe this is because it creates high magnitude gradients for points that
are far away from cluster centers and there are sharp discontinuities at cluster boundaries
whereas GMM diminishes that effect thanks to low density/probability values for far points.
In a similar spirit, Xie et al. [45] embrace the t-SNE framework [29] in a clustering context
through an auto-encoder in a non-model-based fashion. All these works tend to show that
simultaneous representation learning and clustering do help each other. The reader will find
an excellent review in the work of Aljalbout et al. [2].
In our preliminary experiments, a Gaussian Mixture Model trained with Expectation-
Maximization [10] on codes coming from a vanilla MLP1 auto-encoder without convolutions
is able to reach approximately 80% of unsupervised clustering accuracy on the famous digits
MNIST images dataset2 directly on raw pixels. The idea of our work is based on the fact
that clustering and compression (dimensionality reduction) seem to be closely related tasks
that auto-encoders accomplish well. Our approach is an attempt to take advantage of that
empirical fact.

1Multi-Layered Perceptron
2http://yann.lecun.com/exdb/mnist/
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2.2 Deep Generative Models

In the recent literature, we observe three kinds of inference techniques for Deep Generative
Models (DGM) based on likelihood, variational auto-encoders and GANs. The goal of
the likelihood-based approach is to minimize the Kullback-Leibler divergence between the
original data distribution and the generated data distribution. A recent example of that
kind is the work of Dinh et al. [12]. On the other hand, Kingma and Welling [25] allow to
directly specify a prior distribution over the code space of a variational auto-encoder (VAE).
Inference is done using stochastic gradient variational Bayes (SGVB), a method based on a
reparametrization of the variational lower bound. Deep generative models for clustering may
be built using a mixture model as prior distribution. This approach was recently explored by
[11] and [22] who used a GMM prior. Finally, GAN approaches minimize the Jensen-Shannon
divergence in the original paper of GAN [19] and more recently the Wasserstein distance [20]
through the Wasserstein GAN (WGAN). Inspired by recent advances in Optimal Transport
theory [42], Cuturi [9] has developped an efficient and differentiable way to compute a
regularized version of the Wasserstein distance between two empirical distributions [17] called
the Sinkhorn algorithm. For this current work, we have chosen the WGAN approach because
of the remarkable quality of the data generation.

3 Wasserstein Adversarial Mixture Clustering

Clustering is the machine learning task of inferring a function to describe hidden structure
from unlabeled data. We aim at clustering a dataset of N points x1, ...,xi, ...,xN samples of
the random variable x living in a space X (say a D-dimensional space or even more complex).
At the heart of our model, there is an auto-encoder made of: (i) an encoder network E
(parametrized by θE) and (ii) a decoder network D (parametrized by θD). That auto-encoder
plays the role of a bridge between the data space and a latent space more akin to clustering.
Concretely, clustering is the task of gathering the data in K homogeneous groups. Most of
the time even the number K of groups can be found through model selection. This model
selection step is discussed at the end of this section and briefly illustrated on synthetic data
in section 3.4.

3.1 Model

We build a generative model based on two assumptions. First, we believe the data are living
on a low-dimensional manifold which is a common assumption in the Machine Learning
literature. Thus, there exists a latent code space Z of a low dimension d (say d = 10) such
that there is a mapping D from Z to X connecting the random variable x in X to its latent
counterpart z in Z. Second, we also assume that z follows a mixture distribution.
In details, our model consists in saying that the data have been generated as follows. First
the clustering variable c

c ∼ Cat(π) (1)
corresponds to a categorical (multinomial) random variable for clustering with proportions
defined in vector π. In this generative process, once the cluster k is chosen, one can generate
a code in Z which implies a mixture marginal for z:

z|c = k ∼ gk z ∼
K∑
k=1

πkgk

with proportions π and components (gk)Kk=1. Ultimately a point in X is generated:

x|z ∼ N (D(z), σ2Ip) (2)

To translate the assumption that the code data lie extremely close to a low-dimensional
manifold, we further assume that σ → 0. In this context, the posterior probability needed to
cluster x is given by

p(c = k|x) = Ez∼p(z|x)[p(c = k|z)] (3)
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Figure 1: WAMiC Optimization Scheme

Although any parametric density functions can be used for each mixture component gk,
we restrict ourselves in this work to Gaussian mixtures and in the following, we impose
gk = N (mk,Σk) (a Gaussian distribution with mean mk and covariance matrix Σk) where
(πk)k=1,...,K , (mk)k=1,...,K , and (Σk)k=1,...,K are the mixture parameters, stored in θM.

3.2 Inference

In order to fit our generative model, we build a random variable y to match x in terms of
Wasserstein distance in an adversarial fashion. We only have access to samples of x (through
the dataset) and y (through a random generator and D), thus we use a WGAN to fit our
model. Fig. 1 summarizes the modeling proposed here.
The posterior probability p(z|x) is intractable in Eq. (3) because of its decoder part. But, as
in the work of Kingma and Welling [25], we can approximate it using a variational inference
network q(z|x) built according to the encoder E . As emphasized by Kingma and Welling
[25], minimizing the Kullback-Leibler divergence between the true posterior and q(z|x) leads
to minimizing a penalized quadratic auto-encoder loss. Since σ → 0, the dominating term in
this loss will precisely be the loss of a vanilla auto-encoder which is what we do in practice
for the sake of simplicity. Eventually, we can compute an approximation of p(c = k|x)
by simply replacing the true posterior by the approximation, which leads to using the
maximum-a-posteriori (MAP) rule in code space:

p(c = k|x) ≈ πkN (mk,Σk)(E(x))∑K
k′=1 πk′N (mk′ ,Σk′)(E(x))

. (4)

Given a real data distribution px (generating variable x) and a generated data distibution
py (generating variable y), a WGAN [3, 20] minimizes the Kantorovich-Rubinstein duality
of the Wasserstein distance between these two distributions:

max
‖∇f‖≤1

Ex [f(x)]− Ey [f(y)] (5)

with f called the critic and implemented in practice by a neural network of parameters θf
and constrained by an augmented Lagrangian (see [20] for details):

max
θf

Ex [f(x)]− Ey [f(y)]− λEx̃

[
(‖∇f(x̃)‖ − 1)2

]
(6)

where x̃ is sampled from segments between x and y.
In the work of Gulrajani et al. [20], a WGAN usually uses a simple fixed distribution
(Gaussian or uniform) for the random noise generator that is transformed by a neural
network called the generator to fit the data distribution in the Wasserstein sense. We use a
tunable mixture distribution instead for clustering purposes.
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Inspired by the work of Kingma and Welling [25], we need to specify for each cluster k
a differentiable reparametrization. The codes zk coming from each Gaussian with full
covariance matrices Σk follow:

zk = Ske + mk (7)
and

yk = D(zk) (8)
are our generated data for each cluster k where: e ∼ N (0, I) and Sk is a Cholesky decom-
position (with only non-zeros in the lower-triangular part) of the full covariance Σk (with
positive diagonal entries in Sk parametrized with exponentials). The Kantorovich-Rubinstein
duality Eq. (5) becomes:

max
‖∇f‖≤1

(
Ex [f(x)]−

K∑
k=1

πkEyk [f(yk)]
)

(9)

and:

max
θf

Ex [f(x)]−
K∑
k=1

πkEyk [f(yk)]− λEx̃

[
(‖∇f(x̃)‖ − 1)2

]
(10)

is the regularized version of Eq. (9) for unconstrained optimization purposes.
Following the work of Gulrajani et al. [20] for WGAN, we are trying to make our generated
data “indistinguishable” from the real data in the Wasserstein distance sense. In our case,
the source of generated noise is coming from our mixtureM through the generator/decoder
D. Thus, we optimize:

min
θD,θM

L(θD, θM) (11)

where:

L(θD, θM) = max
θf

(
Ex [f(x)]−

K∑
k=1

πkEyk [f(yk)]− λEx̃

[
(‖∇f(x̃)‖ − 1)2

])
(12)

3.3 Algorithm

Our WAMiC algorithm can be decomposed in four different steps:

1. Auto-Encoder Initialization: We train a classic auto-encoder (E ,D) (for an
encoder E and decoder D):

(θ0
E , θ

0
D) = arg min

θE ,θD
Ex∼Data

[
‖D ◦ E(x)− x‖2

2
]

(13)

2. EM-based Gaussian Mixture Initialization: We fit a Gaussian Mixture Model
M with the Expectation-Maximization algorithm [10] on the encoded data:

θ0
M = arg max

θM
Ex∼Data

[
log
(

K∑
k=1

πkN (mk,Σk)
(
E0(x)

))]
(14)

3. Clustered Data Generation: We optimize the mixture M and the decoder D
(that now plays the role of a generator) to minimize the regularized Wasserstein
distance presented above with the initialization coming from the two previous steps;

(θ̂D, θ̂M) = arg min
θD,θM

L (15)

from Eq. (12)
4. Clustering Decoding: We train a new encoder E with an auto-encoder quadratic

loss with the decoder D just found maintained fixed.

θ̂E = arg min
θE

Ex∼Data

[
‖D̂ ◦ E(x)− x‖2

2

]
(16)

Steps 1 and 2 are just intuitive initialization of step 3. Step 4 can be seen as an ad hoc way
of inverting the decoder D. Several other strategies have been proposed for that purpose
(e.g. [15, 40]). We use the MAP rule in the code space in order to finally cluster the data
points which makes our simple approach particularly fit for clustering.
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3.4 Model Selection

Step 3 of section 3.3 minimizes an estimated Wasserstein distance between the real and
generated data distribution. That step’s role is to generate clustered data close to the real
data in terms of distributions for the Wasserstein criteria. Once trained, we can measure the
Wasserstein distance between generated data and some held-out validation data to check
under/over-fitting and ultimately choose the number of classes.
Traditionally, model selection is accomplished according to the likelihood (or completed
likelihood) itself related to the Kullback-Leibler divergence (see [35] for example). One of
the originality of our approach is that our model selection technique is done according to
an other divergence which is the Wasserstein distance. This parallel allows us to use the
historical likelihood-based literature by replacing the well-known Kullback-Leibler divergence
by the Wasserstein distance.
More concretely, to choose the number of clusters, we first train step 1 of section 3.3 once
for all, then for each number of clusters, we do steps 2 and 3 in parallel. At the end, one
can take the best Wasserstein distance and do step 4 to get the best clustering according
to these models. For our numerical optimizations, we estimate the Wasserstein distance on
batches only. So, the Wasserstein score that we use for model selection is simply the mean
of our batch Wasserstein estimations once our f function is finally trained.

4 Numerical Experiments

4.1 Implementation details

We did our experiments in Python by using the PyTorch [32] and Scikit-learn [33] libraries.
with the same learning rate of 10−5 with the Adam optimization strategy [24] everywhere.
Given a clustering result and the ground truth, one can measure the quality of the clustering
result according to what we call the “accuracy” computed with the Hungarian Method
[26, 38] on the confusion matrix.

4.2 Synthetic Experiment

To illustrate our approach, we first work on a toy dataset that we call “Three Moons” with
1000 points for each of the 3 classes in 2 dimensions as presented in Fig. 2(a). With a code
space of dimension 1, even though the clusters are not linearly separable in the original data
space, our system is able to cluster them with 100% of accuracy.
For that simple toy dataset, most of the clustering work is done by the vanilla auto-encoder.
Indeed, once the auto-encoder is trained, we observed that the 1D codes are already separated
according to the cluster labels. Here, we just wanted to see if model selection was plausible
in a simple scenario.
For the number of clusters, without labels in our unsupervised context, while a classification-
score-based cross-validation is not an option, one can still measure an estimate of the
Wasserstein distance (our loss) but on a validation set. The intuition behind is that if we
did not overfit, our loss function will still be satisfactory on that validation set (that was not
seen during training). After running our four steps algorithm, we can train a new neural
network f to measure the Wasserstein distance between a held-out validation dataset and
some generated data empirical distributions. More precisely, we find the results presented in
Fig. 2(b) actually selecting 3 clusters which is satisfactory.

4.3 Real-world Experiments

For the real-world experiments, we were interested in 4 datasets that are different in nature
(images, sparse and dense data):

• MNIST: 70 000 handwritten digits images dataset living in dimension 784 (for 28×28
pixels);
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(a) Three Moons Dataset
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(b) Model selection

Figure 2: Wasserstein model selection on the three moons dataset for the number of clusters
on a validation dataset, (on 30 runs for each number of clusters)

• Reuters: English news stories labeled with a category tree [28]. Following DEC [45],
we used 4 root categories: corporate/industrial, government/social, markets, and
economics as labels and discarded all documents with multiple labels. We computed
tf-idf features on the 2000 most frequent words to represent all articles;

• Reuters-10k: a random subset of Reuters with only 10 000 examples (selected with
the same random seed as DEC);

• HHAR: The Heterogeneity Human Activity Recognition (HHAR) dataset [39] con-
tains 10299 sensor records from smart phones and smart watches. All samples
are partitioned into 6 categories of human activities and each sample is of 561
dimensions.

Throughout the experiments, we used the same architecture from Xie et al. [45] D-500-500-
2000-d (D is the dimensionality of the input space e.g. 784 for MNIST and d = 10 is the
dimensionality of the code space) for the encoder for fair comparisons with VaDE [22].
The most difficult and longest part of the optimization is step 3 of section 3.3. Indeed, this
is a min-max optimization that is inherent to WGANs. As we can see in Fig. (3), at the
beginning, the Wasserstein distance is not correctly estimated and is even negative: one has
to wait for a good critic in the first 50k iterations before seeing the loss actually decreasing
meaningfully.

0 50000 100000 150000 200000 250000 300000 350000
Iterations
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Figure 3: Mini-Batch Wasserstein Distance Estimated on Reuters-10k through Iterations
(with rolling mean in red)

On MNIST, in Fig. (4), we generated data further and further in random directions from
the centroids: we see that the digits get fancier away from the centroids. The good quality
of the generation is comparable to those of regular GANs but in a cluster-wise fashion.

4.3.1 Results

The results of our approach compare favorably to the deep clustering state-of-the-art in
Table. (1). First, we observe that there is an improvement over standard baseline algorithms
(GMM and KM) when fed with the output of an AE which is coherent with the results of
Xie et al. [45]. Furthermore, there is a supplementary significant adversarial improvement
for WAMiC . These good results are comparable to those of supervised non-convolutional
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Datasets MNIST Reuters Reuters-10k HHAR
WAMiC (ours) 98.42 79.24 79.87 81.42

VaDE [22] 94.06 79.38 79.83 84.46
DEC [45] 84.30 75.63 72.17 79.82

AE + GMM (full covariance) 82.56 70.98 70.12 78.48
IMSAT ([21], different architecture) 98.40 – 71.00 –

GAR ([23], convolutional net) 98.32 – – –
DEPICT ([13], convolutional net) 96.50 – – –

GMM (diagonal covariance) 53.73 55.81 54.72 60.34
KM 53.47 53.29 54.04 59.98

Table 1: Experimental accuracy results (%, the higher, the better) based on the Hungarian
method. The top four lines correspond to the same architecture.

mk

mk + 0.5Sku

mk + Sku

mk + 1.5Sku

mk + 2Sku

mk + 2.5Sku

mk + 3Sku

mk + 3.5Sku

Figure 4: Generated digits images. From left to right, we have the ten classes found by
WAMiC and ordered thanks to the Hungarian algorithm. From top to bottom, we go
further and further in random directions from the centroids (the first row being the decoded
centroids). More specifically, u is sampled from the uniform random density on the unit
hypersphere in the code space.

networks with just a few layers of the 1990s3. On MNIST, our unsupervised neural network
is almost competitive with its supervised counterparts which is surprising and tells us this
dataset is not anymore a difficult one even in the non-convolutional unsupervised context.
WAMiC compares favorably to the other frameworks that share the same network architecture
(VaDE and DEC). On MNIST, the important performance gap between VaDE and GMAC
can be explained by the fact that variational auto-encoders have difficulties with data that
lie extremely close to low-dimensional manifolds, like images (see e.g. [3]). In that regard,
our algorithm inherits the strenghts of WGAN and models image data much more faithfully.

5 Conclusion

We present WAMiC a mixture-based Deep Generative Model for Clustering by combining
WGAN and variational inference. Empirically, we observe some symbiosis operating between
clustering and non-linear embedding. For future work, we want to explore a great advantage
of our generative approach: Wasserstein model selection on real data for selecting the number
of clusters.

3see http://yann.lecun.com/exdb/mnist for a complete MNIST benchmark
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