
HAL Id: hal-01827583
https://hal.science/hal-01827583v2

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Hermite interpolation and evaluation over finite
fields of characteristic two

Nicholas Coxon

To cite this version:
Nicholas Coxon. Fast Hermite interpolation and evaluation over finite fields of characteristic two.
Journal of Symbolic Computation, 2019, 98, pp.270-283. �10.1016/j.jsc.2019.07.014�. �hal-01827583v2�

https://hal.science/hal-01827583v2
https://hal.archives-ouvertes.fr

Fast Hermite interpolation and evaluation over finite fields of

characteristic two

Nicholas Coxon

INRIA and Laboratoire d’Informatique de l’École polytechnique, Palaiseau, France.

Abstract

This paper presents new fast algorithms for Hermite interpolation and evaluation over finite fields

of characteristic two. The algorithms reduce the Hermite problems to instances of the standard

multipoint interpolation and evaluation problems, which are then solved by existing fast algo-

rithms. The reductions are simple to implement and free of multiplications, allowing low overall

multiplicative complexities to be obtained. The algorithms are suitable for use in encoding and

decoding algorithms for multiplicity codes.

Keywords: Hermite interpolation, Hermite evaluation, multiplicity codes

1. Introduction

Hermite interpolation is the problem of computing the coefficients of a polynomial given the

values of its derivatives up to sufficiently large orders at one or more evaluation points. The

inverse problem, that of evaluating the derivatives of the polynomial when given its coefficients,

is sometimes referred to as Hermite evaluation. Over fields of positive characteristic p, the ith

formal derivative vanishes identically for i greater than or equal to p. Consequently, it is usual

to consider Hermite interpolation and evaluation with respect to the Hasse derivative over such

fields when the characteristic is small.

For now, let F simply denote a field. Then, for i ∈ N, the map Di : F[x] → F[x] that sends

f ∈ F[x] to the coefficient of yi in f (x + y) ∈ F[x][y] is called the ith Hasse derivative on F[x].

For distinct evaluation points ω0, . . . , ωn−1 ∈ F and positive integer multiplicities ℓ0, . . . , ℓn−1,

the Hermite interpolation problem over F asks that we compute the coefficients of a polynomial

f ∈ F[x] of degree strictly less than ℓ = ℓ0+ · · ·+ℓn−1 when given (Di f)(ω j) for j ∈ {0, . . . , ℓi−1}

and i ∈ {0, . . . , n − 1}. The corresponding instance of the Hermite evaluation problem asks that

we use the coefficients of f to compute the ℓ derivatives of the interpolation problem. Different

versions of the problems specify different bases on which the polynomials are required to be

represented. This paper considers the problems with respect to the monomial basis {xi | i ∈ N}

of F[x] only.

In this paper, the complexity of algorithms is measured by counting the number of field

operations they perform. Let M(ℓ) denote the number of operations in F required to multi-

ply two polynomials in F[x] of degree strictly less than ℓ. Then M(ℓ) may be taken to be in

O(ℓ(log ℓ) log log ℓ) (Schönhage and Strassen, 1971; Schönhage, 1976/77; Cantor and Kaltofen,

1991), and may be taken to be in O(ℓ(log ℓ)4log∗ ℓ), where log∗ denotes the iterated logarithm, if

the field is finite (Harvey and van der Hoeven, 2017; Harvey et al., 2016, 2017). Throughout

the paper, the common assumption is made (used, for instance, by von zur Gathen and Gerhard

(2013)) that M(ℓ)/ℓ is an increasing function of ℓ.

The boundary case ℓ0 = · · · = ℓn−1 = 1 of the Hermite interpolation and evaluation problems

corresponds to standard multipoint interpolation and evaluation, allowing the problems to be

solved with O(M(ℓ) log ℓ) operations by the use of remainder trees and fast Chinese remainder

algorithms (Fiduccia, 1972; Moenck and Borodin, 1972; Borodin and Moenck, 1974; Bostan

et al., 2003, 2004; Bernstein, 2004; see also von zur Gathen and Gerhard, 2013, Chapter 10). If

the field admits a suitable “inborn” fast Fourier transform (FFT), as occurs when it is finite, and

the evaluation points are fixed, then the algorithms of van der Hoeven (2016) allow a factor of

size O(log log ℓ) to be removed from these estimates. If the evaluation points form a geometric

progression, then the complexity of solving the standard interpolation and evaluation problems

reduces to O(M(ℓ)) operations (Bostan and Schost, 2005). Similarly, the cost of solving both

problems reduces to O(ℓ log ℓ) operations when the evaluation points coincide with those of a

truncated Fourier transform (van der Hoeven, 2004, 2005; Harvey, 2009; Harvey and Roche,

2010; see also Larrieu, 2017).

For the opposing boundary case of n = 1, the Hermite interpolation and evaluation problems

reduce to computing Taylor expansions. Indeed, it follows directly from the definition of Hasse

derivatives that

f =
∑

i∈N

(Di f)(ω)(x − ω)i for f ∈ F[x] and ω ∈ F. (1)

Consequently, Hermite interpolation and evaluation at a single evaluation point can be performed

with O(M(ℓ) log ℓ) operations in general (Borodin and Moenck, 1974; von zur Gathen, 1990;

von zur Gathen and Gerhard, 1997), O(M(ℓ)) operations if (ℓ − 1)! is invertible in the field (Aho

et al., 1975; Vari, 1974) (see also von zur Gathen and Gerhard, 1997; Bini and Pan, 1994), and

O(ℓ log ℓ) operations if the field has characteristic equal to two (Gao and Mateer, 2010).

The first quasi-linear time algorithms for solving the general Hermite problems were pro-

posed by Chin (1976). Truncating the Taylor expansion (1) after i terms gives the residue of

degree less than i of f modulo (x − ω)i. Based on this observation, Chin’s evaluation algorithm

begins by using a remainder tree to compute the residues of the input polynomial modulo (x−ωi)
ℓi

for i ∈ {0, . . . , n − 1}. The Taylor expansion of each residue at its corresponding evaluation point

is then computed to obtain the truncated Taylor expansion of the input polynomial. The inter-

polation problem can be solved by reversing these steps, with the residues combined by a fast

Chinese remainder algorithm. It follows that the general Hermite interpolation and evaluation

problems may be solved with O(M(ℓ) log ℓ) operations (Chin, 1976; Olshevsky and Shokrollahi,

2000) (see also Bini and Pan, 1994; Pan, 2001).

In this paper, we present new algorithms for Hermite interpolation and evaluation over finite

fields of characteristic two. The algorithms require the set of evaluation points to equal the field

itself, and their corresponding multiplicities to be balanced, with |ℓi − ℓ j| ≤ 1 for i , j. While not

solving the general interpolation and evaluation problems over these fields, the algorithms are

suitable for use in multivariate Hermite interpolation and evaluation algorithms (Coxon, 2018a),

encoding and decoding algorithms for multiplicity codes (Kopparty, 2014; Coxon, 2018a) and the

codes of Wu (2015), and private information retrieval protocols based on these codes (Woodruff

and Yekhanin, 2007; Augot et al., 2014).

When ℓ is a multiple of the order q of the field, as occurs in some encoding and decoding

contexts, the Hermite interpolation algorithm presented here performs ℓ/q standard interpola-

tions over the q evaluation points, followed by O(ℓ log ℓ/q) additions. Similarly, the Hermite

2

evaluation algorithm in this case performsO(ℓ log ℓ/q) additions, followed by ℓ/q standard eval-

uations over the q points. As the multiplicative group of the field is cyclic, minor modifica-

tions to the algorithms of Bostan and Schost (2005) allow these standard interpolations and

evaluations to be performed with O(M(q)) operations. Consequently, our algorithms perform

O((ℓ/q)M(q) + ℓ log ℓ/q) operations in this special case.

When ℓ is not a multiple of q, the Hermite interpolation and evaluation algorithms still per-

form O(ℓ log⌈ℓ/q⌉) additions and ⌈ℓ/q⌉ − 1 standard interpolations or evaluations over the q

evaluation points. However, each algorithm must also solve one instance of a slightly gen-

eralised version of the corresponding standard problem. The generalised evaluation problem

may be solved with O(M(q)) operations, while the generalised interpolation problem may be

solved with O(M(q) log q) operations in general, or O(M(q)) operations if we are free to order

the evaluation points and assign their multiplicities. It follows that the Hermite evaluation per-

formsO(⌈ℓ/q⌉M(q)+ℓ log⌈ℓ/q⌉) operations, while the Hermite interpolation algorithms performs

O((⌈ℓ/q⌉ + log q)M(q) + ℓ log⌈ℓ/q⌉) operations in general, and O(⌈ℓ/q⌉M(q) + ℓ log⌈ℓ/q⌉) opera-

tions in the special case. In particular,O(ℓ log ℓ) additions andO(ℓ) multiplications are performed

by the algorithms when the field is fixed.

The reduction from Hermite to standard problems is introduced in Section 3, where we de-

velop divide-and-conquer algorithms for solving the Hermite interpolation and evaluation prob-

lems when ℓ/q is a power of two. The problems for arbitrary ℓ can be reduced to this special

case by zero padding. However, this approach almost doubles the size of the initial problem

when ℓ/q is slightly larger than a power of two, leading to large jumps in complexity. Instead,

in Sections 4 and 5, we address the problems for arbitrary ℓ by transferring across ideas from

pruned and truncated FFT algorithms (Markel, 1971; Sorensen and Burrus, 1993; van der Ho-

even, 2004, 2005; Harvey, 2009; Harvey and Roche, 2010; Larrieu, 2017), which are used to

smooth similar unwanted jumps in the complexities of FFT-based evaluation and interpolation

schemes. We are consequently able to solve the Hermite interpolation and evaluation problems

with better complexity than obtained by zero padding.

2. Properties of Hasse derivatives

We begin by recalling some basic properties of Hasse derivatives.

Lemma 1. Let f , g ∈ F[x], α, β, ω ∈ F and i ∈ N. Then

1. Di(α f + βg) = α(Di f) + β(Dig),

2. (Di f)(ω) is equal to the coefficient of xi in f (x + ω),

3. (D j f)(ω) = 0 for j ∈ {0, . . . , i − 1} if and only if (x − ω)i divides f ,

4. Dixk =
(

k

i

)

xk−i for k ∈ N, and

5. Di ◦ D j =
(

i+ j

i

)

Di+ j for j ∈ N.

Properties 1 and 2 of Lemma 1 follow readily from the definition of Hasse derivatives pro-

vided in Section 1. Property 3 follows from Property 2. Property 4 follows from the definition

of Hasse derivatives and the binomial theorem. Property 5 follows from Properties 1 and 4, and

the binomial identity
(

k − j

i

)(

k

j

)

=

(

i + j

i

)(

k

i + j

)

for i, j, k ∈ N.

3

For ℓ > 0, let F[x]ℓ denote the space of polynomials in F[x] that have degree strictly less

than ℓ. Then existence and uniqueness for the general Hermite interpolation problem is provided

by the following lemma.

Lemma 2. Let ω0, . . . , ωn−1 ∈ F be distinct, ℓ0, . . . , ℓn−1 ∈ N be positive, and ℓ = ℓ0 + · · ·+ ℓn−1.

Then given elements hi, j ∈ F for i ∈ {0, . . . , ℓ j − 1} and j ∈ {0, . . . , n − 1}, there exists a unique

polynomial f ∈ F[x]ℓ such that (Di f)(ω j) = hi, j for i ∈ {0, . . . , ℓ j − 1} and j ∈ {0, . . . , n − 1}.

Lemma 2 follows from Property 3 of Lemma 1, which implies that the kernel of the linear

map from F[x]ℓ to F
ℓ given by f 7→ ((Di f)(ω j))0≤i<ℓ j,0≤ j<n can only contain multiples of the

degree ℓ polynomial
∏n−1

j=0(x − ω j)
ℓ j , and must therefore be trivial.

3. Strategy over finite fields of characteristic two

Hereafter, we assume that F is finite of characteristic two. Let q denote the order of the field,

and enumerate its elements as ω0, . . . , ωq−1. Define maps ci, ei : F[x]→ F for i ∈ N by

f =
∑

i∈N

ci(f)xi and ei(f) =
(

D⌊i/q⌋ f
)(

ωi mod q

)

for f ∈ F[x],

where the residues modulo q are taken to be in {0, . . . , q − 1}. Then the Hermite interpola-

tion problem that we consider in the remainder of the paper can be stated as follows: given

h0, . . . , hℓ−1 ∈ F, compute the coefficients c0(f), . . . , cℓ−1(f) of the unique polynomial f ∈ F[x]ℓ
that satisfies ei(f) = hi for i ∈ {0, . . . , ℓ − 1}. The Hermite evaluation problem that we con-

sider is the inverse problem, asking that we compute e0(f), . . . , eℓ−1(f) when given the coeffi-

cients c0(f), . . . , cℓ−1(f) of a polynomial f ∈ F[x]ℓ. Existence and uniqueness for the interpo-

lation problem follows from Lemma 2 with n = min(ℓ, q) and multiplicities ℓi = ⌈(ℓ − i)/q⌉ for

i ∈ {0, . . . , n−1}. We call ℓ the length of an instance of either problem, and observe that instances

of length ℓ ≤ q reduce to standard multipoint interpolation and evaluation with evaluation points

ω0, . . . , ωℓ−1.

In this section, we introduce the main elements of our algorithms by temporarily limiting our

attention to instances of length 2nq for some n ∈ N. The algorithms take on their simplest form in

this case, with each applying a simple reduction from the length 2nq problem to two problems of

length 2n−1q. Proceeding recursively, both algorithms ultimately reduce to problems of length q,

which can be solved by existing standard interpolation and evaluation algorithms. The reductions

employed by the algorithms are provided by the following lemma and the subsequent corollary.

Lemma 3. Let n ∈ N be nonzero, f0, f1 ∈ F[x]2n−1q and f = f1(xq − x)2n−1

+ f0. Then

(

Di f
)

(ω) =
(

Di f0
)

(ω) and
(

D2n−1+i f
)

(ω) =
(

Di
(

f1 + D2n−1

f0
))

(ω)

for ω ∈ F and i ∈ {0, . . . , 2n−1 − 1}.

Proof. Let n ∈ N be nonzero, f0, f1 ∈ F[x]2n−1q and f = f1(xq − x)2n−1

+ f0. Then

f (x + ω) = f1(x + ω)(xq + ωq − x − ω)2n−1

+ f0(x + ω) = f1(x + ω)
(

x2n−1q + x2n−1
)

+ f0(x + ω)

for ω ∈ F. Consequently, as 2n−1q ≥ 2n, Property 2 of Lemma 1 implies that

(

Di f
)

(ω) =
(

Di f0
)

(ω) and
(

D2n−1+i f
)

(ω) =
(

Di f1
)

(ω) +
(

D2n−1+i f0
)

(ω)

4

for ω ∈ F and i ∈ {0, . . . , 2n−1 − 1}. Therefore, linearity of Hasse derivatives implies that the

lemma will follow if we show that D2n−1+i = Di ◦ D2n−1

for i ∈ {0, . . . , 2n−1 − 1}. To this end, we

use Lucas’ lemma (Lucas, 1878, p. 230; see also Fine, 1947), which states that

(

i

j

)

≡

(

⌊i/2k⌋

⌊ j/2k⌋

)(

i mod 2k

j mod 2k

)

(mod 2) for i, j, k ∈ N. (2)

By combining Lucas’ lemma with Property 5 of Lemma 1, we find that

Di ◦ D2n−1

=

(

2n−1 + i

i

)

D2n−1+i =

(

1

0

)(

i

i

)

D2n−1+i = D2n−1+i

for i ∈ {0, . . . , 2n−1 − 1}, as required.

Corollary 4. Let n ∈ N be nonzero, f0, f1 ∈ F[x]2n−1q and f = f1(xq − x)2n−1

+ f0. Then

ei(f) = ei(f0) and e2n−1q+i(f) = ei

(

f1 + D2n−1

f0
)

for i ∈ {0, . . . , 2n−1q − 1}.

Proof. Let n ∈ N be nonzero, f0, f1 ∈ F[x]2n−1q and f = f1(xq − x)2n−1

+ f0. Then Lemma 3

implies that

ei(f) =
(

D⌊i/q⌋ f
)(

ωi mod q

)

=
(

D⌊i/q⌋ f0
)(

ωi mod q

)

= ei(f0)

and

e2n−1q+i(f) =
(

D2n−1+⌊i/q⌋ f
)(

ωi mod q

)

=
(

D⌊i/q⌋
(

f1 + D2n−1

f0
))(

ωi mod q

)

= ei

(

f1 + D2n−1

f0
)

for i ∈ {0, . . . , 2n−1q − 1}.

For nonzero n ∈ N and f ∈ F[x]2nq, there exist unique polynomials f0, f1 ∈ F[x]2n−1q such

that f = f1(xq − x)2n−1

+ f0. Corollary 4 then implies that the length 2nq instance of the Hermite

evaluation problem that corresponds to f can be replaced by the two length 2n−1q instances that

correspond to f0 and f1 + D2n−1

f0. Conversely, the corollary and Lemma 2 imply that the coef-

ficients of the latter two polynomials are recovered by solving the two length 2n−1q instances of

the Hermite interpolation problem with inputs e0(f), . . . , e2n−1q−1(f) and e2n−1q(f), . . . , e2nq−1(f).

Combining the observation that

f = f1(xq − x)2n−1

+ f0 = f1 x2n−1q + f1 x2n−1

+ f0 (3)

with the following lemma shows that only a linear number of additions are required to compute

the coefficients of f0 and f1 + D2n−1

f0 when given those of f , and vice versa. It follows that

instances of the interpolation and evaluation problems of length 2nq for some nonzero n ∈ N

may be reduced to two instances of length 2n−1q at the cost of a linear number of additions.

Lemma 5. Let n ∈ N be nonzero and f ∈ F[x]2n−1q. Then

D2n−1

f =

q/2−1
∑

i=0

x2ni

2n−1−1
∑

j=0

c2n−1(2i+1)+ j(f)x j. (4)

5

Proof. Let n ∈ N be nonzero and f ∈ F[x]2n−1q. Then Property 4 of Lemma 1 and Lucas’ lemma,

in the form of (2), imply that

D2n−1

x2n−1(2i+b)+ j =

(

2i + b

1

)(

j

0

)

x2n−1(2i+b−1)+ j = bx2n−1(2i+b−1)+ j

for b ∈ {0, 1}, i ∈ N and j ∈ {0, . . . , 2n−1 − 1}. Therefore, writing f in the form

f =

1
∑

b=0

q/2−1
∑

i=0

2n−1−1
∑

j=0

c2n−1(2i+b)+ j(f)x2n−1(2i+b)+ j

and applying D2n−1

to each of its terms yields (4).

By applying the reductions just described, we obtain Algorithms 1 and 2 for solving the

Hermite interpolation and evaluation problems for instances of length 2nq for some n ∈ N. The

algorithms recursively solve the half-length instances admitted by the reductions, and use the

black-box algorithms Interpolate and Evaluate to solve the base case instances of length q.

These algorithms must therefore satisfy the specifications of their parent algorithms for n = 0.

Thus, they must perform standard interpolation or evaluation over the entire field, i.e., with

evaluation points ω0, . . . , ωq−1.

The algorithm HermiteInterpolate operates on a vector (a0, . . . , a2nq−1) of field elements that

initially contains e0(f), . . . , e2nq−1(f) for some f ∈ F[x]2nq, and overwrites its entries with the

coefficients c0(f), . . . , c2nq−1(f). If n is zero, then the vector is simply passed to the algorithm

Interpolate. If n is positive, then the algorithm begins by making recursive calls on the left and

right halves of the vector, replacing their entries by the coefficients of the polynomials f0 and

f1 + D2n−1

f0, respectively. Lemma 5 implies that Lines 6 to 8 then add the coefficients of D2n−1

f0
to the corresponding coefficients of f1 + D2n−1

f0 stored in the right half of the vector, so that it

subsequently contains the coefficients of f1. The expansion (3) then implies that Lines 9 and 10

set the entries of the vector equal to the coefficients of f , giving the correct output.

The algorithm HermiteEvaluate similarly operates on a vector (a0, . . . , a2nq−1) of field ele-

ments, which is passed directly to the algorithm Evaluate in the base case of n = 0. The recursive

case of the algorithm simply reverses the steps performed in the recursive case of the interpola-

tion algorithm by first computing the coefficients of f0 and f1, followed by those of f1 + D2n−1

f0,

then recursively evaluating f0 and f1 + D2n−1

f0.

The recursive cases of Algorithms 1 and 2 each perform (3/4)2nq additions on top of the

recursive calls they make on the two halves of their input vector. It follows that if Interpolate or

Evaluate performs a bounded number of operations for all inputs, say at most A(q) additions and

M(q) multiplications, then its parent algorithm performs at most 2n(A(q) + (3/4)qn) additions

and 2nM(q) multiplications overall. Interpolation and evaluation over the multiplicative group of

the field can be performed with O(M(q − 1)) operations by the algorithms of Bostan and Schost

(2005). Extending these algorithms to the entire field requires performing only a single extra

addition in both cases, since f ∈ F[x]q has residue cq−1(f) +
∑q−2

i=0
ci(f)xi ∈ F[x]q−1 modulo

xq−1 − 1, and c0(f) = ei(f) for the index i ∈ {0, . . . , q − 1} such that ωi = 0.

The subvectors of the input vector that appear in Algorithms 1 and 2 can be represented in

practice by auxiliary variables, e.g., by a pointer to their first element. In doing so, the number

of field elements stored in auxiliary space by either algorithm, i.e., in the space used by the

algorithm in addition to the space required to store its inputs, is roughly equal to that required by

a single instance of its base case algorithm.

6

Algorithm 1 HermiteInterpolate(n, (a0, . . . , a2nq−1))

Input: n ∈ N, and ai = ei(f) for some f ∈ F[x]2nq and i ∈ {0, . . . , 2nq − 1}.

Output: ai = ci(f) for i ∈ {0, . . . , 2nq − 1}.

1: If n = 0:

2: Interpolate((a0, . . . , aq−1))

3: Else:

4: HermiteInterpolate(n − 1, (a0, . . . , a2n−1q−1))

5: HermiteInterpolate(n − 1, (a2n−1q, . . . , a2nq−1))

6: For i = q/2, . . . , q − 1:

7: For j = 0, . . . , 2n−1 − 1:

8: a2ni+ j ← a2ni+ j + a2ni+ j−(q−1)2n−1

9: For i = 2n−1, . . . , 2n−1(q + 1) − 1:

10: ai ← ai + a2n−1(q−1)+i

Algorithm 2 HermiteEvaluate(n, (a0, . . . , a2nq−1))

Input: n ∈ N, and ai = ci(f) for some f ∈ F[x]2nq and i ∈ {0, . . . , 2nq − 1}.

Output: ai = ei(f) for i ∈ {0, . . . , 2nq − 1}.

1: If n = 0:

2: Evaluate((a0, . . . , aq−1))

3: Else:

4: For i = 2n−1(q + 1) − 1, . . . , 2n−1:

5: ai ← ai + a2n−1(q−1)+i

6: For i = q/2, . . . , q − 1:

7: For j = 0, . . . , 2n−1 − 1:

8: a2ni+ j ← a2ni+ j + a2ni+ j−(q−1)2n−1

9: HermiteEvaluate(n − 1, (a0, . . . , a2n−1q−1))

10: HermiteEvaluate(n − 1, (a2n−1q, . . . , a2nq−1))

Remark 6. If F = Fq with q equal to a power of an odd prime p, then the Hermite interpolation

and evaluation problems defined at the beginning of the section still make sense. Thus, it is

natural to ask whether the techniques from this section can be applied to this case. If f ∈ Fq[x]pnq

for some nonzero n ∈ N, then there exist unique polynomials f0, . . . , fp−1 ∈ Fq[x]pn−1q such that

f =

p−1
∑

i=0

(−1)i fi(xq − x)pn−1i.

Generalising Lemma 3 then shows that solving the length pnq instances of the interpolation and

evaluation problems that correspond to f can be reduced to solving the p length pn−1q instances

of the problems that correspond to the polynomials
∑i

j=0 Dpn−1(i− j) f j for i ∈ {0, . . . , p−1}. For very

small values of p, the later polynomials can be efficiently computed by naively generalising the

approach used in this section. In doing so, the reduction may no longer be free of multiplications,

since it may be necessary to perform scalar multiplications by elements of Fp. For larger values

of p, better methods of computing the polynomials are required to obtain efficient algorithms.

7

4. Evaluation algorithm

To solve the Hermite evaluation problem for arbitrary lengths we reduce to the special case

of the preceding section by padding the input vector with zeros. Following the approach of

pruned and truncated FFT algorithms, we lessen the penalty incurred by having to solve the

larger problems by pruning those steps of the algorithm that are specific to the computation of

unwanted entries in the output. Thus, we consider the following revised problem in this section:

given c0(f), . . . , c2nq−1(f) for some f ∈ F[x]2nq, and t ∈ {1, . . . , 2nq}, compute e0(f), . . . , et−1(f).

The length ℓ Hermite evaluation problem is then captured by taking n =
⌈

log2⌈ℓ/q⌉
⌉

and t = ℓ.

The Hermite evaluation algorithm is described in Algorithm 4. The algorithm operates on

a vector (a0, . . . , a2nq−1) of field elements that initially contains the coefficients of a polynomial

f ∈ F[x]2nq, and overwrites ai with ei(f) for i less than the input value t. The remaining entries of

the vector are either unchanged or set to intermediate values from the computation. If t > 2n−1q,

then the algorithm performs the same steps as Algorithm 2, with the exception that the recursive

call used to evaluate f1+D2n−1

f0 only computes the t−2n−1q values required for the output. If t ≤

2n−1q, then the output depends on f0 only, so only f0 is computed (by the function PrepareLeft)

and recursively evaluated. Once again, the recursion terminates with n = 0, which is handled by

an algorithm TruncatedEvaluate that satisfies the specifications of Algorithm 3.

Algorithm 3 TruncatedEvaluate(t, (a0, . . . , aq−1))

Input: t ∈ {1, . . . , q}, and ai = ci(f) for some f ∈ F[x]q and i ∈ {0, . . . , q − 1}.

Output: ai = f (ωi) for i ∈ {0, . . . , t − 1}.

Algorithm 3 may be realised with a complexity of O(M(q)) operations by using the method

described in Section 3 to simply evaluate the polynomial over the entire field. This approach

obviously wastes some effort when t < q, and, for example, may become less efficient than

repeatedly apply Horner’s rule when t is small. However, Algorithm 4 only ever makes at most

one call to Algorithm 3 with t < q, so that it is not of critical importance in practice to optimise

for this case unless q is large. In this case, if one has control over the enumeration of the field,

then it may be beneficial to use truncated additive FFTs, which provide their best complexities

when the degree of the field is smooth (Coxon, 2018b). Similarly, the truncated FFT of Larrieu

(2017) can be used if the multiplicative group of the field has smooth order.

Proposition 7. Algorithm 4 is correct if Algorithm 3 is correctly implemented.

Proof. Suppose that Algorithm 3 has been correctly implemented. We use induction on the

input parameter n to show that Algorithm 4 is correct under this assumption. For inputs with

n = 0, the algorithm trivially produces the correct output since Algorithm 3 is simply applied

in this case. Therefore, suppose that the algorithm is called with a nonzero input n, and that the

algorithm produces the correct output for all inputs with smaller values of n. Let f ∈ F[x]2nq be

the polynomial that corresponds to the input, and f0, f1 ∈ F[x]2n−1q be the unique polynomials

such that f = f1(xq − x)2n−1

+ f0.

Suppose that t > 2n−1q. Then, as (3) holds, Lines 4 and 5 set ai = ci(f0) and a2n−1q+i = ci(f1)

for i ∈ {0, . . . , 2n−1q − 1}. Consequently, Lemma 5 implies that Lines 6 to 8 set a2n−1q+i =

ci(f1 + D2n−1

f0) for i ∈ {0, . . . , 2n−1q − 1}. As these three lines do not modify a0, . . . , a2n−1q−1,

which contain the coefficients of f0, the induction hypothesis and Corollary 4 imply that the

recursive call of Line 9 sets ai = ei(f0) = ei(f) for i ∈ {0, . . . , 2n−1q − 1}. Similarly, the recursive

8

Algorithm 4 TruncatedHermiteEvaluate(n, t, (a0, . . . , a2nq−1))

Input: n ∈ N, t ∈ {1, . . . , 2nq}, and ai = ci(f) for some f ∈ F[x]2nq and i ∈ {0, . . . , 2nq − 1}.

Output: ai = ei(f) for i ∈ {0, . . . , t − 1}.

1: If n = 0:

2: TruncatedEvaluate(t, (a0, . . . , aq−1)) /* Algorithm 3 */

3: Else if t > 2n−1q:

4: For i = 2n−1(q + 1) − 1, . . . , 2n−1:

5: ai ← ai + a2n−1(q−1)+i

6: For i = q/2, . . . , q − 1:

7: For j = 0, . . . , 2n−1 − 1:

8: a2ni+ j ← a2ni+ j + a2ni+ j−(q−1)2n−1

9: TruncatedHermiteEvaluate(n− 1, 2n−1q, (a0, . . . , a2n−1q−1))

10: TruncatedHermiteEvaluate(n− 1, t − 2n−1q, (a2n−1q, . . . , a2nq−1))

11: Else:

12: PrepareLeft(n, 0, (a0, . . . , a2nq−1))

13: TruncatedHermiteEvaluate(n− 1, t, (a0, . . . , a2n−1q−1))

14: Function PrepareLeft(n, t, (a0, . . . , a2nq−1)):

15: For i = max(t, 2n−1), . . . , 2n−1q − 1:

16: ai ← ai + a2n−1(q−1)+i

17: For i = max(t, 2n−1), . . . , 2n − 1:

18: ai ← ai + a2n(q−1)+i

call of Line 10 sets a2n−1q+i = ei(f1 + D2n−1

f0) = e2n−1q+i(f) for i ∈ {0, . . . , t − 2n−1q − 1}. The

algorithm stops at this point, and thus produces the correct output.

Suppose now that t ≤ 2n−1q. Then, as (3) holds, Line 12 sets ai = ci(f0) for i ∈ {0, . . . , 2n−1q−

1}. Consequently, the induction hypothesis and Corollary 4 imply that the recursive call of

Line 13 sets ai = ei(f0) = ei(f) for i ∈ {0, . . . , t − 1}. The algorithm stops at this point, and

thus produces the correct output.

For nonzero i, j ∈ N, define i mod∗ j = i − (⌈i/ j⌉ − 1) j, the residue of i modulo j that lies

in {1, . . . , j}. The following proposition bounds the additive and multiplicative complexities of

Algorithm 4 in terms of those of Algorithm 3.

Proposition 8. Suppose there exist functions A,M : {1, . . . , q} → N such that Algorithm 3

performs at most A(t) additions and at most M(t) multiplications (in F) when called with input

parameter t. Then Algorithm 4 performs at most

A(q)(⌈t/q⌉ − 1) + A(t mod∗ q) +

(

3

4

⌈

log2⌈t/q⌉
⌉

−
1

4

)

(⌈t/q⌉ − 1)q + (2n − 1)q (5)

additions and at most M(q)(⌈t/q⌉ − 1) + M(t mod∗ q) multiplications.

Proof. Suppose there exists functions A,M : {1, . . . , q} → N that satisfy the conditions of the

proposition. We use induction on the input parameter n to show that the stated bounds on the

number of additions and multiplications performed by Algorithm 4 then hold. If n = 0, then the

bounds hold trivially since Algorithm 4 simply passes its input vector to Algorithm 3, and the

9

input parameter t is at most q. Therefore, suppose that the algorithm is called with a nonzero

input n, and that the bounds stated in the proposition hold for all inputs with smaller values

of n. Assume, to begin with, that t > 2n−1q. Then Lines 4 to 8 of the algorithm perform (3/4)2nq

additions and no multiplications. Line 9 then performs at most 2n−1(A(q)+(3/4)q(n−1)) additions

and at most 2n−1M(q) multiplications, since the algorithm reduces to Algorithm 2 for inputs with

t = 2nq. As 2n−1q < t ≤ 2nq, we have

(

3

4

⌈

log2⌈t/q⌉ − 2n−1
⌉

−
1

4

)

(

⌈t/q⌉ − 2n−1 − 1
)

≤

(

3

4
n −

1

4

)

(⌈t/q⌉ − 1) −
3

4
2n−1 −

(

3

4
n − 1

)

2n−1

=

(

3

4

⌈

log2⌈t/q⌉
⌉

−
1

4

)

(⌈t/q⌉ − 1) −

(

3

4
n −

1

4

)

2n−1.

Consequently, the induction hypothesis implies that Line 10 performs at most

A(q)
(

⌈t/q⌉ − 2n−1 − 1
)

+A(t mod∗ q)+

(

3

4

⌈

log2⌈t/q⌉
⌉

−
1

4

)

(⌈t/q⌉ − 1)q+(2n − 1)q−
3

4
2n−1q(n+1)

additions, and most M(q)(⌈t/q⌉ − 2n−1 − 1) + M(t mod∗ q) multiplications. Summing these two

sets of bounds shows that the two bounds stated in the proposition are satisfied if t > 2n−1q.

If t ≤ 2n−1q, then Line 12 of Algorithm 4 performs 2n−1q additions and no multiplications.

Combining these contributions with the bounds on the number of additions and multiplications

performed by Line 13 provided by the induction hypothesis shows that the bounds stated in the

proposition are satisfied if t ≤ 2n−1q.

When n = 0 or t > 2n−1q for some nonzero n, as may be assumed when solving the Hermite

evaluation problem, the third and fourth terms of the bound (5) are in O(t log⌈t/q⌉). By using the

method of evaluating polynomials described in Section 3 to realise Algorithm 3, it follows that

the length ℓ Hermite evaluation problem can be solved withO(⌈ℓ/q⌉M(q)+ℓ log⌈ℓ/q⌉) operations

by Algorithm 4. In this setting, it is possible to reduce the number of additions performed by

Algorithm 4 when ℓ is not of the form 2nq by adapting the algorithm to take into account the

2nq − ℓ zeros that initially occupy the rightmost entries of the input vector.

5. Interpolation algorithm

To solve the Hermite interpolation problem for arbitrary lengths, we follow the approach

introduced by van der Hoeven (2004) for his inverse truncated FFT (see also Harvey, 2009;

Larrieu, 2017) by reducing to a length 2nq problem under the assumption that the new entries

of the output that result from extending the problem are provided as inputs. Thus, we consider

the following problem in this section: given t ∈ {1, . . . , 2nq} and h0, . . . , ht−1, ft, . . . , f2nq−1 ∈

F, compute c0(f), . . . , ct−1(f) for the unique polynomial f ∈ F[x]2nq such that ei(f) = hi for

i ∈ {0, . . . , t − 1} and ci(f) = fi for i ∈ {t, . . . , 2nq − 1}. Existence and uniqueness of the

polynomial f are readily shown to follow from Lemma 2. The length ℓ Hermite interpolation

problem is then captured as an instance of the new problem by taking n =
⌈

log2⌈ℓ/q⌉
⌉

, t = ℓ and

ft = · · · = f2nq−1 = 0.

The Hermite interpolation algorithm is described in Algorithm 6. If t > 2n−1q, then the

algorithm closely follows the approach described in Section 3 by recursively computing the

polynomials f0 and f1 + D2n−1

f0, before using Lemma 5 and the expansion (3) to compute the

10

desired coefficients of f . However, the recursive call that is used to recover f1 + D2n−1

f0 cannot

be made without first computing ci(f1 + D2n−1

f0) for i ≥ t − 2n−1q. Consequently, after the

algorithm has recovered f0, the required coefficients are computed by function the PrepareRight,

which steps through Lines 4 to 8 of Algorithm 2 while only modifying those entries ai with

indices i ≥ t. If t ≤ 2n−1q, then the function PrepareLeft from Algorithm 4 is used to recover

ci(f0) for i ≥ t, before the remaining coefficients of the polynomial are recursively computed.

The function PrepareLeft, which is its own inverse for fixed t, is then used to compute the

lower order coefficients of the output. The base case of the recursion is handled by an algorithm

TruncatedInterpolate that satisfies the specifications of Algorithm 5.

Algorithm 5 TruncatedInterpolate(t, (a0, . . . , aq−1))

Input: t ∈ {1, . . . , q}, ai = f (ωi) for some f ∈ F[x]q and i ∈ {0, . . . , t − 1}, and ai = ci(f) for

i ∈ {t, . . . , q − 1}.

Output: ai = ci(f) for i ∈ {0, . . . , q − 1}.

Algorithm 5 must compute the coefficients of the polynomial
∑t−1

i=0 ci(f)xi, which may be

recovered by first evaluating g =
∑q−1

i=t
ci(f)xi at the points ω0, . . . , ωt−1, then interpolating the

values f (ωi)+g(ωi) for i ∈ {0, . . . , t−1}. The evaluation step can be performed with O(M(q)) op-

erations by simply evaluating g over the entire field, while the interpolation step can be performed

with O(M(t) log t) operations by fast Chinese remainder algorithms, or O(M(t)) operations by the

algorithm of Bostan and Schost (2005) when ω0, . . . , ωt−1 is a geometric progression. It follows

that Algorithm 5 may be realised with a complexity of O(M(q) + M(t) log t) operations in F. In

the special case t = q, which holds for all but at most one call to the algorithm by Algorithm 6,

the algorithm only requires O(M(q)) operations since g is zero. Moreover, given control over

the enumeration of the field, we can obtain this complexity bound for all values of t by taking

ω0, . . . , ωq−2 to be a geometric progression. In this case, Algorithm 5 may also be realised by

using inverse truncated FFTs (Larrieu, 2017; Coxon, 2018b), which may be beneficial when q is

large and the degree of the field, or the order of its multiplicative group, is smooth.

Proposition 9. Algorithm 6 is correct if Algorithm 5 is correctly implemented.

Proof. Suppose that Algorithm 5 has been correctly implemented. We use induction on the

input parameter n to show that Algorithm 6 is correct under this assumption. For inputs with

n = 0, the algorithm trivially produces the correct output since Algorithm 5 is simply applied

in this case. Therefore, suppose that the algorithm is called with a nonzero input n, and that the

algorithm produces the correct output for all inputs with smaller values of n. Let f ∈ F[x]2nq be

the polynomial that corresponds to the input, and f0, f1 ∈ F[x]2n−1q be the unique polynomials

such that f = f1(xq − x)2n−1

+ f0.

Suppose that t > 2n−1q. Then Corollary 4 implies that at the beginning of the algorithm,

ai = ei(f) = ei(f0) for i ∈ {0, . . . , 2n−1q − 1}. Consequently, the induction hypothesis and

Lemma 2 imply that the recursive call of Line 4 sets ai = ci(f0) for i ∈ {0, . . . , 2n−1q − 1}. As (3)

holds, it follows that when the function PrepareRight is called in Line 5, Lines 17 and 18 of the

function set a2n−1q+i = ci(f1) for i ∈ {t−2n−1q, . . . , 2n−1q−1}. Then Lemma 5 implies that Lines 19

to 25 of the function set a2n−1q+i = ci(f1 + D2n−1

f0) for i ∈ {t − 2n−1q, . . . , 2n−1q − 1}. The entries

a2n−1q, . . . , at−1 are so far unchanged by the algorithm. Thus, Corollary 4 implies that a2n−1q+i =

e2n−1q+i(f) = ei(f1+D2n−1

f0) for i ∈ {0, . . . , t−2n−1q−1}. The induction hypothesis and Lemma 2

11

Algorithm 6 TruncatedHermiteInterpolate(n, t, (a0, . . . , a2nq−1))

Input: n ∈ N, t ∈ {1, . . . , 2nq}, ai = ei(f) for some f ∈ F[x]2nq and i ∈ {0, . . . , t−1}, and ai = ci(f)

for i ∈ {t, . . . , 2nq − 1}.

Output: ai = ci(f) for i ∈ {0, . . . , 2nq − 1}.

1: If n = 0:

2: TruncatedInterpolate(t, (a0, . . . , aq−1)) /* Algorithm 5 */

3: Else if t > 2n−1q:

4: TruncatedHermiteInterpolate(n− 1, 2n−1q, (a0, . . . , a2n−1q−1))

5: PrepareRight(n, t, (a0, . . . , a2nq−1))

6: TruncatedHermiteInterpolate(n− 1, t − 2n−1q, (a2n−1q, . . . , a2nq−1))

7: For i = q/2, . . . , q − 1:

8: For j = 0, . . . , 2n−1 − 1:

9: a2ni+ j ← a2ni+ j + a2ni+ j−(q−1)2n−1

10: For i = 2n−1, . . . , 2n−1(q + 1) − 1:

11: ai ← ai + a2n−1(q−1)+i

12: Else:

13: PrepareLeft(n, t, (a0, . . . , a2nq−1)) /* From Algorithm 4 */

14: TruncatedHermiteInterpolate(n− 1, t, (a0, . . . , a2n−1q−1))

15: PrepareLeft(n, 0, (a0, . . . , a2nq−1))

16: Function PrepareRight(n, t, (a0, . . . , a2nq−1)):

17: For i = 2n−1(q + 1) − 1, 2n−1(q + 1) − 2, . . . , t:

18: ai ← ai + a2n−1(q−1)+i

19: s← ⌊t/2n⌋, r ← min(t mod 2n, 2n−1)

20: For j = 0, . . . , r − 1:

21: For i = s + 1, . . . , q − 1:

22: a2ni+ j ← a2ni+ j + a2ni+ j−(q−1)2n−1

23: For j = r, . . . , 2n−1 − 1:

24: For i = s, . . . , q − 1:

25: a2ni+ j ← a2ni+ j + a2ni+ j−(q−1)2n−1

therefore imply that the recursive call of Line 6 sets a2n−1q+i = ci(f1 + D2n−1

f0) for i ∈ {0, . . . , t −

2n−1q − 1}. Hence, after the recursive call, the left half of the vector (a0, . . . , a2nq−1) contains

the coefficients of f0, while its right half contains the coefficients of f1 + D2n−1

f0. Consequently,

Lemma 5 implies that Lines 7 to 9 set a2n−1q+i = ci(f1) for i ∈ {0, . . . , 2n−1q − 1}, then (3) implies

that Lines 10 to 11 set ai = ci(f) for i ∈ {0, . . . , 2nq − 1}. The algorithm stops at this point, and

thus produces the correct output.

Suppose now that t ≤ 2n−1q. Then, as (3) holds, the call to PrepareLeft in Line 13 sets

ai = ci(f0) for i ∈ {t, . . . , 2n−1q− 1}. This call to PrepareLeft does not modify a0, . . . , at−1. Thus,

Corollary 4 implies that ai = ei(f) = ei(f0) for i ∈ {0, . . . , t−1}when the recursive call of Line 14

is made. The induction hypothesis and Lemma 2 therefore imply that Line 14 sets ai = ci(f0)

for i ∈ {0, . . . , t − 1}. Hence, after the recursive call, the left half of the vector (a0, . . . , a2nq−1)

contains the coefficients of f0, while the entries in the right half still retain their initial values,

with ai = ci(f) for i ∈ {2n−1q, . . . , 2nq − 1}. Thus, (3) implies that the call to PrepareLeft in

12

Line 15 sets ai = ci(f) for i ∈ {0, . . . , 2n−1q − 1}. The algorithm stops at this point, and thus

produces the correct output.

Proposition 10. Suppose there exist functions A,M : {1, . . . , q} → N such that Algorithm 5

performs at most A(t) additions and at most M(t) multiplications (in F) when called with input

parameter t. Then Algorithm 6 performs at most

A(q)(⌈t/q⌉ − 1) + A(t mod∗ q) +

(

7

4

⌈

log2⌈t/q⌉
⌉

− n −
3

4

)

(⌈t/q⌉ − 1)q + (2n − 1)(2q + 1)

additions and at most M(q)(⌈t/q⌉ − 1) + M(t mod∗ q) multiplications.

Proof. We assume the existence of functions A,M : {1, . . . , q} → N that satisfy the conditions

of the proposition, and use induction on the parameter n to prove the state bounds. The bounds

hold trivially if n = 0, since Algorithm 6 simply passes its input vector to Algorithm 5 in this

case. Therefore, suppose that the algorithm is called with a nonzero input n, and that the bounds

stated in the proposition hold for all inputs with smaller values of n. Assume, to begin with, that

t > 2n−1q. Then the call to PrepareRight in Line 5 of Algorithm 6 performs

max(2n−1(q + 1) − t, 0) +
(

2n−1(q − s) − r
)

< 2n−1 +
(

2n−1q − t/2
)

< 2n−1(1 + q/2)

additions, where s = ⌊t/2n⌋ and r = min(t mod 2n, 2n−1). In particular, no additions are per-

formed if t = 2nq. It follows that the algorithm reduces to Algorithm 1 for inputs with t = 2nq.

Thus, Line 4 performs at most 2n−1(A(q) + (3/4)q(n− 1)) additions and at most 2n−1M(q) multi-

plications. As 2n−1q < t ≤ 2nq, we have

(

7

4

⌈

log2⌈t/q⌉ − 2n−1 − 1
⌉

− n −
3

4

)

(

⌈t/q⌉ − 2n−1 − 1
)

≤

(

7

4

⌈

log2⌈t/q⌉
⌉

− n −
3

4

)

(⌈t/q⌉ − 1) −
3

4
2n−1(n − 1).

Consequently, the induction hypothesis implies that Line 6 performs at most

A(q)
(

⌈t/q⌉ − 2n−1 − 1
)

+ A(t mod∗ q) +

(

7

4

⌈

log2⌈t/q⌉
⌉

− n −
3

4

)

(⌈t/q⌉ − 1)q

+
(

2n−1 − 1
)

(2q + 1) −
3

4
2n−1q(n − 1)

additions, and at most M(q)(⌈t/q⌉ − 2n−1 − 1) + M(t mod∗ q) multiplications. Finally, Lines 7

to 11 perform (3/4)2nq additions and no multiplications. Summing these two sets of bounds

shows that the two bounds stated in the proposition are satisfied if t > 2n−1q.

If t ≤ 2n−1q, then Line 13 of Algorithm 6 performs at most (2n−1q− t)+ (2n − 2n−1) additions,

while Line 15 performs 2n−1q additions. Thus, Line 13 and 15 perform at most 2n−1(2q+1)− t <

2n−1(2q+ 1)− (⌈t/q⌉ − 1)q additions and no multiplications. Combining these bounds with those

provided by the induction hypothesis on the number of additions and multiplications performed

by Line 14 then shows that the bounds stated in the proposition are satisfied if t ≤ 2n−1q.

13

Using the methods described earlier in the section, Algorithm 5 may be realised so that

O(⌈t/q⌉M(q) + M(t mod∗ q) log(t mod∗ q)) operations are performed over all calls to the algo-

rithm made by Algorithm 6. Consequently, Proposition 10 implies that the length ℓ Hermite

interpolation problem may be solved by Algorithm 6 with O((⌈ℓ/q⌉ + log q)M(q) + ℓ log⌈ℓ/q⌉)

operations. Given control over the enumeration of the field, we showed that Algorithm 5 may be

realised with a complexity of O(M(q)) operations. For this case, the proposition implies that the

length ℓ Hermite interpolation problem may be solved with O(⌈ℓ/q⌉M(q)+ℓ log⌈ℓ/q⌉) operations

by Algorithm 6. The number of additions performed by the algorithm in this setting may be

reduced by taking into account the 2nq − ℓ zeros that initially occupy the rightmost entries of the

input vector. Moreover, as some of these entries are changed during the course of the algorithm,

but ultimately are equal to zero again at its end, it is possible to save further additions by not

performing those steps specific to restoring the entries to zero.

Acknowledgements

This work was supported by Nokia in the framework of the common laboratory between

Nokia Bell Labs and INRIA. The author is grateful for the comments and suggestions of the

anonymous reviewer, which greatly improved the presentation and results of the paper. The

author would also like to thank David Pearce, Sian Stafford, Andrew Calcino and Paulina Tapia

for their gracious accommodation during the preparation of this work.

Aho, A. V., Steiglitz, K., Ullman, J. D., 1975. Evaluating polynomials at fixed sets of points. SIAM J. Comput. 4 (4),

533–539.

URL http://dx.doi.org/10.1137/0204045

Augot, D., Levy-dit-Vehel, F., Shikfa, A., 2014. A storage-efficient and robust private information retrieval scheme

allowing few servers. In: Cryptology and network security. Vol. 8813 of Lecture Notes in Comput. Sci. Springer,

Cham, pp. 222–239.

URL http://dx.doi.org/10.1007/978-3-319-12280-9_15

Bernstein, D. J., 2004. Scaled remainder trees, Available from https://cr.yp.to/arith/scaledmod-20040820.pdf.

URL https://cr.yp.to/arith/scaledmod-20040820.pdf

Bini, D., Pan, V. Y., 1994. Polynomial and matrix computations, vol. 1: Fundamental algorithms. Progress in Theoretical

Computer Science. Birkhäuser Boston, Inc., Boston, MA.

URL http://dx.doi.org/10.1007/978-1-4612-0265-3

Borodin, A., Moenck, R., 1974. Fast modular transforms. J. Comput. System Sci. 8, 366–386.

Bostan, A., Lecerf, G., Salvy, B., Schost, E., Wiebelt, B., 2004. Complexity issues in bivariate polynomial factorization.

In: ISSAC 2004. ACM, New York, pp. 42–49.

URL https://doi.org/10.1145/1005285.1005294

Bostan, A., Lecerf, G., Schost, E., 2003. Tellegen’s principle into practice. In: Proceedings of the 2003 International

Symposium on Symbolic and Algebraic Computation. ISSAC ’03. ACM, New York, NY, USA, pp. 37–44.

URL http://doi.acm.org/10.1145/860854.860870

Bostan, A., Schost, É., 2005. Polynomial evaluation and interpolation on special sets of points. J. Complexity 21 (4),

420–446.

URL http://dx.doi.org/10.1016/j.jco.2004.09.009

Cantor, D. G., Kaltofen, E., 1991. On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28 (7),

693–701.

URL http://dx.doi.org/10.1007/BF01178683

Chin, F. Y., 1976. A generalized asymptotic upper bound on fast polynomial evaluation and interpolation. SIAM J.

Comput. 5 (4), 682–690.

URL http://dx.doi.org/10.1137/0205047

Coxon, N., 2018a. Fast systematic encoding of multiplicity codes. J. Symbolic Comput. 94, 234–254.

URL https://doi.org/10.1016/j.jsc.2018.08.005

Coxon, N., July 2018b. Fast transforms over finite fields of characteristic two, arXiv:1807.07785 [cs.SC].

URL https://arxiv.org/abs/1807.07785

14

Fiduccia, C. M., 1972. Polynomial evaluation via the division algorithm: the fast Fourier transform revisited. In: Pro-

ceedings of the Fourth Annual ACM Symposium on Theory of Computing. STOC ’72. ACM, New York, NY, USA,

pp. 88–93.

URL http://doi.acm.org/10.1145/800152.804900

Fine, N. J., 1947. Binomial coefficients modulo a prime. Amer. Math. Monthly 54, 589–592.

URL http://dx.doi.org/10.2307/2304500

Gao, S., Mateer, T., 2010. Additive fast Fourier transforms over finite fields. IEEE Trans. Inform. Theory 56 (12), 6265–

6272.

URL http://dx.doi.org/10.1109/TIT.2010.2079016

Harvey, D., 2009. A cache-friendly truncated FFT. Theoret. Comput. Sci. 410 (27-29), 2649–2658.

URL https://doi.org/10.1016/j.tcs.2009.03.014

Harvey, D., Roche, D. S., 2010. An in-place truncated Fourier transform and applications to polynomial multiplication.

In: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ACM,

New York, pp. 325–329.

URL http://dx.doi.org/10.1145/1837934.1837996

Harvey, D., van der Hoeven, J., December 2017. Faster integer and polynomial multiplication using cyclotomic coeffi-

cient rings, arXiv:1712.03693 [cs.SC].

URL http://arxiv.org/abs/1712.03693

Harvey, D., van der Hoeven, J., Lecerf, G., 2016. Fast polynomial multiplication over F260 . In: Proc. ISSAC ’16. ACM,

New York, NY, USA, pp. 255–262.

Harvey, D., van der Hoeven, J., Lecerf, G., 2017. Faster polynomial multiplication over finite fields. J. ACM 63 (6),

52:1–52:23.

Kopparty, S., 2014. Some remarks on multiplicity codes. In: Discrete geometry and algebraic combinatorics. Vol. 625 of

Contemp. Math. Amer. Math. Soc., Providence, RI, pp. 155–176.

URL https://doi.org/10.1090/conm/625/12497

Larrieu, R., 2017. The truncated Fourier transform for mixed radices. In: Proceedings of the 2017 ACM on International

Symposium on Symbolic and Algebraic Computation. ISSAC’17. ACM, New York, NY, USA, pp. 261–268.

URL http://doi.acm.org/10.1145/3087604.3087636

Lucas, E., 1878. Théorie des Fonctions Numériques Simplement Périodiques. [Continued]. Amer. J. Math. 1 (3), 197–

240.

URL http://dx.doi.org/10.2307/2369311

Markel, J., Dec 1971. FFT pruning. IEEE Transactions on Audio and Electroacoustics 19 (4), 305–311.

Moenck, R., Borodin, A., 1972. Fast modular transforms via division. In: Proceedings of the 13th Annual Symposium

on Switching and Automata Theory (Swat 1972). SWAT ’72. IEEE Computer Society, Washington, DC, USA, pp.

90–96.

URL https://doi.org/10.1109/SWAT.1972.5

Olshevsky, V., Shokrollahi, A., 2000. Matrix-vector product for confluent Cauchy-like matrices with application to con-

fluent rational interpolation. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing.

ACM, New York, pp. 573–581.

URL http://dx.doi.org/10.1145/335305.335380

Pan, V. Y., 2001. Structured matrices and polynomials: unified superfast algorithms. Birkhäuser Boston, Inc., Boston,

MA; Springer-Verlag, New York.

URL http://dx.doi.org/10.1007/978-1-4612-0129-8

Schönhage, A., 1976/77. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Informat.

7 (4), 395–398.

Schönhage, A., Strassen, V., 1971. Schnelle Multiplikation grosser Zahlen. Computing (Arch. Elektron. Rechnen) 7,

281–292.

Sorensen, H. V., Burrus, C. S., 1993. Efficient computation of the DFT with only a subset of input or output points. IEEE

Transactions on Signal Processing 41 (3), 1184–1200.

van der Hoeven, J., 2004. The truncated Fourier transform and applications. In: ISSAC 2004. ACM, New York, pp.

290–296.

URL http://dx.doi.org/10.1145/1005285.1005327

van der Hoeven, J., 2005. Notes on the Truncated Fourier Transform. Tech. Rep. 2005-5, Université Paris-Sud, Orsay,

France.

van der Hoeven, J., 2016. Faster Chinese remaindering. Tech. rep., HAL, http://hal.archives-ouvertes.fr/

hal-01403810.

Vari, T. M., 1974. Some complexity results for a class of Toeplitz matrices. Tech. rep., Dept. of Computer Sci. and Math.,

York Univ., Toronto.

von zur Gathen, J., 1990. Functional decomposition of polynomials: the tame case. J. Symbolic Comput. 9 (3), 281–299.

15

URL http://dx.doi.org/10.1016/S0747-7171(08)80014-4

von zur Gathen, J., Gerhard, J., 1997. Fast algorithms for Taylor shifts and certain difference equations. In: Proceedings

of the 1997 International Symposium on Symbolic and Algebraic Computation. ACM, New York, pp. 40–47.

URL http://dx.doi.org/10.1145/258726.258745

von zur Gathen, J., Gerhard, J., 2013. Modern computer algebra, 3rd Edition. Cambridge University Press, Cambridge.

URL http://dx.doi.org/10.1017/CBO9781139856065

Woodruff, D., Yekhanin, S., 2007. A geometric approach to information-theoretic private information retrieval. SIAM J.

Comput. 37 (4), 1046–1056.

URL https://doi.org/10.1137/06065773X

Wu, L., September 2015. Revisiting the multiplicity codes: A new class of high-rate locally correctable codes. In: 2015

53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton). pp. 509–513.

16

