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FAST HERMITE INTERPOLATION AND EVALUATION OVER

FINITE FIELDS OF CHARACTERISTIC TWO

NICHOLAS COXON

Abstract. This paper presents new fast algorithms for Hermite interpolation
and evaluation over finite fields of characteristic two. The algorithms reduce
the Hermite problems to instances of the standard multipoint interpolation
and evaluation problems, which are then solved by existing fast algorithms.
The reductions are simple to implement and free of multiplications, allowing
low overall multiplicative complexities to be obtained. The algorithms are
suitable for use in encoding and decoding algorithms for multiplicity codes.

1. Introduction

Hermite interpolation is the problem of computing the coefficients of a polyno-
mial given the values of its derivatives up to a given order at one or more evaluation
points. The inverse problem, that of evaluating the derivatives of the polynomial
when given its coefficients, is sometimes referred to as Hermite evaluation. Over
fields of positive characteristic p, the ith formal derivative vanishes identically for
i ≥ p. Consequently, it usual to consider Hermite interpolation and evaluation with
respect to the Hasse derivative over fields of small positive characteristic.

For now, let F simply denote a field. Then, for i ∈ N, the map Di : F[x]→ F[x]
that sends F ∈ F[x] to the coefficient of yi in F (x + y) ∈ F[x][y] is called the
ith Hasse derivative on F[x]. For distinct evaluation points ω0, . . . , ωn−1 ∈ F and
positive integer multiplicities ℓ0, . . . , ℓn−1, the Hermite interpolation problem over F
asks that we compute the coefficients of a polynomial F ∈ F[x] of degree less than
ℓ = ℓ0+· · ·+ℓn−1 when given (DiF )(ωj) for j ∈ {0, . . . , ℓi−1} and i ∈ {0, . . . , n−1}.
The corresponding instance of the Hermite evaluation problem asks that we use
the coefficients of F to compute the ℓ derivatives of the interpolation problem.
Different versions of the problems specify different bases on which the polynomials
are required to be represented. In this paper, the problems are considered with
respect to the monomial basis {1, x, x2, . . . } of F[x] only.

The boundary case ℓ0 = · · · = ℓn−1 = 1 corresponds to standard multipoint in-
terpolation and evaluation, allowing both problems to be solved with O(M(ℓ) log ℓ)
operations in F by the use of remainder trees and fast Chinese remainder algo-
rithms [17, 30, 7, 9, 8, 3, 37] (see also [41, Chapter 10]). Here, M(ℓ) denotes the
number of operations required to multiply two polynomials in F[x] of degree less
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than ℓ, which may be taken to be in O(ℓ(log ℓ) log log ℓ) [34, 33, 12]. The com-
plexity of solving the standard interpolation and evaluation problems reduces to
O(M(ℓ)) operations when the evaluation points form a geometric progression [10].
Similarly, fast Fourier transform (FFT) [15] based interpolation and evaluation of-
fer complexities as low as O(ℓ log ℓ) operations on certain special sets of evaluation
points.

For the opposing boundary case of n = 1, the Hermite interpolation and eval-
uation problems both reduce to computing Taylor expansions. Indeed, it follows
directly from the definition of Hasse derivatives that

(1.1) F =
∑

i∈N

(DiF )(ω)(x− ω)
i

for F ∈ F[x] and ω ∈ F.

Consequently, Hermite interpolation and evaluation at a single evaluation point can
be performed in O(M(ℓ) log ℓ) operations in general [7, 39, 40], O(M(ℓ)) operations
if (ℓ− 1)! is invertible in the field [1, 38] (see also [40, 6]), and O(ℓ log ℓ) operations
if the field has characteristic equal to two [19].

The first quasi-linear time algorithms for solving the general Hermite problems
were proposed by Chin [14]. Truncating the Taylor expansion (1.1) after i terms
gives the residue of degree less than i of F modulo (x−ω)i. Based on this observa-
tion, Chin’s evaluation algorithm begins by using a remainder tree to compute the
residues of the input polynomial modulo (x−ωi)

ℓi for i ∈ {0, . . . , n−1}. The Taylor
expansion of each residue at its corresponding evaluation point is then computed to
obtain the truncated Taylor expansion of the input polynomial. The interpolation
problem can be solved by reversing these steps, with the residues combined by a
fast Chinese remainder algorithm. It follows that the general Hermite interpolation
and evaluation problems may be solved with O(M(ℓ) log ℓ) operations [14, 31] (see
also [6, 32]).

In this paper, we present new algorithms for Hermite interpolation and eval-
uation over finite fields of characteristic two. The algorithms require the set of
evaluation points to equal the field itself, and their corresponding multiplicities to
be balanced, with |ℓi − ℓj| ≤ 1 for i 6= j. While not solving the general interpola-
tion and evaluation problems over these fields, the algorithms are suitable for use
in multivariate Hermite interpolation and evaluation algorithms [16], encoding and
decoding algorithms for multiplicity codes [22, 16] and the codes of Wu [43], and
private information retrieval protocols based on these codes [42, 2].

Over a characteristic two finite field of order q, the restricted problems may
be solved with O(M(ℓ) log q + ℓ log ℓ/q) operations by existing algorithms. The
algorithms presented in this paper yield the same complexities, but benefit by
their simplicity and the low number of multiplications they perform. When ℓ is
a multiple of q, as occurs in some encoding and decoding contexts, the Hermite
interpolation algorithm presented here performs ℓ/q standard interpolations over
the q evaluation points, followed by O(ℓ log ℓ/q) additions. The Hermite evaluation
algorithm performs O(ℓ log ℓ/q) additions, followed by ℓ/q standard evaluations
over the q points. Using the generic bound of O(M(q) log q) operations for solving
the standard problems leads to the above bound on solving the Hermite problems
in this special case.

We are not prohibited from using faster FFT-based interpolation and evaluation
algorithms to solve the standard problems when they are supported by the field.
Moreover, we have the option of using “additive FFT” algorithms [11, 29, 19, 5,
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4, 26, 25, 24, 13], which are specific to characteristic two finite fields and allow
evaluation and interpolation over the q points of the field to be performed with
O(q log2 q) or O(q(log q) log log q) additions, depending on the degree of the field,
and O(q log q) multiplications. With these algorithms and ℓ a multiple of q, the

Hermite interpolation and evaluation algorithms perform O(ℓ(log2 q + log ℓ/q)) or
O(ℓ((log q) log log q + log ℓ/q)) additions, and only O(ℓ log q) multiplications.

When ℓ is not a multiple of q, the Hermite interpolation and evaluation algo-
rithms still perform ⌈ℓ/q⌉−1 standard interpolations or evaluations over the q eval-
uation points, but each must also solve one instance of a slightly generalised version
of the corresponding standard problem. However, these more general problems re-
duce to the standard problems at the cost of O(M(q)) operations for performing one
division with remainder of polynomials of degree less than q (see [41, Section 9.1]).
Consequently, the algorithms retain their simplicity in this case.

The reduction from Hermite to standard problems is provided in Section 3, where
we develop divide-and-conquer algorithms for solving the Hermite interpolation and
evaluation problems when ℓ/q is a power of two. The problems for arbitrary ℓ can
be reduced to this special case by zero padding. However, this approach almost
doubles the size of the initial problem when ℓ/q is slightly larger than a power of
two, leading to large jumps in complexity. Instead, in Sections 4 and 5 we address
the problems for arbitrary ℓ by transferring across ideas from pruned and truncated
FFT algorithms [28, 35, 36, 20, 21, 23], which are used to smooth similar unwanted
jumps in the complexities of FFT-based evaluation and interpolation schemes. We
are consequently able to solve the Hermite interpolation and evaluation problems
with better complexity than obtained by zero padding.

2. Properties of Hasse derivatives

We begin by recalling some basic properties of Hasse derivatives.

Lemma 2.1. Let F,G ∈ F[x], α, β, ω ∈ F and i ∈ N. Then

(1) Di(αF + βG) = α(DiF ) + β(DiG),
(2) (DiF )(ω) is equal to the coefficient of xi in F (x+ ω),
(3) (DjF )(ω) = 0 for j ∈ {0, . . . , i− 1} if and only if (x− ω)i divides F ,

(4) Dixk =
(

k
i

)

xk−i for k ∈ N, and

(5) Di ◦Dj =
(

i+j
i

)

Di+j for j ∈ N.

Properties (1) and (2) of Lemma 2.1 follow readily from the definition of Hasse
derivatives provided in the introduction. Property (3) follows from Property (2).
Property (4) follows from the definition of Hasse derivatives and the binomial the-
orem. Property (5) follows from Properties (1) and (4), and the binomial identity

(

k − j

i

)(

k

j

)

=

(

i+ j

i

)(

k

i+ j

)

for i, j, k ∈ N.

For ℓ > 0, let F[x]ℓ denote the space of polynomials in F[x] that have degree
less than ℓ. Then existence and uniqueness for the general Hermite interpolation
problem is provided by the following lemma.

Lemma 2.2. Let ω0, . . . , ωn−1 ∈ F be distinct, ℓ0, . . . , ℓn−1 be positive integers,
and ℓ = ℓ0 + · · ·+ ℓn−1. Then given elements hi,j ∈ F for i ∈ {0, . . . , ℓj − 1} and
j ∈ {0, . . . , n−1}, there exists a unique polynomial F ∈ F[x]ℓ such that (DiF )(ωj) =
hi,j for i ∈ {0, . . . , ℓj − 1} and j ∈ {0, . . . , n− 1}.
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Lemma 2.2 follows from Property (3) of Lemma 2.1, which implies that the
kernel of the linear map from F[x]ℓ to F

ℓ given by F 7→ ((DiF )(ωj))0≤i<ℓj ,0≤j<n

can only contain multiples of the degree ℓ polynomial
∏n−1

j=0 (x − ωj)
ℓj , and must

therefore be trivial.

3. Strategy over finite fields of characteristic two

Hereafter, we assume that F is finite of characteristic two. Let q denote the order
of the field, and enumerate its elements as ω0, . . . , ωq−1. Define i div j = ⌊i/j⌋
and i mod j = i − ⌊i/j⌋j for i, j ∈ Z such that j is nonzero. Then the Hermite
interpolation problem we consider in the remainder of the paper can be stated as
follows: given (h0, . . . , hℓ−1) ∈ F

ℓ, compute the vector (f0, . . . , fℓ−1) ∈ F
ℓ such

that F =
∑ℓ−1

i=0 fix
i satisfies (Di div qF )(ωi mod q) = hi for i ∈ {0, . . . , ℓ − 1}. The

Hermite evaluation problem we consider is the inverse problem, asking that we
compute the vector ((Di div qF )(ωi mod q))0≤i<ℓ when given the coefficient vector
of F ∈ F[x]ℓ. We call ℓ the length of an instance of either problem, and observe
that if ℓ ≤ q, then the problems reduce to standard multipoint interpolation and
evaluation with evaluation points ω0, . . . , ωℓ−1.

In this section, we introduce the main elements of our algorithms by temporarily
limiting our attention to instances of length 2nq for some n ∈ N. The algorithms
take on their simplest form in this case, with each applying a simple reduction from
the length 2nq problem to two problems of length 2n−1q. Proceeding recursively,
both algorithms ultimately reduce to problems of length q, which are then solved
by existing standard interpolation and evaluation algorithms. The reductions em-
ployed by the algorithms are provided by the following lemma.

Lemma 3.1. Let n ∈ N be nonzero, F0, F1 ∈ F[x]2n−1q and

(3.1) F = F1(x
q − x)2

n−1

+ F0.

Then for ω ∈ F and i ∈ {0, . . . , 2n − 1},

(

DiF
)

(ω) =

{

(

DiF0

)

(ω) if i < 2n−1,
(

Di−2n−1

(F1 +D2n−1

F0)
)

(ω) otherwise.

Proof. Let n ∈ N be nonzero, F0, F1 ∈ F[x]2n−1q and define F by (3.1). Then

F (x+ ω) = F1(x+ ω)x2n−1q + F1(x + ω)x2n−1

+ F0(x+ ω)

for ω ∈ F. Consequently, as 2n−1q ≥ 2n, Property (2) of Lemma 2.1 implies that

(

DiF
)

(ω) =

{

(

DiF0

)

(ω) if i < 2n−1,
(

Di−2n−1

F1

)

(ω) +
(

DiF0

)

(ω) otherwise,

for ω ∈ F and i ∈ {0, . . . , 2n − 1}. Therefore, linearity of Hasse derivatives implies

that the lemma will follow if we can show that Di = Di−2n−1

◦ D2n−1

for i ∈
{2n−1, . . . , 2n − 1}. To this end, we use Lucas’ lemma [27, p. 230] (see also [18]),
which states that

(3.2)

(

u

v

)

≡

(

u div 2r

v div 2r

)(

u mod 2r

v mod 2r

)

(mod 2) for u, v, r ∈ N.
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By combining Lucas’ lemma with Property (5) of Lemma 2.1, we find that

Di−2n−1

◦D2n−1

=

(

2n−1 + (i − 2n−1)

2n−1

)

Di =

(

1

1

)(

i− 2n−1

0

)

Di = Di

for i ∈ {2n−1, . . . , 2n − 1}. �

Given a vector (h0, . . . , h2nq−1) ∈ F
2nq that defines an instance of the Hermite

interpolation problem, our algorithm recursively computes the corresponding poly-
nomial F ∈ F[x]2nq as follows. If n = 0, then we are in the base case of the recur-
sion, and F is recovered by a standard interpolation algorithm. If n ≥ 1, then the
algorithm is recursively called on (h0, . . . , h2n−1q−1) and (h2n−1q, . . . , h2nq−1). Lem-

mas 2.2 and 3.1 imply that the recursive calls return F0 and F1 +D2n−1

F0, where
F0 and F1 are the unique polynomials in F[x]2n−1q that satisfy (3.1). Thus, the

algorithm next recovers F1 by computing D2n−1

F0 and adding it to F1 +D2n−1

F0.
Finally, F is computed by expanding (3.1) as

(3.3) F = F1x
2n−1q + F1x

2n−1

+ F0.

Given a polynomial F ∈ F[x]2nq, the evaluation algorithm uses a standard evalua-
tion algorithm in its base case of n = 0, and if n ≥ 1, then it simply reverses the steps

of the interpolation algorithm by first computing F0 and F1, then F1 +D2n−1

F0,

and finally recursively evaluating F0 and F1 + D2n−1

F0. In both algorithms, the
following lemma is used to compute derivatives.

Lemma 3.2. Let n ∈ N be nonzero and F =
∑2n−1q−1

i=0 fix
i ∈ F[x]. Then

(3.4) D2n−1

F =

q/2−1
∑

i=0

x2ni
2n−1−1
∑

j=0

f2n−1(2i+1)+jx
j .

Proof. Let n ∈ N be nonzero and F =
∑2n−1q−1

i=0 fix
i ∈ F[x]. Then Property (4) of

Lemma 2.1 and Lucas’ lemma, in the form of (3.2), imply that

D2n−1

x2n−1(2i+b)+j =

(

2i+ b

1

)(

j

0

)

x2n−1(2i+b−1)+j = bx2n−1(2i+b−1)+j

for b ∈ {0, 1}, i ∈ N and j ∈ {0, . . . , 2n−1 − 1}. Therefore, writing F in the form

F =
1
∑

b=0

q/2−1
∑

i=0

2n−1−1
∑

j=0

f2n−1(2i+b)+jx
2n−1(2i+b)+j

and applying D2n−1

to each of its terms yields (3.4). �

4. Evaluation algorithm

To solve the Hermite evaluation problem for arbitrary lengths we reduce to the
special case of the preceding section by padding the input vector with zeros. Follow-
ing the approach of pruned and truncated FFT algorithms, we lessen the penalty
incurred by having to solve the larger problems by pruning those steps of the algo-
rithm that are specific to the computation of unwanted entries in the output. Thus,
we consider the following revised problem in this section: given the coefficients of
a polynomial F ∈ F[x]2nq and c ∈ {1, . . . , 2nq}, compute (Di div qF )(ωi mod q) for
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i ∈ {0, . . . , c − 1}. The length ℓ Hermite evaluation problem is then captured by
taking n = ⌈log2⌈ℓ/q⌉⌉ and c = ℓ.

The Hermite evaluation algorithm is described in Algorithm 2. The algorithm
operates on a vector (a0, . . . , a2nq−1) ∈ F

2nq that initially contains the coefficients
of a polynomial F ∈ F[x]2nq, and overwrites ai with (Di div qF )(ωi mod q) for i less
than the input value c. The remaining entries of the vector are either unchanged or
set to intermediate values from the computation. If c > 2n−1q, then the algorithm
follows the steps described in the preceding section for the length 2nq problem, with

the exception that the recursive call used to evaluate F1 +D2n−1

F0 only computes
the c−2n−1q values required for the output. If c ≤ 2n−1q, then the output depends
on F0 only, so only F0 is computed (by the function PrepareLeft) and recursively
evaluated. Once again, the recursion terminates with n = 0, which is handle by an
algorithm Evaluate that satisfies the specifications of Algorithm 1.

Algorithm 1 Evaluate((a0, . . . , aq−1), c)

Input: (a0, . . . , aq−1) ∈ F
q and c ∈ {1, . . . , q} such that

∑q−1
i=0 aix

i = F for some
F ∈ F[x]q.

Output: ai = F (ωi) for i ∈ {0, . . . , c− 1}.

Algorithm 1 may be realised with a complexity ofO(M(q)+M(c) log c) operations
in F by the use of remainder trees. For small values of c, one can apply Horner’s rule
for each of the c evaluation points. Naive matrix-vector products are efficient for
small q, while additive and (standard) multiplicative FFT algorithms become more
efficient for large q. For multiplicative FFT algorithms to be used, the multiplicative
group of the field must have smooth cardinality, and it is necessary to first reduce
modulo xq−1 − 1 at the cost of one addition. Moreover, if one has control over the
enumeration of the field, then it is possible to obtain a better complexity for c < q
by using the truncated FFT algorithm of Larrieu [23].

Proposition 4.1. Algorithm 2 is correct if Algorithm 1 is correctly implemented.

Proof. Under the assumption that Algorithm 1 has been correctly implemented, we
use induction to show that for all n ∈ N, Algorithm 2 produces the correct output
when given inputs (a0, . . . , a2nq−1) ∈ F

2nq and c ∈ {1, . . . , 2nq}. Therefore, suppose
that Algorithm 1 has been correctly implemented. Then for inputs with n = 0,
the algorithm trivially produces the correct output since Algorithm 1 is simply
applied in this case. Let n ≥ 1 and suppose that Algorithm 2 functions correctly
for all inputs with smaller values of n. Suppose that (a0, . . . , a2nq−1) ∈ F

2nq and
c ∈ {1, . . . , 2nq} are given to the algorithm as inputs, and let F ∈ F[x]2nq be
the corresponding polynomial for which the input requirements are satisfied. Let
F0, F1 ∈ F[x]2n−1q such that (3.1) and, equivalently, (3.3) hold.

Suppose that c > 2n−1q. Then (3.3) implies that Lines 4 and 5 set ai equal
to the coefficient of xi in F0, and a2n−1q+i equal to the coefficient of xi in F1, for
i ∈ {0, . . . , 2n−1q − 1}. Consequently, Lemma 3.2 implies that Lines 6 to 8 set

a2n−1q+i equal to the coefficient of xi in F1 +D2n−1

F0 for i ∈ {0, . . . , 2n−1q − 1}.
As these three lines do not modify a0, . . . , a2n−1q−1, which contain the coefficients
of F0, the induction hypothesis and Lemma 3.1 imply that the recursive call of
Lines 9 sets

(4.1) ai =
(

Di div qF0

)

(ωi mod q) =
(

Di div qF
)

(ωi mod q)
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Algorithm 2 HermiteEvaluate((a0, . . . , a2nq−1), c)

Input: (a0, . . . , a2nq−1) ∈ F
2nq and c ∈ {1, . . . , 2nq} such that n ∈ N and

∑2nq−1
i=0 aix

i = F for some F ∈ F[x]2nq.

Output: ai = (Di div qF )(ωi mod q) for i ∈ {0, . . . , c− 1}.
1: If n = 0:
2: Evaluate((a0, . . . , aq−1), c) /* Algorithm 1 */
3: Else if c > 2n−1q:
4: For i = 2n−1(q + 1)− 1, 2n−1(q + 1)− 2, . . . , 2n−1:
5: ai ← ai + a2n−1(q−1)+i

6: For i = q/2, . . . , q − 1:
7: For j = 0, . . . , 2n−1 − 1:
8: a2ni+j ← a2ni+j + a2ni+j−(q−1)2n−1

9: HermiteEvaluate((a0, . . . , a2n−1q−1), 2
n−1q)

10: HermiteEvaluate((a2n−1q, . . . , a2nq−1), c− 2n−1q)
11: Else:
12: PrepareLeft(a, 0)
13: HermiteEvaluate((a0, . . . , a2n−1q−1), c)

14: Function PrepareLeft((a0, . . . , a2nq−1), c):
15: For i = max(c, 2n−1), . . . , 2n−1q − 1:
16: ai ← ai + a2n−1(q−1)+i

17: For i = max(c, 2n−1), . . . , 2n − 1:
18: ai ← ai + a2n(q−1)+i

for i ∈ {0, . . . , 2n−1q − 1}. Similarly, the recursive call of Line 10 sets

a2n−1q+i =
(

Di div q
(

F1 +D2n−1

F0

))

(ωi mod q)

=
(

D2n−1+(i div q)F
)

(ωi mod q)

=
(

D(2n−1q+i) div qF
)

(

ω(2n−1q+i) mod q

)

(4.2)

for i ∈ {0, . . . , c−2n−1q−1}. The algorithm stops at this point, and thus produces
the correct output.

Suppose now that c ≤ 2n−1q. Then (3.3) implies that Line 12 sets ai equal to
the coefficient of xi in F0 for i ∈ {0, . . . , 2n−1q − 1}. Consequently, the induction
hypothesis and Lemma 3.1 imply that (4.1) holds for i ∈ {0, . . . , c − 1} after the
recursive call of Line 13 has been performed. The algorithm stops at this point,
and thus produces the correct output. �

For i, j ∈ Z such that j is nonzero, define i mod∗ j = i−(⌈i/j⌉−1)j. The follow-
ing proposition bounds the additive and multiplicative complexities of Algorithm 2
in term of those of Algorithm 1.

Proposition 4.2. For n ∈ N, define An,Mn : {1, . . . , 2nq} → N as follows: An(c)
and Mn(c) are respectively the number of additions and multiplications in F per-
formed by Algorithm 2 (for some implementation of Algorithm 1) when given inputs
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(a0, . . . , a2nq−1) ∈ F
2nq and c ∈ {1, . . . , 2nq}. Then

An(c) ≤ A0(q)(⌈c/q⌉ − 1) +A0(c mod∗ q)

+

(

3

4
⌈log2⌈c/q⌉⌉ −

1

4

)

(⌈c/q⌉ − 1)q + (2n − 1)q

and Mn(c) = M0(q)(⌈c/q⌉ − 1) +M0(c mod∗ q) for n ∈ N and c ∈ {1, . . . , 2nq}.

Proof. For nonzero n ∈ N, define the indicator function δn : {1, . . . , 2nq} → {0, 1}
by δn(c) = 1 if and only if c > 2n−1q. Then given inputs (a0, . . . , a2nq−1) ∈ F

2nq

and c ∈ {1, . . . , 2nq} for some nonzero n ∈ N, Lines 4 to 8 of Algorithm 2 per-
form δn(c)(3/4)2

nq additions, Line 9 performs δn(c)An−1(2
n−1q) additions and

δn(c)Mn−1(2
n−1q) multiplications, and Line 10 performs δn(c)An−1(c−δn(c)2

n−1q)
additions and δn(c)Mn−1(c − δn(c)2

n−1q) multiplications. Furthermore, Line 12
performs (1 − δn(c))2

n−1q additions, and Line 13 performs (1 − δn(c))An−1(c −
δn(c)2

n−1q) additions and (1− δn(c))Mn−1(c− δn(c)2
n−1q) multiplications. Sum-

ming these contributions, it follows that

(4.3) An(c) = An−1

(

c− δn(c)2
n−1q

)

+ 2n−1q + δn(c)
(

An−1

(

2n−1q
)

+ 2n−2q
)

and

(4.4) Mn(c) = Mn−1

(

c− δn(c)2
n−1q

)

+ δn(c)Mn−1

(

2n−1q
)

for nonzero n ∈ N and c ∈ {1, . . . , 2nq}. In particular,

(4.5) An(2
nq) = 2An−1

(

2n−1q
)

+
3

4
2nq and Mn(2

nq) = 2Mn−1

(

2n−1q
)

for nonzero n ∈ N. Thus,

(4.6) An(2
nq) = 2n

(

A0(q) +
3

4
nq

)

and Mn(2
nq) = 2nM0(q) for n ∈ N.

Substituting these equations into (4.3) and (4.4), it follows that
(4.7)

An(c) = An−1

(

c− δn(c)2
n−1q

)

+ 2n−1q + δn(c)2
n−1

(

A0(q) +
3

4
(n− 1)q +

q

2

)

and

(4.8) Mn(c) = Mn−1

(

c− δn(c)2
n−1q

)

+ δn(c)2
n−1M0(q)

for nonzero n ∈ N and c ∈ {1, . . . , 2nq}.
For n, c, δ ∈ N such that n is nonzero, we have

⌈

(c− δ2n−1q)/q
⌉

= ⌈c/q⌉−δ2n−1

and c − δ2n−1q mod∗ q = c mod∗ q. Consequently, the formula for Mn(c) stated
in the proposition follows from (4.8) by induction on n. If n ∈ N is nonzero,
c ∈ {1, . . . , 2nq} and

(4.9) ⌈c/q⌉ − 1 = i0 + i1 · 2 + · · ·+ in−1 · 2
n−1,

with i0, . . . , in−1 ∈ {0, 1}, then in−1 = δn(c). Therefore, it follows from (4.7) by
induction on n, that

(4.10) An(c) = A0(c mod∗ q)+(2n − 1)q+
(

A0(q) +
q

2

)

(⌈c/q⌉ − 1)+
3

4
q

n−1
∑

k=0

2kikk
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for n ∈ N and c ∈ {1, . . . , 2nq}, where i0, . . . , in−1 ∈ {0, 1} are the coefficients of
the binary expansion (4.9). Here,

n−1
∑

k=0

2kikk ≤ max(⌈log2⌈c/q⌉⌉ − 1, 0)
n−1
∑

k=0

2kik = (⌈log2⌈c/q⌉⌉ − 1)(⌈c/q⌉ − 1),

since ik = 0 if k ≥ ⌈log2⌈c/q⌉⌉. Combining this inequality with (4.10) yields the
upper bound on An(c) stated in the proposition. �

The functions A0 and M0 defined in Proposition 4.2 describe the additive and
multiplicative complexities of the implementation of Algorithm 1. When n = 0
or c > 2n−1q for some nonzero n, as may be assumed when solving the Her-
mite evaluation problem, the third and fourth terms of the bound on An(c) are
in O(c log⌈c/q⌉). By taking A0 and M0 to be in O(M(q) +M(c) log c), and making
the common assumption (used, for instance, in [41]) that M(ℓ)/ℓ is a nondecreasing
function of ℓ, it follows that the length ℓ Hermite evaluation problem can be solved
with O(M(ℓ) log q+ℓ log⌈ℓ/q⌉) operations in F by Algorithm 2. For this application,
the number of additions performed by Algorithm 2 may be reduced by adapting the
algorithm to take into account the zeros that initially occupy the 2nq− ℓ rightmost
entries of the vector (a0, . . . , a2nq−1).

5. Interpolation algorithm

To solve the Hermite interpolation problem for arbitrary lengths, we use an
approach analogous to that employed by the inverse truncated FFT algorithm of
Larrieu [23] by reducing to a length 2nq problem under the assumption that the
new entries of the output that result from extending the problem are provided
as inputs. Thus, we consider the following problem in this section: given c ∈
{1, . . . , 2nq} and (h0, . . . , hc−1, fc, . . . , f2nq−1) ∈ F

2nq, compute f0, . . . , fc−1 ∈ F

such that F =
∑2nq−1

i=0 fix
i satisfies (Di div qF )(ωi mod q) = hi for i ∈ {0, . . . , c−1}.

Here, existence and uniqueness of f0, . . . , fc−1 follow readily from Lemma 2.2. The
length ℓ Hermite interpolation problem is then captured as an instance of the new
problem by taking n = ⌈log2⌈ℓ/q⌉⌉, c = ℓ and fc = · · · = f2nq−1 = 0.

The Hermite interpolation algorithm is described in Algorithm 4. If c > 2n−1q,
then the algorithm closely follows the approach described in Section 3 by recursively

computing the polynomials F0 and F1 +D2n−1

F0, before using Lemma 3.2 and the
expansion (3.3) to compute the desired coefficients of F . The recursive call used

to recover F1 + D2n−1

F0 cannot be made without first computing the coefficient
of xi in the polynomial for i ≥ c − 2n−1q. Consequently, after the algorithm has
recovered F0, the required coefficients are computed by function the PrepareRight,
which steps through Lines 4 to 8 of Algorithm 2 while only modifying those entries
ai with indices i ≥ c. If c ≤ 2n−1q, then the function PrepareLeft from Algorithm 2
is used to recover the coefficient of xi in F0 for i ≥ c before the remaining coefficients
of the polynomial are recursively computed. The function PrepareLeft, which is its
own inverse for fixed c, is then used to compute the lower order coefficients of the
output. The base case of the recursion is handled by an algorithm Interpolate that
satisfies the specifications of Algorithm 3.

Algorithm 3 may be realised with a complexity ofO(M(q)+M(c) log c) operations

in F by the use of a fast Chinese remainder algorithm:
∑c−1

i=0 fix
i is equal to the

sum of the polynomial C ∈ F[x]c that satisfies C(ωi) = F (ωi) for i ∈ {0, . . . , c− 1},
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Algorithm 3 Interpolate((a0, . . . , aq−1), c)

Input: (a0, . . . , aq−1) ∈ F
q and c ∈ {1, . . . , q} such that for some polynomial F =

∑q−1
i=0 fix

i ∈ F[x]q the following conditions hold:
(1) ai = F (ωi) for i ∈ {0, . . . , c− 1}, and
(2) ai = fi for i ∈ {c, . . . , q − 1}.

Output: ai = fi for i ∈ {0, . . . , q − 1}.

and the remainder of
∑q−1

i=c fix
i upon division by

∏c−1
i=0 (x − ωi), with the product

being computed as part of the Chinese remainder algorithm. If the enumeration of
the field may be chosen freely and its multiplicative group has smooth cardinality,
then a better complexity is obtained by using the inverse truncated FFT algorithm
of Larrieu [23]. In doing so, one should set ωq−1 = 0 so that only a single addition

is required on top of the call to the FFT algorithm, since F (ω) = fq−1+
∑q−2

i=0 fiω
i

for nonzero ω ∈ F.

Proposition 5.1. Algorithm 4 is correct if Algorithm 3 is correctly implemented.

Proof. Under the assumption that Algorithm 3 has been correctly implemented, we
use induction to show that for all n ∈ N, Algorithm 4 produces the correct output
when given inputs (a0, . . . , a2nq−1) ∈ F

2nq and c ∈ {1, . . . , 2nq}. Therefore, suppose
that Algorithm 3 has been correctly implemented. Then for inputs with n = 0,
the algorithm trivially produces the correct output since Algorithm 3 is simply
applied in this case. Let n ≥ 1 and suppose that Algorithm 4 functions correctly
for all inputs with smaller values of n. Suppose that (a0, . . . , a2nq−1) ∈ F

2nq and
c ∈ {1, . . . , 2nq} are given to the algorithm as inputs, and let F ∈ F[x]2nq be
the corresponding polynomial for which the input requirements are satisfied. Let
F0, F1 ∈ F[x]2n−1q such that (3.1) and, equivalently, (3.3) hold.

Suppose that c > 2n−1q. Then Lemma 3.1 implies that (4.1) initially holds for
i ∈ {0, . . . , 2n−1q − 1}. Consequently, the induction hypothesis and Lemma 2.2
imply that the recursive call of Line 4 sets ai equal to the coefficient of xi in
F0 for i ∈ {0, . . . , 2n−1q − 1}. Thus, when the function PrepareRight is called in
Line 5, (3.3) implies that Lines 17 and 18 of the function set a2n−1q+i equal to

the coefficient of xi in F1 for i ∈ {c − 2n−1q, . . . , 2n−1q − 1}. Then Lemma 3.2
implies that Lines 19 to 25 of the function set a2n−1q+i equal to the coefficient of

xi in F1 +D2n−1

F0 for i ∈ {c− 2n−1q, . . . , 2n−1q− 1}. The entries a2n−1q, . . . , ac−1

are so far unchanged by the algorithm. Thus, Lemma 3.1 implies that (4.2) holds
for i ∈ {0, . . . , c− 2n−1q − 1}. The induction hypothesis and Lemma 2.2 therefore
imply that the recursive call of Line 6 sets a2n−1q+i equal to the coefficient of xi in

F1+D2n−1

F0 for i ∈ {0, . . . , c− 2n−1q− 1}. Hence, after the recursive call, the left
half of the vector (a0, . . . , a2nq−1) contains the coefficients of F0, while its right half

contains the coefficients of F1 +D2n−1

F0. Consequently, Lemma 3.2 implies that
Lines 7 to 9 set a2n−1q+i equal to the coefficient of xi in F1 for i ∈ {0, . . . , 2

n−1q−1},
then (3.3) implies that Lines 10 to 11 set ai equal to the coefficient of xi in F for
i ∈ {0, . . . , 2nq − 1}. The algorithm stops at this point, and thus produces the
correct output.

Suppose now that c ≤ 2n−1q. Then (3.3) implies that the call to PrepareLeft

in Line 13 sets ai equal to the coefficient of xi in F0 for i ∈ {c, . . . , 2n−1q − 1}.
This call to PrepareLeft does not modify a0, . . . , ac−1. Thus, Lemma 3.1 implies
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Algorithm 4 HermiteInterpolate((a0, . . . , a2nq−1), c)

Input: (a0, . . . , a2nq−1) ∈ F
2nq and c ∈ {1, . . . , 2nq} such that n ∈ N and for some

polynomial F =
∑2nq−1

i=0 fix
i ∈ F[x]2nq the following conditions hold:

(1) ai = (Di div qF )(ωi mod q) for i ∈ {0, . . . , c− 1}, and
(2) ai = fi for i ∈ {c, . . . , 2

nq − 1}.
Output: ai = fi for i ∈ {0, . . . , 2

nq − 1}.
1: If n = 0:
2: Interpolate((a0, . . . , aq−1), c) /* Algorithm 3 */
3: Else if c > 2n−1q:
4: HermiteInterpolate((a0, . . . , a2n−1q−1), 2

n−1q)
5: PrepareRight((a0, . . . , a2nq−1), c)
6: HermiteInterpolate((a2n−1q, . . . , a2nq−1), c− 2n−1q)
7: For i = q/2, . . . , q − 1:
8: For j = 0, . . . , 2n−1 − 1:
9: a2ni+j ← a2ni+j + a2ni+j−(q−1)2n−1

10: For i = 2n−1, . . . , 2n−1(q + 1)− 1:
11: ai ← ai + a2n−1(q−1)+i

12: Else:
13: PrepareLeft(a, c) /* From Algorithm 2 */
14: HermiteInterpolate((a0, . . . , a2n−1q−1), c)
15: PrepareLeft(a, 0)

16: Function PrepareRight((a0, . . . , a2nq−1), c):
17: For i = 2n−1(q + 1)− 1, 2n−1(q + 1)− 2, . . . , c:
18: ai ← ai + a2n−1(q−1)+i

19: t← c div 2n, r ← min(c mod 2n, 2n−1)
20: For j = 0, . . . , r − 1:
21: For i = t+ 1, . . . , q − 1:
22: a2ni+j ← a2ni+j + a2ni+j−(q−1)2n−1

23: For j = r, . . . , 2n−1 − 1:
24: For i = t, . . . , q − 1:
25: a2ni+j ← a2ni+j + a2ni+j−(q−1)2n−1

that (4.1) holds for i ∈ {0, . . . , c−1} when the recursive call of Line 14 is made. The
induction hypothesis and Lemma 2.2 therefore imply that Line 14 sets ai equal to
the coefficient of xi in F0 for i ∈ {0, . . . , c−1}. Hence, after the recursive call, the left
half of the vector (a0, . . . , a2nq−1) contains the coefficients of F0, while the entries
in the right half still retain their initial values, with ai equal to the coefficient of xi

in F for i ∈ {2n−1q, . . . , 2nq − 1}. Thus, (3.3) implies that the call to PrepareLeft

in Line 15 sets ai equal to the coefficient of xi in F for i ∈ {0, . . . , 2n−1q− 1}. The
algorithm stops at this point, and thus produces the correct output. �

Proposition 5.2. For n ∈ N, define An,Mn : {1, . . . , 2nq} → N as follows: An(c)
and Mn(c) are respectively the number of additions and multiplications in F per-
formed by Algorithm 4 (for some implementation of Algorithm 3) when given inputs
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(a0, . . . , a2nq−1) ∈ F
2nq and c ∈ {1, . . . , 2nq}. Then

An(c) ≤ A0(q)(⌈c/q⌉ − 1) +A0(c mod∗ q)

+

(

7

4
⌈log2⌈c/q⌉⌉ − n−

3

4

)

(⌈c/q⌉ − 1)q + (2n − 1)(2q + 1)

and Mn(c) = M0(q)(⌈c/q⌉ − 1) +M0(c mod∗ q) for n ∈ N and c ∈ {1, . . . , 2nq}.

Proof. The proof of the bound on An(c) follows along similar lines to that of Propo-
sition 4.2, but with the addition of having to bound the number of additions per-
formed in Lines 5 and 13 of the algorithm. As no multiplications are performed by
either of these lines, they may be ignored when proving the formula for Mn(c). In
doing so, the proof follows along identical lines to that of Proposition 4.2, and is
therefore omitted.

Suppose that Algorithm 4 has been given inputs (a0, . . . , a2nq−1) ∈ F
2nq and c ∈

{1, . . . , 2nq} for some nonzero n ∈ N. Let t = c div 2n and r = min(c mod 2n, 2n−1),
as defined in Line 19 of the function PrepareRight. If c > 2n−1q, then the call to
PrepareRight in Line 5 of the Algorithm 4 performs

max(2n−1(q + 1)− c, 0) +
(

2n−1(q − t)− r
)

< 2n−1 +
(

2n−1q − c/2
)

additions. In particular, no additions are performed if c = 2nq. Consequently,
An once again satisfies the recurrence (4.5) for nonzero n ∈ N, and, as a result,
also satisfies (4.6). If c ≤ 2n−1q, then Line 13 of Algorithm 4 performs at most
(2n−1q − c) + (2n − 2n−1) additions. By summing the contributions of each line of
Algorithm 4 in the manner of the proof of Proposition 4.2, with the two bounds
used for the contributions of Lines 5 and 13, it follows that

An(c) ≤ An−1

(

c− δn(c)2
n−1q

)

+ 2n−1(2q + 1)

+ δn(c)2
n−1

(

A0(q) +
3

4
(n− 1)q +

q

2

)

−

(

1−
δn(c)

2

)

c

for nonzero n ∈ N and c ∈ {1, . . . , 2nq}, where δn is the indicator function defined
in the proof of Proposition 4.2. Therefore,

An(c) ≤ A0(q)(⌈c/q⌉ − 1) +A0(c mod∗ q) + (2n − 1)(2q + 1)

+

(

3

4
⌈log2⌈c/q⌉⌉ −

1

4

)

(⌈c/q⌉ − 1)q −

n−1
∑

k=0

(

1−
ik
2

)

(

c− q

n−1
∑

j=k+1

2jij

)

for n ∈ N and c ∈ {1, . . . , 2nq}, where i0, . . . , in−1 ∈ {0, 1} are the coefficients of
the binary expansion (4.9). The upper bound on An(c) stated in the proposition is
then obtained by observing that

n−1
∑

k=0

(

1−
ik
2

)

(

c− q

n−1
∑

j=k+1

2jij

)

≥

n−1
∑

k=⌈log
2
⌈c/q⌉⌉

c+

⌈log
2
⌈c/q⌉⌉−1
∑

k=max(⌈log
2
⌈c/q⌉⌉−1,0)

c

2

≥

(

n− ⌈log2⌈c/q⌉⌉+
1

2

)

(⌈c/q⌉ − 1)q

for n ∈ N, c ∈ {1, . . . , 2nq} and i0, . . . , in−1 ∈ {0, 1} such that (4.9) holds. �

By taking A0 and M0 to be in O(M(q) + M(c) log c), it follows from Propo-
sition 5.2 that the length ℓ Hermite interpolation problem can be solved with
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O(M(ℓ) log q + ℓ log⌈ℓ/q⌉) operations in F by Algorithm 4. The number of ad-
ditions performed by the algorithm in this setting may once again be reduced by
taking into account the zeros that initially occupy the 2nq − ℓ rightmost entries of
the vector (a0, . . . , a2nq−1). Moreover, as some of these entries are changed during
the course of the algorithm, but ultimately are equal to zero again at its end, it is
possible to save further additions by not performing those steps specific to restoring
the entries to zero.
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8. A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt, Complexity issues in bivariate
polynomial factorization, ISSAC 2004, ACM, New York, 2004, pp. 42–49.
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