
HAL Id: hal-01827482
https://hal.science/hal-01827482v1

Preprint submitted on 2 Jul 2018 (v1), last revised 18 Mar 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LSDSAR, a Markovian a contrario framework for line
segment detection in SAR images

Chenguang Liu, Rémy Abergel, Yann Gousseau, Florence Tupin

To cite this version:
Chenguang Liu, Rémy Abergel, Yann Gousseau, Florence Tupin. LSDSAR, a Markovian a contrario
framework for line segment detection in SAR images. 2018. �hal-01827482v1�

https://hal.science/hal-01827482v1
https://hal.archives-ouvertes.fr


1

LSDSAR, a Markovian a contrario framework for
line segment detection in SAR images

Chenguang Liu, Rémy Abergel, Yann Gousseau and Florence Tupin

Abstract—In this paper, we propose a generic method for the
detection of line segments in SAR images. The approach relies
on an a contrario framework and is inspired by the state-of-
the art LSD detector. As with all a contrario approaches, false
detections are controlled through the use of a background model,
whose development is especially challenging in the framework of
SAR images. Indeed, statistical characteristics of SAR images
strongly differ from those of optical images, making the use of
existing background models intrinsically inadequate. In order
to circumvent this problem, we proceed in two steps. First, the
building blocks of the detector, namely the local orientations, are
computed carefully to avoid any spatial bias. Second, we propose
a new background model, in which the spatial dependency
between local orientations are modeled with a Markov chain. This
is in strong contrast with most existing a contrario methods who
heavily rely on independence assumptions. We provide a complete
and detailed algorithm for our line segment detector, and perform
experiments on synthetic and real images demonstrating its
efficiency.

Index Terms—Line segments, SAR images, a contrario models,
Markov chain, local orientations.

I. INTRODUCTION

TWO kinds of linear structures can be distinguished in
Synthetic Aperture Radar (SAR) images: narrow bands

of pixels having a given width [1], usually simply called linear
features, and line segments corresponding to edges, that from
now on we call line segments. The detection of linear features
in SAR images has received a lot of attention, typically in
view of the detection of road networks [2]–[4]. The detection
of line segments in SAR images has received less attention, in
contrast with the many such works that have been developed
for optical images. The main reason for this situation is that the
estimation of a reliable gradient information remains a difficult
task in the presence of strong speckle noise, a noise that is
inherent to all coherent imaging systems. Nevertheless, line
segments are very important features in SAR images, mostly
because many man-made objects like buildings, farmlands or
airports can be described by line segments. Besides, most
geometric structures can be approximated by line segments. In
addition, line segments can be extracted as low level features
and then be used for tasks such as image registration and target
recognition.
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Due to the strong speckle noise, methods that are effective
for optical images cannot be straightforwardly applied to SAR
images. First, the usual assumption that noise is additive and
Gaussian is wrong. Second, and more importantly, the strong
level of noise encountered in SAR images makes most optical
approaches inefficient. Taking the logarithm of the amplitude
or intensity of SAR images can change multiplicative noise to
additive noise but this does not allow the plain application of
optical methods, as we will see in the experimental section in
the case of the state-of-the-art LSD detector [5].

The usual way to detect line segments in SAR images is as
follows. First, an edge detector (typically with constant false
alarm rate as in [6]) is applied to the image, followed by a
Hough transform [7], [8] to detect lines. Then, post processing
steps are usually applied to localize Hough lines into line
segments. Many methods of this kind have been proposed for
SAR images following the early work [9], in the context of
different applications. In [10], line segments are extracted by
the Hough transform and then used to reconstruct buildings
from meter-resolution multi-aspect SAR images. An optical-
to-SAR image registration method is proposed in [11], relying
on line segments that are detected using a ratio-based gradient
and the Hough transform. The same idea was previously
explored in [12]. In [13], edge detection using phase sym-
metry [14] and wavelet correlations is followed by a Hough
transform in order to detect ship wakes. A common limitation
of the aforementioned approaches is that the performance of
the Hough transform critically relies on both a preliminary
edge detector and on the selection of parameters. The input
of the Hough transform is usually a binary edge map. Many
dedicated methods have been proposed for SAR images to
compute gradients [6], [15], [16], but extracting a binary edge
map necessitates a difficult compromise between suppressing
false alarms due to speckle and preserving edges of low con-
trast. Besides, the corresponding threshold choices are strongly
image-dependent. An interesting approach, which was recently
proposed in [17], [18], detects lines from the magnitude field
instead of a binary edge map, but the subsequent detection
tasks still require non-trivial parameter tunings.

Among the various approaches to the automatic setting
of parameters for low-level vision tasks, the a contrario
methodology was initially proposed for the detection of line
segments [19] in optical images. This powerful approach, re-
lying on a statistical control of the number of false detections,
was then applied to many detection and grouping tasks [20]
and, in particular, a state-of-the-art line segment detector,
named LSD, was proposed in [5]. The goal of the present paper
is to investigate the applicability of this approach to the case of
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SAR images, which results in a very challenging task. Indeed
the LSD detector, as most a contrario approaches, relies on
a null hypothesis against which segments are detected. Now,
this null hypothesis is completely inadequate for SAR images.
More precisely, local orientations (defined as the direction
perpendicular to the gradient orientation) are grouped against
the hypothesis that they are 1) uniformly distributed and 2)
mutually independent. Both these hypotheses appear to be
structurally wrong in SAR images. First, classical ways [6]
to compute the gradient in SAR images yield a non uniform
distribution of the orientation, even in the absence of geomet-
rical structures. Second, and more importantly, the speckle
noise imposes the use of strong filtering schemes, implying
strong structural dependencies between nearby orientations.
In the proposed LSDSAR approach, we replace the gradient
computation with a ratio based method [16], which yields
robust and unbiased local orientations at each pixel. Further,
we replace the crucial independence hypothesis between local
orientations by a first order Markov chain modeling, which in
practice is enough to counterbalance the effect of filtering and
yields an efficient control of the number of false detections.
The result is a generic line-segment detector adapted to the
specific structure of SAR images.

This paper is organized as follows: in Section II, we give
a description of the original LSD algorithm. In Section III,
the new line segment detector is provided. In particular, the
computation of the gradient is detailed, as well as the use of
a first order Markov chain in the a contrario model. Line
segment detection results on both synthetic and real SAR
images are given in Section IV and are compared to the results
of state-of-the-art line segment detectors. We finally conclude
in Section V and present some perspectives.

II. THE LSD ALGORITHM

The LSD algorithm is a state-of-the-art line segment detec-
tor for optical images, originally introduced in [5], and also de-
scribed in [22]. As in the precursor work from [19], segments
are detected by grouping local orientations. The groups are
validated by computing the so-called number of false alarms
(NFA). In contrast with the original approach [19], the LSD
detector is very fast thanks to an efficient search heuristic that
was proposed in [23]. The LSD algorithm relies on three steps:
the region growing step, the rectangular approximation step
and the line segment validation step. For self-containedness,
we detail each of these steps in the following.

A. Region growing
The first step of LSD is region growing. First, the image

gradient is computed at each pixel. The local orientation is
defined at each pixel as the orientation perpendicular to the
gradient. Then, starting from the pixel having the largest
gradient magnitude, pixels having the same local orientation
as the region (up to a certain angle tolerance) are gathered,
yielding a candidate region. Each time a pixel is added into the
region, the angle of the region is updated as the average local
orientation of the already gathered pixels. Once the region is
completed (no more pixel can be added) the process starts
again from the next remaining pixel with highest magnitude.

B. Rectangular approximation

After region growing, we are given a set of candidate
regions. The next step is to approximate each region with a
rectangle. Four parameters are used to describe the rectangles:
center, angle, length and width. The center of the rectangle
is defined as the center of mass (the mass being the gradient
magnitude) of the region. The angle of the rectangle is defined
as the angle between the horizontal axis and the first inertia
axis of the region. The length and width of the rectangle
are then defined as the smallest values allowing a complete
covering of pixels of the considered region.

C. Line segment validation

In order to decide whether or not a line segment is present
in the rectangle, an a contrario criterion is used to evaluate
how unlikely a similar structure is to happen by chance in a
random image. The general idea of the a contrario detectors
is that no meaningful structure should happen by chance in
a random configuration (according to the so-called Helmholtz
principle [20]). What is considered as a random configuration
is more formally defined in a H0 model, which describes a
kind of data where no detection should occur. In the case of
LSD, an image I0 follows the H0 model if it satisfies the
following requirements:

a) The local orientations of the pixels in I0 are independent
random variables.

b) Those random variables follow a uniform distribution
over [0, 2π].

The likeliness of a given rectangular configuration is evalu-
ated through the number of its aligned pixels. In the following,
we say that a pixel of a rectangle is aligned if it has the same
local orientation as the rectangle, up to a given angle tolerance.
For a given rectangle r in the observed (deterministic) image
I , we write n(r) for its total number of pixels and k(r) for its
number of aligned pixels. In order to evaluate the (un)likeliness
of a given rectangular configuration, we consider a random
image I0 (with same number of pixels as I) following H0.
We consider a rectangle with size n(r) in this image and write
k0(r) for the random variable equals to the number of aligned
points in this rectangle. The distribution of this variable only
depends on the size of r and not on its shape, as we will see
shortly. We then define a Number of False Alarms (NFA) [5],
[19] associated to r as

NFA(r) = NR · P(k0(r) ≥ k(r)) , (1)

where NR is the total number of possible rectangles, which
is approximated by the value 11 · (MN)5/2 for an image
containing M ×N pixels in [5].

In practice, the rectangle r will be detected as a segment
if NFA(r) ≤ ε, for a given threshold ε set by the user. The
interest of such an approach is that the NFA defined in (1)
satisfies the so-called NFA-property [5], [19], which can be
written as

∀ε > 0, EH0
[# {r, NFA(r) ≤ ε}] ≤ ε , (2)

where # stands for the cardinality of a set. This property
means that using the threshold NFA(r) ≤ ε, no more than
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ε rectangles will be detected on the average on a random
image I0 following H0, assuming that we consider all possible
rectangles. Again, the idea behind this detection rule is that
bounding the total number of (false) detections under model
H0 is enough to yield efficient detection thresholds. In general
we set ε = 1 to allow (on average) at most one false detection.
The rectangles (segments) validated as true line segments
because their NFA is less than ε are called ε-meaningful
segments (or simply meaningful segments when ε = 1).

In order to get an explicit detection rule, it remains to
compute PH0(k0(r) ≥ k(r)). According to the second as-
sumption b) of H0 (uniform distribution), the probability that
a pixel is aligned is

p =
τ

π
, (3)

where τ is the angle tolerance. Moreover, because of assump-
tion a) of H0 (independence), the number of aligned pixels in
r follows a Binomial distribution. Thus, we have

PH0
(k0(r) ≥ k(r)) = B(n(r), k(r), p), (4)

where B denotes the tail of the Binomial distribution,

B(n(r), k(r), p) =

n(r)∑
i=k(r)

(
n(r)

i

)
pi(1− p)n(r)−i.

Therefore, the NFA in (1) can be explicitly computed using

NFA(r) = NR · B(n(r), k(r), p) . (5)

The main difficulty to develop a similar line segment
detector for SAR images is that the two crucial assumptions
of model H0 are in general not suited to such images. First,
the most usual ways to compute local orientations in SAR
images are more or less biased toward certain directions, so
that the assumption of a uniform distribution does not hold,
even in a pure noise image. Second, and more important,
SAR images are strongly impacted by speckle noise, so that a
strong filtering is necessary to compute reliable local orienta-
tions, which in turn implies that the independence assumption
does not hold, even when local orientations are evaluated
on a pure noise image. In the next section, we will address
both these issues. First, in Section III-B, we explain how to
compute accurate and non-biased local orientations. Then, in
Section III-C, we propose a relaxation of the independence
assumption of the H0 model, by making use of a first order
Markov chain.

III. LSDSAR, A LINE SEGMENT DETECTOR FOR SAR
IMAGES

A. Statistics of SAR images

SAR sensors send electro-magnetic waves which are then
backscattered by the elements lying on the ground and pro-
cessed to form a SAR image. Let a exp(jφ) be the complex
backscattered signal and a the (real-valued) amplitude image.
Notice that the SAR images considered in this paper are all
amplitude images.

SAR images are corrupted by a strong multiplicative noise
known as speckle. The probability density function (pdf) fa

of the amplitude a for a region with mean reflectivity µ (the
physical parameter characterizing the imaged area) and L −
look under the hypothesis of fully developed speckle [2], [24],
[25] is:

fa(x|µ) =
2

Γ(L)

(
L

µ

)L
x2L−1e−(Lx

2/µ), (6)

where Γ : x 7→
∫ +∞
0

tx−1e−tdt is the Gamma function.
This pdf is a Nakagami distribution (Rayleigh for L = 1).
The speckle noise s follows a Nakagami distribution with the
parameter µ = 1 and the multiplicative noise model is given by
a = s.µ. Original SAR images are 1-look images (L = 1), but
a pre-processing of multi-looking can be applied to reduce the
signal fluctuations. It corresponds to an incoherent averaging
of the backscattered values in the power domain (square of
the amplitude) to reduce the noise.

Because of the speckle, detecting line segments in SAR
images is a completely different situation from detecting line
segments in optical images since optical images are contam-
inated by additive noise. LSD relies on the computation of
the gradient in each pixel. However, usual gradients based on
finite differences schemes do not have constant false alarm
rate (in the sense of [6]) when computed on SAR images
(see [6]). This part is thus replaced with a ratio based method,
better appropriate to SAR images. In the following we discuss
the impact of this step on the previously mentioned H0

hypotheses.

B. Gradient computation in SAR images

The first constant false alarm rate edge detector ROA for
SAR images has been proposed in [6]. The Ratio of Average
values (ROA) instead of difference of average values is used
to compute the gradient, ensuring a constant false alarm rate
whatever the underlying reflectivity R of an area. For a given
pixel located at position (x, y) in the image I , the ratio of
averages R(x, y) is computed along P directions as the ratio
of the arithmetic mean of pixel values of two opposite side
windows. In the i-th direction (for 1 ≤ i ≤ P ), this ratio is
given by

Ri(x, y) =
M i

1(x, y)

M i
2(x, y)

, (7)

where M i
1(x, y) and M i

2(x, y) denote the arithmetic means
of the image computed over two opposite side windows,
separated by an axis with direction i. This ratio is then
normalized as

T i(x, y) = max

(
Ri(x, y),

1

Ri(x, y)

)
. (8)

The magnitude |ROA| of the gradient at position (x, y) is then
defined as

|ROA(x, y)| = max
1≤i≤P

T i(x, y) , (9)

and its direction is defined as the direction having the highest
value of ratio. Once the gradient is computed, a threshold on
its magnitude can be used for the purpose of edge extraction.
Pixels having magnitude values higher than the threshold are
considered as edges, while others are not.
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Although ROA works well on isolated step edges, it is less
efficient in the presence of multiple edges, For that reason, a
multiple edge detector ROEWA was proposed in [15]. Instead
of computing the ratio along P directions, only the ratio
along the horizontal and vertical directions are computed in
ROEWA, and the arithmetic means are replaced by weighted
averages. In the horizontal direction, the ratio Rh(x, y) and
its normalization Th(x, y) are computed as

Rh(x, y) =
mh

1 (x, y)

mh
2 (x, y)

,

Th(x, y) = max

(
Rh(x, y),

1

Rh(x, y)

)
,

where

mh
1 (x, y) =

W∑
x′=−W

W∑
y′=1

I(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

mh
2 (x, y) =

W∑
x′=−W

−1∑
y′=−W

I(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

and where W is the upper integer part of log(10)×α (notice
that a complete study of the influence of α is beyond the scope
of this paper but can be found in [15]). The ratio along the
vertical direction Rv(x, y) and its normalization T v(x, y) are
computed in the same way. The normalized ratios Th(x, y)
and T v(x, y) being considered as the horizontal and vertical
components of the ROEWA gradient, its magnitude is simply
given by

|ROEWA(x, y)| =
√
Th(x, y)2 + T v(x, y)2 . (10)

Although ROEWA gives an efficient and accurate way to
compute the magnitude in each pixel, this method does not
give a precise measure of the edge orientations. Increasing the
number of directions, as in ROA, yields the so-called multi-
directional ratio-based methods, which are however quite time
consuming.

In [16], a new gradient named Gradient by Ratio (GR) was
proposed. Different from ROEWA, the horizontal and vertical
gradient components are defined as

Gh(x, y) = log(Rh(x, y)),

Gv(x, y) = log(Rv(x, y)).

The magnitude |GR(x, y)| and orientation ang(GR(x, y)) of
GR at position (x, y) are defined by

|GR(x, y)| =
√
Gh(x, y)2 +Gv(x, y)2,

ang(GR(x, y)) = arctan
Gv(x, y)

Gh(x, y)
.

GR gives a very efficient and effective way to compute both
magnitude and orientation of the gradient [16]. Therefore a
first way to adapt LSD to SAR images is to replace the gradient
computation method of LSD with GR.

As explained before, the a contrario framework of LSD
relies on a uniform distribution over [0, 2π] of the local
orientations computed in a pure noise image. To check whether

(a) 8 directions (b) 16 directions

(c) 32 directions (d) GR

Fig. 1: Histograms of the local orientations computed over a
1-look pure speckle noise image of size 1024 × 1024 pixels,
using the multi-directional ratio based methods (a,b,c) or GR
(d), with the same setting α = 4 for all methods.

this assumption is compatible or not with the above-mentioned
ways to evaluate local orientations, we plot in Fig. 1 the
histograms of the local orientations obtained using GR over a
pure speckle noise image (with size 1024×1024) and compare
it with that obtained using the multi-directional ratio-based
methods with 8-directions, 16-directions and 32-directions.
We used the same exponential weight function and the same
weight parameter α = 4 for GR and the multi-directional
methods. In order to reduce the influence of rotation for the
multi-directional ratio-based methods, we use circle-shaped
windows to improve invariance by rotation. We also guarantee
that the circle-shaped windows for the multi-directional ratio-
based methods and rectangle windows for GR have the same
number of pixels.

From Fig. 1 (a), (b) and (c), we can see that, for multi-
directional ratio-based methods, only the local orientations
obtained using 8 directions approximately follow a uniform
distribution (and in that case, the orientations are very quan-
tized). From Fig. 1 (d), we can see that the local orientations
computed using GR follow the hypothesis H0-b of the a
contrario model. Moreover, GR is able to access all the
possible angles instead of the few quantized angles obtained
using the multi-directional ratio-based methods. For those
reasons, we will use GR to compute the magnitude and local
orientations of the gradient.

C. Modeling weak dependency between local orientations

Thanks to the gradient computation technique detailed in the
previous paragraph, the assumptionH0-b (uniform distribution
of the local orientations) approximately holds true in a pure
noise image. However, the assumption H0-a (independence
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of the local orientations) is not satisfied because of the local
averaging needed to compute gradients in speckle noise. It
follows (as will be illustrated in the experimental part) that the
usual a contrario framework badly fails to control the number
of false detections when the local orientations are computed
with a method suited to SAR. In order to account for the strong
dependencies between nearby pixels introduced by filtering,
we draw from the ideas in [26], generalizing the a contrario
methodology to the grouping of events that are not mutually
independent. Specifically, the distribution of local orientations
at nearby pixels will be modeled by a first order Markov
chain, which appears as a good compromise between accuracy
and tractability. Notice that, contrarily to the application cases
in [26], the necessity to take dependency into account in our
case is a consequence of the way the gradient is computed
(using large averaging windows) and not of the structure of
the noise.

We consider a rectangle r in the observed image I , contain-
ing n(r) pixels. We assume that pixels within the rectangle
are ordered so that two consecutive pixels are neighbors. For
t = 1, . . . , n(r), let the variable Xt be equal to 1 if the t-
th pixel is aligned, and 0 otherwise. Then k(r) =

∑n(r)
t=1 Xt

represents the number of aligned pixels within rectangle r.
Instead of assuming that X1, X2, . . ., Xn(r) are mutually

independent, we assume that they follow a Markov chain of
order one, i.e., we assume that, for all 1 < t ≤ n(r),

P(Xt = xt|Xt−1 = xt−1, . . . , X1 = x1)

= P(Xt = xt|Xt−1 = xt−1). (11)

Therefore, the distribution of aligned pixels is characterized
by the four transition probabilities

P(X1 = x1|X0 = x0) , for (x0, x1) ∈ {0, 1}2 .

For brevity, they may be written P(1|1), P(1|0), P(0|1), and
P(0|0) in the following. In practice, those transition probabili-
ties will be estimated by computing the local orientation using
GR on a pure speckle noise image. Now, let us introduce a
modified background model, that we denote by H′0.

Definition 1 (H′0 model). We say that an image I0 follows
the H′0 model when its local orientations computed using GR
satisfy the following properties:

a) The local orientations follow a Markov chain of order
one.

b) Each local orientation follows a uniform distribution over
[0, 2π].

The new definition of the NFA follows from this modified
model. As before we consider a rectangle r containing n(r)
pixels and k(r) aligned pixels in the observed (deterministic)
image I . We write k0(r) for the number of aligned points
within r in a random image I0 following modelH′0. The initial
NFA formula (1) of LSD is naturally changed into

NFA′(r) = NR · PH′
0
(k0(r) ≥ k(r)) (12)

which also satisfies the NFA-property (2) (see Lemma 1
in [27]).

Now, let us focus on the practical evaluation of (12).
Because of the Markov chain assumptionH′0-b, the probability
of having k0(r) ≥ k(r) involved in (12) is given by

PH′
0
(k0(r) ≥ k(r)) =∑

x1+...+xn(r)≥k(r)

P(X1 = x1) ·
n(r)∏
t=2

P(Xt=xt|Xt−1 =xt−1) .

(13)

The probabilities PH′
0
(k0(r) ≥ k(r)), for all possible values of

k(r) and n(r), are heavy to compute using a straightforward
implementation of (13). In order to overcome this limitation,
we proceed as in [26] and compute PH′

0
(k0(r) ≥ k(r))

using a dynamic programming algorithm and a descending
induction. Indeed, writing n = n(r) and k = k(r), letting
Yt =

∑n
j=tXj , one observes that, for t ≤ n− 1, we have

P(Yt ≥ k) = P(Yt+1 ≥ k|Xt = 0) · P(Xt = 0)

+ P(Yt+1 ≥ k − 1|Xt = 1) · P(Xt = 1) . (14)

Besides, one has, for x ∈ {0, 1} and k′ ≥ 1,

P(Yt+1 ≥ k′|Xt = x)

=
∑

y∈{0,1}

P(Yt+2 ≥ k′ − y,Xt+1 = y|Xt = x)

= P(Yt+2 ≥ k′|Xt+1 = 0) · P(Xt+1 = 0|Xt = x)

+ P(Yt+2 ≥ k′ − 1|Xt+1 = 1) · P(Xt+1 = 1|Xt = x) ,
(15)

and P(Yn ≥ k′|Xn−1 = x) is simply given by

P(Yn ≥ k′|Xn−1 = x) =

 1 if k′ = 0 ,
P(1|x) if k′ = 1 ,

0 otherwise .
(16)

It follows that (14) can be computed in polynomial time (as
in [26]), and so does the probability PH′

0
(k0(r) ≥ k(r))

needed in (12).
In practice, we can precompute the values of PH′

0
(k0(r) ≥

k(r)) for all (n0(r), k(r)) ∈ {1, . . . , Nmax}2, with Nmax a
large enough value (we used Nmax = 5000 in our implemen-
tation). In the case the computation of PH′

0
(k0(r) ≥ k(r))

is needed for n(r) greater than Nmax, though theoretically it
can still be done using (14), (15) and (16), we accept the
rectangles directly to save memory space and computation
time (the reason is that a rectangle with large enough number
of pixels should be a meaningful structure in the random
image under the hypothesis of the background model). Notice
that, as mentioned above, the transition probabilities involved
in (15) and (16) are estimated from the local orientations
computed using GR in a pure Nakagami noise. Contrarily
to [26], the probabilities can be computed in advance for each
possible parameter choice in the gradient computation, namely
for each choice of the α value. Given an image of 1-look
pure Nakagami noise, we consider all horizontal and vertical
lines. This is because local orientations are computed by the
2-direction method (horizontal and vertical directions), which
imposes the strongest correlations along the horizontal and
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vertical directions. For each line, we consider the empirical
frequency of Xt and Xt−1 over all pixel pairs to estimate
P(x1|x0) for x0, x1 = 0, 1. In practice, we only need to esti-
mate P(x1|x0) for x0 6= x1, since we have P(1|1) = 1−P(0|1)
and P(0|0) = 1−P(1|0). In Table I, we display the transition
probabilities estimated using a 1-look pure Nakagami noise
image of size 4096 × 4096 pixels, for different values of
parameter α (the angle tolerance was set to 22.5 degrees, as in
the original LSD algorithm). One can see that, as α increases,
more dependencies are introduced between adjacent pixels.

TABLE I: estimated transition probabilities of the first order
Markov chain for τ = 22.5◦ and different values of α.

α = 1 α = 2 α = 3 α = 4 α = 5

P(1|1) 0.2444 0.4078 0.5144 0.5874 0.6356
P(1|0) 0.1076 0.0846 0.0694 0.0590 0.0521

D. The complete LSDSAR algorithm

The proposed LSDSAR algorithm relies on three main steps,
namely the region growing, rectangular approximation and
line segment validation steps, on which we perform several
modifications.

(i) Region growing: in this step we replace the finite-
differences based gradient of LSD by GR, as described
in Section III-B;

(ii) Rectangular approximation: this step is identical to that
of the original LSD algorithm;

(iii) Line segment validation: in this step, we compute the
number of false alarms by using (12) instead of (1), as
we described in Section III-C.

A pseudocode description of LSDSAR is proposed in Algo-
rithm 1. In this pseudocode description, the routines Region-
Grow and Rectangle correspond to the Region growing and
Rectangular approximation steps mentioned above. Up to the
modification we gave in (i) (for gradient computation), those
routines are the same as those used in LSD, which are carefully
described in [22]. The routine AlignedP ixelDensity, also
explicitly defined in [22], is used to compute the density of
aligned pixels in the rectangle. When the density of aligned
pixels in the rectangle is smaller than the threshold D, the
routine CutRegion is used to refine the rectangle. In the
original LSD, this CutRegion routine involves the use of
a modified tolerance parameter (that is, different from the
value of τ given as input by the user) which is computed
adaptively to the orientations found in the rectangle. In our
implementation of the CutRegion procedure, we decided to set
this modified tolerance parameter always equal to τ/2, in order
to be able to use some pre-tabulated values of the transition
probabilities of the Markov chain for that particular setting of
τ . Last, the ImprovedRectangle routine defined in LSD, which
also involves several refinements of the angle tolerance is again
adapted in order to make the modified angle tolerance always
equal to τ/2 (step 1 of the ImprovedRectangle routine) and
τ/4 (step 5 of the ImprovedRectangle routine). Last, it should
be noticed that, contrarily to the original LSD algorithm,

Algorithm 1: LSDSAR
Inputs: a SAR (amplitude) image I with size M ×N ,

the NFA threshold ε, the regularization parameter α, the
angle tolerance τ and the density threshold D.

Output: the list L containing the detected line segments.
Initialization:
1) Apply GR with parameter α on the input image.
2) Compute OrderedList, the sorting in descending order

of the pixels of I according to their gradient magnitudes
3) Precompute all values of PH′

0
(k(r0) ≥ k) (for

(n(r0), k) ∈ {0, . . . , Nmax}2), needed in (12).
4) Define NFA′ as in (12), using NR = 3 · (MN)5/2.
for P ∈ OrderedList do

region ← RegionGrow(P, τ)
r ← Rectangle(region)
while AlignedPixelDensity(r,τ )<D do

region ← CutRegion(region)
r ← Rectangle(region)

nfa← NFA′(r)
if nfa ≤ ε then L← L ∪ {r}
else

r ← ImproveRectangle(r)
nfa← NFA′(r)
if nfa ≤ ε then L← L ∪ {r}

return L

The reason of the setting NR = 3 · (MN)5/2 (instead of NR = 11 ·
(MN)5/2 in LSD) is that the total number of segments is potentially
multiplied by three (instead of 11 in LSD) because each rectangle
may be modified only two times (instead of 10 in LSD) during the
refinement step (routine ImproveRectangle). Notice that, step 2) can
be accelerated by using a linear-time pseudo-ordering algorithm, as
in LSD. Note also that, in step 3), one precomputation is needed per
considered value of the angle tolerance (τ , τ/2 and τ/4).

we do not need to pre-filter the image (rescaling, Gaussian
filtering) and we do not need the threshold for the gradient
magnitude because SAR images are mostly free of aliasing
and quantization effects.

E. Parameters setting

Algorithm 1 relies on four parameters, ε, α, τ and D. As
usual with the a contrario algorithms, the NFA-property (2)
provides a handy meaning for the NFA threshold parameter
ε, even for non-expert users. This threshold ε represents
an upper-bound on the average number of detections that
we allow in pure noise input data. As mentioned before, a
common setting for this parameter is ε = 1. Besides, from
our simulations, we found appropriate the setting τ = 22.5◦

proposed in the original LSD algorithm. In this section we pro-
pose to discuss the influence of the two remaining parameters
α and D on the detection results, and we propose a default
setting for them.

First, let us focus on the setting of α, the regularization
parameter used in the GR computation. Increasing the value
of α helps to suppress the speckle, but in turn introduces more
dependencies between adjacent pixels. Choosing a proper
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Fig. 2: ROC curves [28], [29] obtained using GR as an
edge detector over several 1-look images with different edge
contrasts values, and different values of α.

value for α should rely on a reasonable trade-off between these
two effects. We will evaluate the influence of α under two
aspects: on the one hand, α must be set in such a way that GR
efficiently highlights the edges of the input image. On the other
hand, the amount of dependencies between local orientations
must be correctly taken into account using our Markov Chain
approach, which can be implicitly checked by looking whether
or not, our modified NFA′ formula (12) provides an effective
control of the number of false detections.

In order to evaluate the performances of GR in terms of edge
detection, we used the ROC-curve strategy described in [28],
[29]. Those ROC curves are obtained by evaluating the number
of true positive and false positive edge pixels detected by
thresholding the GR magnitude with a threshold λ. The ROC
curve is obtained by varying the λ parameter from the minimal
to the maximal gradient amplitude value. In Fig. 2, we display
the ROC curves computed over synthetic edge images (with
different contrast values) of size 512×512 pixels, corrupted by
a 1-look speckle noise. The reference image corresponding to
the synthetic edge with contrast 1.5 is displayed in Fig. 3 (a),
and the associated ground truth is displayed in Fig. 3 (b).

From Fig. 2 we can see that, when α = 4, GR gives the
best performance since the corresponding ROC curve remains
above those obtained with lower values of α. On the other
hand, Table II gives the number of false detections obtained
using Algorithm 1 (with the setting ε = 1 and for different
values of α) on a 1-look pure Nakagami noise image of size
4096× 4096 pixels. We can see in Table II that the proposed
Markov chain model succeeds in controlling the number of
false detections in the case α = 1 and α = 2, but as α becomes

(a) clean image (b) edge ground truth

Fig. 3: (a) synthetic image with a contrast amplitude of 1.5,
(b) the corresponding edge ground truth.

(a) α = 4

(b) α = 2

Fig. 4: Line segment detection on 20-looks synthetic image of
size 32× 128 pixels containing horizontal edges with 2-pixel
width and amplitude contrast of 1.8.

larger, the number of false detections may be significantly
above ε, especially when α = 5. In the case α = 4, the number
of false detections remains reasonably comparable to ε, and
considering that this value gives the best performance on the
ROC curves displayed in Fig. 2, we suggest to use α = 4 as
a default setting. However, one must be aware that, with the
setting α = 4, LSDSAR may not be able to distinguish line
segments that are very close to each other, as illustrated in
Fig. 4. In situations where the accurate detection of close line
segments is required, a smaller value, such as α = 2, can be
used.

TABLE II: influence of the setting of α on the number of
(false) detections obtained using LSDSAR on a 1-look pure
Nakagami noise of size 4096× 4096 pixels.

Parameter α = 1 α = 2 α = 3 α = 4 α = 5

Number of detections 0 2 10 51 97

Now, let us focus on the setting of D, the threshold for the
density of aligned pixels involved in LSDSAR. The density
of aligned pixels within rectangle r is defined as the ratio
k(r)/(w(r) · `(r)), noting w(r) and `(r) the width and length
of r. In Algorithm 1, after the region growing step, the
rectangles are refined until their density of aligned pixels
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(a) D = 0 (b) D = 0.4 (c) D = 0.5

Fig. 5: Line segment detection on 3-look synthetic edge image
(contrast 1.6) for different value of the density threshold.

(a) D = 0.4 (b) D = 0.6

Fig. 6: Line segment detection results on 3-look synthetic edge
images (contrast 1.6) for two different values of D. The angle
difference of the problematic line segments is 16 degrees,
while the angle tolerance is 22.5 degrees.

becomes larger than D. As explained in [5], this threshold aims
to avoid situations where two straight edges are present in the
region with an angle between them smaller than the tolerance
τ , leading to inconsistent detections. Again, a tradeoff must be
found, since low values of D lead to inconsistent detections,
while too large values of D will have the effect of over-cutting
the line segments into small subsegments. This phenomenon
is illustrated in Fig. 5, where we can see that one spurious line
segment appears when D = 0, line segments are fragmented
when D = 0.5, while a better satisfying detection is obtained
with D = 0.4, that we recommend as default setting. Although
we observed that the setting D = 0.4 is generally safe, larger
values may sometimes be needed, as illustrated in Fig. 6
which shows that a larger density threshold may be necessary
when we need to distinguish two line segments with an angle
difference significantly smaller than the angle tolerance τ .

IV. EXPERIMENTS

In this Section, we study the performances of the proposed
LSDSAR algorithm over synthetic and real SAR images, and
compare this algorithm to the following concurrent methods:

a) the original LSD algorithm applied to the logarithm of
the amplitude of the SAR image;

b) what we refer to as the LSD+GR algorithm, which
roughly corresponds to the trivial adaptation of LSD
where the finite-difference based gradient suited to optical
images is replaced by GR. More precisely, our LSD+GR

TABLE III: number of false detections obtained using
LSD+GR (second column) and LSDSAR (third column) with
the setting ε = 1 in a pure speckle noise image with size
4096× 4096.

Parameter α LSD+GR LSDSAR

α = 1 2 0

α = 2 2710 2

α = 3 16602 10

α = 4 29771 51

α = 5 35916 97

TABLE IV: average number of (false) detections obtained
using LSDSAR over one hundred single look images with
size 1024×1024, for different values of the NFA threshold ε.

NFA threshold ε 0.01 0.1 1 10 100

Average number of
5.2 8.6 14.5 24.1 1074.1false detections

implementation is a variant of Algorithm 1 where we
avoid the use of Markov chains, and use the usual NFA
formula (defined in (1)) instead of NFA′ (defined in (12));

c) a state-of-the-art Hough-transform based method, named
IEFA, recently proposed in [17].

Unless explicitly mentioned, we will use the default setting
ε = 1, α = 4, τ = 22.5◦, and D = 0.4 in our LSDSAR
algorithm (as well as for the LSD+GR variant), and we
will keep the default setting of the original LSD algorithm
unchanged, as described in [22] (in particular, we use ε = 1,
τ = 22.5◦, and D = 0.7).

A. Ability to control the NFA

One of the requirements of the proposed LSDSAR algo-
rithm is its ability to control the number of false detections.
As discussed before, the filtering provided by GR (through the
smoothness parameter α) introduces important dependencies
between local orientations, so that the LSD+GR approach
does not fulfill the independence assumption required by the
original LSD algorithm to control the NFA. This phenomenon
is clearly demonstrated in Table III (column 2), where we
indicate, for several values of α, the number of (false) detec-
tions obtained using LSD+GR (with the setting ε = 1) over a
pure speckle image of size 4096× 4096. On the contrary, we
see in Table III (column 3) that, thanks to the Markov chain
modeling of weak dependencies between local orientations,
the number of (false) detections obtained with LSDSAR is
better controlled and remains comparable to ε, even for large
values of α. The ability of LSDSAR to provide a reasonable
control of false detections is further confirmed in Table IV, for
different values of the NFA threshold ε, where we can see that
the average number of false detections done in pure speckle
noise images is roughly comparable to ε.
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B. Detection performances on synthetic data

In order to provide a quantitative evaluation of the detection
quality of the considered algorithms, we propose to use the
F1-score, which is defined as

F1-score = 2 · precision× recall
precision + recall

,

where precision denotes the ratio between the number of
pixels correctly detected as edges and the total number of
pixels detected as edges (so that 1 − precision measures the
proportion of false positive pixels among detected pixels)
and recall denotes the ratio between the number of pixels
correctly detected as edges and the actual number of pixels
corresponding to edges (so that 1 − recall measures the
proportion of false negative pixels among actual edge pixels).
Those quantitative measures of F1-score will be performed
over some noisy single or multilook observation of synthetic
images for which a ground-truth is available (see Fig. 3).

In IEFA, the gradient is first computed by a ratio based edge
detector [30] and then a threshold is used to suppress the pixels
with small magnitude. Non-maximum suppression [31]–[33]
is used to extract the maxima of the magnitude field. Instead of
using a binary edge map as the input of the Hough transform,
the magnitude of each pixel weighted by a Gaussian function
of the gradient orientation is selected as the input and serves
as a weight in the Hough transform, as described in [17], [34],
[35].

We computed the performances in terms of F1-score of
LSDSAR, IEFA, LSD+GR and LSD, over several synthetic
edge images (with different contrast values), corrupted with a
speckle noise (we simulated some 1-look and 3-looks noisy
realizations of the synthetic image). The above mentioned
default settings were used for the LSDSAR, the LSD+GR
and the LSD algorithm. In the case of IEFA (which relies on
many parameters), we tested it for a large range of parameters
and kept the parameter setting yielding the best F1-score.
More precisely, the threshold that we used for the gradient
magnitude ranges from 0.1 to 0.40 with step 0.05. The number
of peaks in the Hough transform was set to 5000 so that
all the line segments on the image could be detected. The
smallest value of a bin which can be considered as a peak
was set to 3. The minimum gap between two line segments
extracted from the same bin ranges from 3 to 15 with step
2. Last, the minimum length of a line segment was set to 13.
The performances of the different algorithms are displayed in
Fig. 7 and some detection results obtained using LSDSAR and
IEFA over 3-look synthetic images are displayed in Fig. 8. One
can see that, in most situations, LSDSAR achieves better F1-
score than IEFA (although the parameters of IEFA were tuned
to optimize the F1-score, while LSDSAR was used with its
recommended default setting), and LSDSAR achieves always
better performances than LSD+GR and the original LSD. In
Fig. 7 (a) we can see that, in 1-look and low contrast situation,
IEFA gives better detection results. The performances of
LSDSAR in the low contrast and 1-look situation can be
improved by increasing the value of its parameter α, but the
user must keep in mind that the NFA will be less controlled
for higher values of α (as showed in Table III). Last, it must
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Fig. 7: Performances evaluations in terms of F1-score of the
four algorithms, using a synthetic edge image with different
contrast values (ranging between 1.2 and 1.9) and different
levels of speckle noise (1-look in (a) and 3-look in (b)).

be noted that, in the case of IEFA, multiple responses may be
obtained for the same line segment, which may be an issue for
practical applications, while it is not the case for the LSDSAR
algorithm.

C. Stability comparison between LSDSAR and IEFA

The stability of a detector, that is, its ability to produce
stable performances for different noisy observations of the
same image, is important in practical applications. In order
to test whether LSDSAR and IEFA yield stable performances,
both algorithms were used to process fifty single-look noisy
observations of a synthetic edge image with an amplitude edge
contrast of 1.6. We display in Table V the minimal (second
column), maximal (third column), average (fourth column)
and median (fifth column) values of F1-score achieved by
LSDSAR (first row) and IEFA (second row) for this experi-
ment. We can see from this experiment that the stability of the
detection performance provided by both algorithms is similar.

TABLE V: Stability of the detection performances.

F1-score minimal maximal average median

LSDSAR 0.71 0.82 0.78 0.78

IEFA 0.73 0.81 0.76 0.77

D. Comparison between LSDSAR and IEFA on real SAR
images

We display in Fig. 9 and Fig. 10, the line segment detection
results obtained using LSDSAR and IEFA over two different
single-look SAR images (details about those real SAR images
are provided in Table VI). Since we observed that, for IEFA,
the parameters yielding the best F1-scores in the 1-look
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(a) LSDSAR contrast=1.2 (b) LSDSAR contrast=1.3 (c) LSDSAR contrast=1.4 (d) LSDSAR contrast=1.5

(e) IEFA contrast=1.2 (f) IEFA contrast=1.3 (g) IEFA contrast=1.4 (h) IEFA contrast=1.5

Fig. 8: Detection results obtained using LSDSAR (first row) and IEFA (second row) over a synthetic edge image with different
contrast values (ranging between 1.2 and 1.5) corrupted with a speckle noise (3-look situation).

TABLE VI: real SAR images.

Satellite Sentinel 1 TerraSAR-X

Place Lelystad (Netherlands) Domancy (France)
Date 06/10/2015 31/05/2009

Image mode Stripmap Stripmap
Image size (pixels) 1024× 3072 797× 932

pixel-spacing (azimuth) 4m 2m
pixel-spacing (range) 14m 2m

synthetic experiment (Fig. 7 (a)) were not appropriate to
process those real SAR images, we had no other choice than
manually tuning its parameters on those particular images,
by mean of a visual inspection of the detection result. The
parameters of the IEFA algorithm were set as follows: the
threshold of the gradient magnitude was set equal to 0.25 (the
magnitude of the gradient of our SAR images varies from 0 to
0.93), the number of peaks extracted in the Hough transform
was set equal to 5000, the smallest value of a bin that can be
considered as a peak was set equal to 3, the minimum gap
between two line segments extracted from the same bin was
set equal to 7 and the smallest length of a line segment was
set equal to 13.

From the images displayed in Fig. 9 and Fig. 10, we can see
that LSDSAR detects more correct line segments than IEFA
while the number of false detections is better controlled. There
are nevertheless some line segments detected by IEFA that
are not detected by LSDSAR. Those could be detected by
LSDSAR by increasing either α or ε (or both), at the cost of
increasing the number of false detections.

In order to test the LSDSAR and IEFA algorithm on real
SAR images with different number of looks, synthetic 1-
look and 5-looks images have been created using a multi-
temporal 25-looks image as a reference noise-free image of
Leystad. The line segment detection results obtained using
LSDSAR and IEFA are displayed in Fig. 11. We can see in
Fig. 11 that LSDSAR detects much more correct line segments
especially in the multi-look situations while the number of
false detections is well controlled. We must also underline that
the parameter setting of IEFA is very dependent on the image
content. Therefore, the practical use of IEFA involves a careful
tuning of its parameters by mean of a visual inspection, while
in all our simulations, LSDSAR always provided satisfying
results using its default parameter setting.

V. CONCLUSION

In this paper, we proposed a line segment detector for SAR
images, inspired from the LSD detector for optical images.
Our experiments on synthetic and real SAR images showed
the ability of LSDSAR to detect correct line segments even
in 1-look situations while offering a valuable control of the
number of false detections. This LSDSAR algorithm only
relies on few parameters which are reasonably easy to set.
We proposed a default setting that achieved satisfying results
in all our experiments.

We also demonstrated that a first order Markov chain can be
efficiently used to handle the dependencies between the local
orientations computed by GR, yielding a reasonably accurate
control of the number of false detections for LSDSAR. An
interesting perspective for this work would be to consider
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(a) LSDSAR

(b) IEFA

Fig. 9: Line segment detection using LSDSAR (a) and IEFA (b) over a 1-look Sentinel 1 SAR image (Leystad).

(a) LSDSAR (b) IEFA

Fig. 10: Line segment detection using LSDSAR (a) and IEFA (b) over a 1-look TerraSAR-X SAR image (Domancy).
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(a) LSDSAR (1-look image) (b) LSDSAR (5-looks image)

(c) IEFA (1-look image) (d) IEFA (5-looks image)

Fig. 11: Line segment detection using LSDSAR (first row) and IEFA (second row) over a 1-look (first column) and a 5-looks
(second column) Sentinel 1 SAR images (Leystad).

some higher order Markov chains, or some two dimensional
Markov models, in order to even better take into account all
the dependencies and achieve a strict control of the NFA, but
in this case the complexity of the algorithm may increase
rapidly. More generally, we believe that the use of the first
order Markov chains is a simple and effective way to take
into account dependencies in the a contrario framework, and
that it is interesting to study how such an approach can be
further used to extend the a contrario methodology to practical
situations where dependencies are difficult to handle.
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