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Abstract

In this paper, we propose a generic method for the detection of line segments

in SAR images. The approach relies on an a contrario framework and is in-

spired by the state-of-the art LSD detector. As with all a contrario approaches,

false detections are controlled through the use of a background model, whose

development is especially challenging in the framework of SAR images. Indeed,

statistical characteristics of SAR images strongly differ from those of optical

images, making the use of existing background models intrinsically inadequate.

In order to circumvent this problem, we proceed in two steps. First, the building

blocks of the detector, namely the local orientations, are computed carefully to

avoid any spatial bias. Second, we propose a new background model, in which

the spatial dependency between local orientations are modeled with a Markov

chain. This is in strong contrast with most existing a contrario methods who

heavily rely on independence assumptions. We provide a complete and detailed

algorithm for our line segment detector, and perform experiments on synthetic

and real images demonstrating its efficiency.

Keywords: Line segments, SAR images, a contrario models, Markov chain,

local orientations.

∗Corresponding Author.
Email addresses: chenguang.liu@telecom-paristech.fr (Chenguang Liu),
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1. Introduction

Two kinds of linear structures can be distinguished in Synthetic Aperture

Radar (SAR) images: narrow bands of pixels having a given width [1], usually

simply called linear features, and straight subparts of edges, that from now on we

call line segments. The detection of linear features in SAR images has received

a lot of attention, typically in view of the detection of road networks [2, 3, 4].

The detection of line segments in SAR images has received less attention, in

contrast with the many such works that have been developed for optical images.

The main reason for this situation is that the estimation of a reliable gradient

information remains a difficult task in the presence of strong speckle noise,

a noise that is inherent to all coherent imaging systems. Nevertheless, line

segments are very important features in SAR images, mostly because many

man-made objects like buildings, farmlands or airports can be described by

line segments. Besides, most geometric structures can be approximated by line

segments. In addition, line segments can be extracted as low level features and

then be used for tasks such as image registration and target recognition.

Due to the strong speckle noise, methods that are effective for optical images

cannot be straightforwardly applied to SAR images. First, the usual assumption

that noise is additive and Gaussian is wrong. Second, and more importantly, the

strong level of noise encountered in SAR images makes most optical approaches

inefficient. Taking the logarithm of the amplitude or intensity of SAR images

can change multiplicative noise to additive noise but this does not allow the

plain application of optical methods, as we will see in the experimental section

in the case of the state-of-the-art LSD detector [5].

The usual way to detect line segments in SAR images is as follows. First, a

constant false alarm rate edge detector, such as that described in [6], is applied

to the image, followed by a Hough transform [7, 8] to detect lines. Then, post

processing steps are applied to localize Hough lines into line segments. Many

methods of this kind have been proposed for SAR images following the early

work [9], in the context of different applications. In [10], line segments are ex-
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tracted by the Hough transform and then used to reconstruct buildings from

meter-resolution multi-aspect SAR images. An optical-to-SAR image registra-

tion method is proposed in [11], relying on line segments that are detected using

a ratio-based gradient and the Hough transform. The same idea was previously

explored in [12]. In [13], edge detection using phase symmetry [14] and wavelet

correlations is followed by a Hough transform in order to detect ship wakes.

A common limitation of the aforementioned approaches is that the perfor-

mance of the Hough transform critically relies on both a preliminary edge de-

tection and on the selection of parameters. The input of the Hough transform

is usually a binary edge map. Many dedicated methods have been proposed

for SAR images to compute gradients [6, 15, 16], but extracting a binary edge

map necessitates a difficult compromise between suppressing false alarms due to

speckle and preserving edges of low contrast. Besides, the corresponding thresh-

old choices are strongly image-dependent. An interesting approach, which was

recently proposed in [17, 18], detects lines from the magnitude field instead of

a binary edge map, but the subsequent detection tasks still require non-trivial

parameter tunings.

Among the various approaches to the automatic setting of parameters for

low-level vision tasks, the a contrario methodology was initially proposed for the

detection of line segments [19] in optical images. This powerful approach, rely-

ing on a statistical control of the number of false detections, was then applied

to many detection and grouping tasks [20] and, in particular, a state-of-the-

art line segment detector, named LSD, was proposed in [5]. The goal of the

present paper is to investigate the applicability of this approach to the case of

SAR images, which results in a very challenging task. Indeed the LSD detec-

tor, as most a contrario approaches, relies on a null hypothesis against which

segments are detected. Unfortunately, this null hypothesis is completely inade-

quate for SAR images. More precisely, local orientations (each of which being

defined as the direction perpendicular to the gradient orientation) are grouped

against the hypothesis that they are 1) uniformly distributed and 2) mutually

independent. Both these hypotheses appear to be structurally wrong in SAR
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images. First, classical ways [6] to compute the gradient in SAR images yield

a non uniform distribution of the orientation, even in the absence of geomet-

rical structures. Second, and more importantly, the speckle noise imposes the

use of strong filtering schemes, implying strong structural dependencies between

nearby orientations. In the proposed LSDSAR approach, we replace the gradient

computation with a ratio based method [16], which yields robust and unbiased

local orientations at each pixel. Further, we replace the crucial independence

hypothesis between local orientations by a first order Markov chain modeling,

which in practice is enough to counterbalance the effect of filtering and yields

an efficient control of the number of false detections. The result is a generic

line-segment detector adapted to the specific structure of SAR images.

This paper is organized as follows: in Section 2, we give a description of the

original LSD algorithm. In Section 3, the new line segment detector is provided.

In particular, the computation of the gradient is detailed, as well as the use of

a first order Markov chain in the a contrario model. Line segment detection

results on both synthetic and real SAR images are given in Section 4 and are

compared to the results of state-of-the-art line segment detectors. We finally

conclude in Section 5 and present some perspectives.

2. The LSD algorithm

The LSD algorithm is a state-of-the-art line segment detector for optical

images, originally introduced in [5], and also described in [22]. As in the precur-

sor work from [19], segments are detected by grouping local orientations. The

groups are validated by computing the so-called number of false alarms (NFA).

In contrast with the original approach [19], the LSD detector is very fast thanks

to an efficient search heuristic that was proposed in [23]. The LSD algorithm

relies on three steps: the region growing step, the rectangular approximation

step and the line segment validation step. For self-containedness, we detail each

of these steps in the following.
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2.1. Region growing

The first step of LSD is region growing. First, the image gradient is computed

at each pixel. The local orientation is defined at each pixel as the orientation

perpendicular to the gradient orientation. Then, starting from the pixel having

larger gradient magnitude, pixels having the same local orientation as the region

up to a certain angle tolerance are gathered together until no more pixel can be

added, yielding a candidate region. Then the process starts again from the next

remaining pixel with higher gradient magnitude. Each time a pixel is added into

the region, the angle of the region is updated as the average local orientation of

the already gathered pixels.

2.2. Rectangular approximation

After region growing, we are given a set of candidate regions. The next

step is to approximate each region with a rectangle. Four parameters are used

to describe the rectangles: center, angle, length and width. The center of

the rectangle is defined as the center of mass (the mass being the gradient

magnitude) of the region. The angle of the rectangle is defined as the angle

between the horizontal axis and the first inertia axis of the region. The length

and width of the rectangle are then defined as the smallest values allowing a

complete covering of pixels of the considered region.

2.3. Line segment validation

In order to decide whether or not a line segment is present in the rectangle,

an a contrario criterion is used to evaluate how unlikely a similar structure is

to happen by chance in a random image. The general idea of the a contrario

detectors is that no meaningful structure should happen by chance in a ran-

dom configuration according to the so-called Helmholtz principle [20]. What is

considered as a random configuration is more formally defined in a H0 model,

which describes a kind of data where no detection should occur. In the case of

LSD, an image I0 follows the H0 model if it satisfies the following requirements:

a. The local orientations of the pixels in I0 are independent random variables.
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b. Those random variables follow a uniform distribution over [0, 2π].

The likeliness of a given rectangular configuration is evaluated through the

number of its aligned pixels. In the following, we say that a pixel of a rectangle

is aligned if it has the same local orientation as the rectangle, up to a given

angle tolerance. For a given rectangle r in the observed image I, we write n(r)

for its total number of pixels and k(r) for its number of aligned pixels. In order

to evaluate the unlikeliness of a given rectangular configuration, we compute the

expected number of rectangles having the same configuration that would appear

in a random image I0 following H0. We consider a rectangle with size n(r) in

this image and write k0(r) for the random variable equals to the number of

aligned points in this rectangle. The distribution of this variable only depends

on the size of r and not on its shape, as we will see shortly. Then, we define a

Number of False Alarms (NFA) [19, 5] associated to r as

NFA(r) = NR · P(k0(r) ≥ k(r)) , (1)

where NR is the total number of possible rectangles, which is approximated by

the value 11 · (MN)5/2 for an image containing M ×N pixels in [5].

In practice, the rectangle r will be detected as a segment if NFA(r) ≤ ε, for

a given threshold ε set by the user. The interest of such an approach is that

the NFA defined in (1) satisfies the so-called NFA-property [19, 5], which can

be written as

∀ε > 0, EH0 [# {r, NFA(r) ≤ ε}] ≤ ε , (2)

where # stands for the cardinality of a set. This property means that using

the threshold NFA(r) ≤ ε, no more than ε rectangles will be detected on the

average on a random image I0 following H0, assuming that we consider all

possible rectangles. Again, the idea behind this detection rule is that bounding

the total number of false detections under model H0 is enough to yield efficient

detection thresholds. In general we set ε = 1, which guarantees that, on average,

at most one false detection could be done. The rectangles validated as true line

segments because their NFA is less than ε are called ε-meaningful segments, or
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simply meaningful segments when ε = 1.

In order to get an explicit detection rule, it remains to compute PH0
(k0(r) ≥

k(r)). According to the second assumption b) of H0 (uniform distribution), the

probability that a pixel is aligned is

p =
τ

π
, (3)

where τ is the angle tolerance. Moreover, because of the independence assump-

tion a) of H0, the number of aligned pixels in r follows a Binomial distribution.

Thus, we have

PH0
(k0(r) ≥ k(r)) = B(n(r), k(r), p), (4)

where B denotes the tail of the Binomial distribution,

B(n(r), k(r), p) =

n(r)∑
i=k(r)

(
n(r)

i

)
pi(1− p)n(r)−i.

Therefore, the NFA in (1) can be explicitly computed using

NFA(r) = NR · B(n(r), k(r), p) . (5)

The main difficulty to develop a similar line segment detector for SAR images

is that the two crucial assumptions of model H0 are in general not suited to such

images. First, the most usual ways to compute local orientations in SAR images

are more or less biased toward certain directions, so that the assumption of a

uniform distribution does not hold, even in a pure noise image. Second, and

more important, SAR images are strongly impacted by speckle noise, so that

a strong filtering is necessary to compute reliable local orientations, which in

turn implies that the independence assumption does not hold, even when local

orientations are evaluated on a pure noise image. In the next section, we will

address both these issues. First, in Section 3.2, we explain how to compute

accurate and non-biased local orientations. Then, in Section 3.3, we propose a

relaxation of the independence assumption of the H0 model, by making use of

a first order Markov chain.

-
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3. LSDSAR, a line segment detector for SAR images

3.1. Statistics of SAR images

SAR sensors send electro-magnetic waves which are then backscattered by

the elements lying on the ground and processed to form a SAR image. Let

a exp(jφ) be the complex backscattered signal and a the amplitude image. No-

tice that the SAR images considered in this paper are all amplitude images.

SAR images are corrupted by a strong multiplicative noise known as speckle.

The probability density function (pdf) fa of the amplitude a for a region with

mean reflectivity µ (the physical parameter characterizing the imaged area) and

L− look under the hypothesis of fully developed speckle [2, 24, 25] is:

fa(x|µ) =
2

Γ(L)

(
L

µ

)L
x2L−1e−(Lx

2/µ), (6)

where Γ : x 7→
∫ +∞
0

tx−1e−tdt is the Gamma function. This pdf is a Nak-

agami distribution. The speckle noise s follows a Nakagami distribution with

the parameter µ = 1 and the multiplicative noise model is given by a = s.µ.

Original SAR images are 1-look images, but a pre-processing of multi-looking

can be applied to reduce the signal fluctuations. It corresponds to an incoherent

averaging of the backscattered values in the power domain to reduce the noise.

Because of the speckle, detecting line segments in SAR images is a completely

different situation from detecting line segments in optical images since optical

images are contaminated by additive noise. LSD relies on the computation of

the gradient in each pixel. However, usual gradients based on finite differences

schemes do not have a constant false alarm rate when used to detect edges in

SAR images [6]. This part is thus replaced with a ratio based method, better

appropriate to SAR images. In the following we discuss the impact of this step

on the previously mentioned H0 hypotheses.

3.2. Gradient computation in SAR images

The first such constant false alarm rate edge detector for SAR images has

been proposed in [6]. The Ratio of Average values (ROA) instead of difference of
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average values is used to compute the gradient, ensuring a constant false alarm

rate whatever the underlying reflectivity R of an area. For a given pixel located

at position (x, y) in the image I, the ratio of averages R(x, y) is computed along

P directions as the ratio of the arithmetic mean of pixel values of two opposite

side windows. In the i-th direction, where 1 ≤ i ≤ P , this ratio is given by

Ri(x, y) =
M i

1(x, y)

M i
2(x, y)

, (7)

where M i
1(x, y) and M i

2(x, y) denote the arithmetic means of the image com-

puted over two opposite side windows, separated by an axis with direction i.

This ratio is then normalized as

T i(x, y) = max

(
Ri(x, y),

1

Ri(x, y)

)
. (8)

The magnitude |ROA| of the gradient at position (x, y) is then defined as

|ROA(x, y)| = max
1≤i≤P

T i(x, y) , (9)

and its direction is defined as the direction having the highest value of ratio.

Once the gradient is computed, a threshold on its magnitude can be used for

the purpose of edge extraction. Pixels having magnitude values higher than the

threshold are considered as edges, while others are not.

Although ROA works well on isolated step edges, it is less efficient in the

presence of multiple edges, For that reason, a multiple edge detector, ROEWA,

was proposed in [15]. Instead of computing the ratio along P directions, only

the ratio along the horizontal and vertical directions are computed in ROEWA,

and the arithmetic means are replaced by weighted averages. In the horizontal

direction, the ratio Rh(x, y) and its normalization Th(x, y) are computed as

Rh(x, y) =
mh

1 (x, y)

mh
2 (x, y)

,

Th(x, y) = max

(
Rh(x, y),

1

Rh(x, y)

)
,
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where

mh
1 (x, y) =

W∑
x′=−W

W∑
y′=1

I(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

mh
2 (x, y) =

W∑
x′=−W

−1∑
y′=−W

I(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

and where W is the upper integer part of log(10) × α. A complete study of

the influence of α is beyond the scope of this paper but can be found in [15].

The ratio along the vertical direction Rv(x, y) and its normalization T v(x, y) are

computed in the same way. The normalized ratios Th(x, y) and T v(x, y) being

considered as the horizontal and vertical components of the ROEWA gradient,

its magnitude is simply given by

|ROEWA(x, y)| =
√
Th(x, y)2 + T v(x, y)2 . (10)

Although ROEWA gives an efficient and accurate way to compute the mag-

nitude in each pixel, this method does not give a precise measure of the edge

orientations. Increasing the number of directions, as in ROA, yields the so-called

multi-directional ratio-based methods, which are however quite time consuming.

In [16], a new gradient named Gradient by Ratio (GR) was proposed. Differ-

ent from ROEWA, the horizontal and vertical gradient components are defined

as

Gh(x, y) = log(Rh(x, y)),

Gv(x, y) = log(Rv(x, y)).

The magnitude |GR(x, y)| and orientation ang(GR(x, y)) of GR at position

(x, y) are defined by

|GR(x, y)| =
√
Gh(x, y)2 +Gv(x, y)2,

ang(GR(x, y)) = arctan
Gv(x, y)

Gh(x, y)
.

GR gives a very efficient and effective way to compute both magnitude and

orientation of the gradient [16]. Therefore a first way to adapt LSD to SAR

images is to replace the gradient computation method of LSD with GR.
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(a) 8 directions (b) 16 directions (c) 32 directions (d) GR

Fig. 1: Histograms of the local orientations computed over a 1-look pure speckle noise image

of size 4096 × 4096 pixels, using the multi-directional ratio based methods (a,b,c) or GR (d),

with the same setting α = 4 for all methods.

As explained before, the a contrario framework of LSD relies on a uniform

distribution over [0, 2π] of the local orientations computed in a pure noise im-

age. To check whether this assumption is compatible or not with the above-

mentioned ways to evaluate local orientations, we plot in Fig. 1 the histograms

of the local orientations obtained using GR over a pure speckle noise image of

size 4096× 4096 and compare it with those obtained using the multi-directional

ratio-based methods with 8-directions, 16-directions and 32-directions. We used

the same exponential weight function and the same weight parameter α = 4 for

GR and the multi-directional methods. In order to reduce the influence of rota-

tion for the multi-directional ratio-based methods, we use circle-shaped windows

to improve invariance by rotation. We also guarantee that the circle-shaped win-

dows for the multi-directional ratio-based methods and rectangle windows for

GR have the same number of pixels.

From Fig. 1 (a), (b) and (c), we can see that multi-directional ratio-based

methods all deviate from a uniform distribution, with stronger deviation when

the number of directions is increased. This is all the more problematic that using

a large number of orientations (16 or 32) is needed to avoid strong orientation

quantization. From Fig. 1 (d), we can see that the local orientations computed

using GR follow the hypothesis H0-b of the a contrario model. Moreover, GR

does not yield the orientation quantization which is inherent to multi-directional

ratio-based methods. For those reasons, we will use GR to compute the magni-

tude and local orientations of the gradient.
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3.3. Modeling weak dependency between local orientations

Thanks to the gradient computation technique detailed in the previous para-

graph, the assumption of uniform distribution for the local orientations H0-b

approximately holds true in a pure noise image. However, the independence

assumption of local orientations H0-a is not satisfied because of the local aver-

aging needed to compute gradients in speckle noise. Consequently, the usual a

contrario framework badly fails to control the number of false detections when

the local orientations are computed with a method suited to SAR, as we will

show our experiments. In order to account for the strong dependencies between

nearby pixels introduced by filtering, we draw from the ideas in [26], generaliz-

ing the a contrario methodology to the grouping of events that are not mutually

independent. Specifically, the distribution of local orientations at nearby pix-

els will be modeled by a first order Markov chain, which appears as a good

compromise between accuracy and tractability. Notice that, contrarily to the

application cases in [26], the necessity to take dependency into account in our

case is a consequence of the way the gradient is computed (using large averaging

windows) and not of the structure of the noise.

We consider a rectangle r in the observed image I, containing n(r) pixels.

We assume that pixels within the rectangle are ordered so that two consecutive

pixels are neighbors. For t = 1, . . . , n(r), let the variable Xt be equal to 1 if

the t-th pixel is aligned, and 0 otherwise. Then k(r) =
∑n(r)
t=1 Xt represents the

number of aligned pixels within rectangle r.

Instead of assuming that X1, X2, . . ., Xn(r) are mutually independent, we

assume that they follow a Markov chain of order one, i.e., we assume that, for

all 1 < t ≤ n(r),

P(Xt = xt|Xt−1 = xt−1, . . . , X1 = x1)

= P(Xt = xt|Xt−1 = xt−1). (11)

Therefore, the distribution of aligned pixels is characterized by the four transi-
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tion probabilities

P(X1 = x1|X0 = x0) , for (x0, x1) ∈ {0, 1}2 .

For brevity, they may be written P(1|1), P(1|0), P(0|1), and P(0|0) in the follow-

ing. In practice, those transition probabilities will be estimated by computing

the local orientation using GR on a pure speckle noise image. Now, let us

introduce a modified background model, that we denote by H′0.

Definition 1 (H′0 model). We say that an image I0 follows the H′0 model when

its local orientations computed using GR satisfy the following properties:

a. The local orientations follow a Markov chain of order one.

b. Each local orientation follows a uniform distribution over [0, 2π].

The new definition of the NFA follows from this modified model. As before

we consider a rectangle r containing n(r) pixels and k(r) aligned pixels in the

observed image I. We write k0(r) for the number of aligned points within r in

a random image I0 following model H′0. The initial NFA formula (1) of LSD is

naturally changed into

NFA′(r) = NR · PH′0(k0(r) ≥ k(r)) (12)

which also satisfies the NFA-property (2) [27].

Now, let us focus on the practical evaluation of (12). Because of the Markov

chain assumption H′0-b, the probability of having k0(r) ≥ k(r) involved in (12)

is given by

PH′0(k0(r) ≥ k(r)) =

∑
x1+...+xn(r)≥k(r)

P(X1 = x1) ·
n(r)∏
t=2

P(Xt=xt|Xt−1 =xt−1) . (13)

The probabilities PH′0(k0(r) ≥ k(r)), for all possible values of k(r) and n(r), are

heavy to compute using a straightforward implementation of (13). In order to

overcome this limitation, we proceed as in [26] and compute PH′0(k0(r) ≥ k(r))
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using a dynamic programming algorithm and a descending induction. Indeed,

writing n = n(r) and k = k(r), letting Yt =
∑n
j=tXj , one observes that, for

t ≤ n− 1, we have

P(Yt ≥ k) = P(Yt+1 ≥ k|Xt = 0) · P(Xt = 0)

+ P(Yt+1 ≥ k − 1|Xt = 1) · P(Xt = 1) . (14)

Besides, one has, for x ∈ {0, 1} and k′ ≥ 1,

P(Yt+1 ≥ k′|Xt = x)

=
∑

y∈{0,1}

P(Yt+2 ≥ k′ − y,Xt+1 = y|Xt = x)

= P(Yt+2 ≥ k′|Xt+1 = 0) · P(Xt+1 = 0|Xt = x)

+ P(Yt+2 ≥ k′ − 1|Xt+1 = 1) · P(Xt+1 = 1|Xt = x) , (15)

and P(Yn ≥ k′|Xn−1 = x) is simply given by

P(Yn ≥ k′|Xn−1 = x) =


1 if k′ = 0 ,

P(1|x) if k′ = 1 ,

0 otherwise .

(16)

It follows that (14) can be computed in polynomial time [26], and so does the

probability PH′0(k0(r) ≥ k(r)) needed in (12).

In practice, we can precompute the values of PH′0(k0(r) ≥ k(r)) for all

(n0(r), k(r)) ∈ {1, . . . , Nmax}2, with Nmax a large enough value. In our imple-

mentation we used Nmax = 5000. In the case the computation of PH′0(k0(r) ≥

k(r)) is needed for n(r) greater than Nmax, though theoretically it can still be

done using (14), (15) and (16), we accept the rectangles directly to save memory

space and computation time. The reason is that a rectangle with large enough

number of pixels should be a meaningful structure in the random image un-

der the hypothesis of the background model. Notice that, as mentioned above,

the transition probabilities involved in (15) and (16) are estimated from the

local orientations computed using GR in a pure Nakagami noise. Contrarily
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to [26], the probabilities can be computed in advance for each possible param-

eter choice in the gradient computation, namely for each choice of the α value.

Given an image of 1-look pure Nakagami noise, we consider all horizontal and

vertical lines. This is because local orientations are computed by the 2-direction

method (horizontal and vertical directions), which imposes the strongest corre-

lations along the horizontal and vertical directions. For each line, we consider

the empirical frequency of Xt and Xt−1 over all pixel pairs to estimate P(x1|x0)

for x0, x1 = 0, 1. In practice, we only need to estimate P(x1|x0) for x0 6= x1,

since we have P(1|1) = 1− P(0|1) and P(0|0) = 1− P(1|0). In Table 1, we dis-

play the transition probabilities estimated using a 1-look pure Nakagami noise

image of size 4096× 4096 pixels, for different values of parameter α. The angle

tolerance was set to 22.5 degrees, as in the original LSD algorithm. One can see

that, as α increases, more dependencies are introduced between adjacent pixels.

3.4. The complete LSDSAR algorithm

The proposed LSDSAR algorithm relies on three main steps, namely the

region growing, rectangular approximation and line segment validation steps,

on which we perform several modifications.

(i) Region growing : in this step we replace the finite-differences based gradient

of LSD by GR, as described in Section 3.2;

(ii) Rectangular approximation: this step is identical to that of the original

LSD algorithm;

(iii) Line segment validation: in this step, we compute the number of false

alarms using (12) instead of (1), as we described in Section 3.3.

A pseudocode description of LSDSAR is proposed in Algorithm 1. In this

pseudocode description, the routines RegionGrow and Rectangle correspond to

the Region growing and Rectangular approximation steps mentioned above. Up

to the modification we gave in (i) for gradient computation, those routines are
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Table 1: estimated transition probabilities

of the first order Markov chain for τ =

22.5◦ and different values of α.

α = 1 α = 2 α = 3 α = 4 α = 5

P(1|1) 0.2444 0.4078 0.5144 0.5874 0.6356

P(1|0) 0.1076 0.0846 0.0694 0.0590 0.0521

Table 2: influence of the setting of α on the

number of (false) detections obtained using

LSDSAR on a 1-look pure Nakagami noise

of size 4096 × 4096 pixels.

Parameter α = 1 α = 2 α = 3 α = 4 α = 5

Number of detections 0 2 10 51 97

Table 3: number of false detections ob-

tained using LSD+GR (second column)

and LSDSAR (third column) with the set-

ting ε = 1 in a pure speckle noise image

with size 4096 × 4096.

Parameter α LSD+GR LSDSAR

α = 1 2 0

α = 2 2710 2

α = 3 16602 10

α = 4 29771 51

α = 5 35916 97

Table 4: average number of (false) de-

tections obtained using LSDSAR over one

hundred single look images with size 1024×

1024, for different values of the NFA thresh-

old ε.

NFA threshold ε 0.01 0.1 1 10 100

Average number of
5.2 8.6 14.5 24.1 1074

false detections

Table 5: Stability of the detection perfor-

mances.

F1-score minimalmaximalaveragemedian

LSDSAR
0.71 0.82 0.78 0.78

(default parameters)

IEFA
0.73 0.81 0.76 0.77

(tuned parameters)

Table 6: real SAR images.

Satellite Sentinel 1 TerraSAR-X

Place
Lelystad San Francisco

(Netherlands) (United States)

Date 06/10/2015 02/10/2011

Image mode Stripmap -

Image size (pixels) 1024 × 3072 2048 × 2048

pixel-spacing (azimuth) 4m -

pixel-spacing (range) 14m -
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the same as those used in LSD, which are carefully described in [22]. The rou-

tine AlignedP ixelDensity, also explicitly defined in [22], is used to compute the

density of aligned pixels in the rectangle. When the density of aligned pixels in

the rectangle is smaller than the threshold D, the routine CutRegion is used to

refine the rectangle. In the original LSD, this CutRegion routine involves the use

of a modified angle tolerance, which is computed adaptively to the orientations

of pixels in the rectangle. In our implementation of the CutRegion procedure,

we decided to set this modified tolerance parameter always equal to τ/2, in

order to be able to use some pre-tabulated values of the transition probabilities

of the Markov chain for that particular setting of τ . Last, the ImprovedRectan-

gle routine defined in LSD, which also involves several refinements of the angle

tolerance is again adapted in order to make the modified angle tolerance al-

ways equal to τ/2 (step 1 of the ImprovedRectangle routine) and τ/4 (step 5 of

the ImprovedRectangle routine). Last, it should be noticed that, contrarily to

the original LSD algorithm, we do not need to pre-filter the image (rescaling,

Gaussian filtering) and we do not need the threshold for the gradient magnitude

because SAR images are mostly free of aliasing and quantization effects.

3.5. Parameters setting

Algorithm 1 relies on four parameters, ε, α, τ and D. As usual with the

a contrario algorithms, the NFA-property (2) provides a handy meaning for

the NFA threshold parameter ε, even for non-expert users. This threshold ε

represents an upper-bound on the average number of detections that we allow

in pure noise input data. As mentioned before, a common setting for this

parameter is ε = 1. Besides, from our simulations, we found appropriate the

setting τ = 22.5◦ proposed in the original LSD algorithm. In this section we

propose to discuss the influence of the two remaining parameters α and D on

the detection results, and we propose a default setting for them.

First, let us focus on the setting of α, the regularization parameter used in

the GR computation. Increasing the value of α helps to suppress the speckle,

but in turn introduces more dependencies between adjacent pixels. Choosing a
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Algorithm 1: LSDSAR

Inputs: a SAR (amplitude) image I with size M ×N , the NFA

threshold ε, the regularization parameter α, the angle tolerance τ and

the density threshold D.

Output: the list L containing the detected line segments.

Initialization:

1) Apply GR with parameter α on the input image.

2) Compute OrderedList, the sorting in descending order

of the pixels of I according to their gradient magnitudes

3) Precompute all values of PH′0(k(r0) ≥ k) (for (n(r0), k) ∈ {0, . . . , Nmax}2),

needed in (12).

4) Define NFA′ as in (12), using NR = 3 · (MN)5/2.

for P ∈ OrderedList do

region ← RegionGrow(P, τ)

r ← Rectangle(region)

while AlignedPixelDensity(r,τ)¡D do

region ← CutRegion(region)

r ← Rectangle(region)

nfa← NFA′(r)

if nfa ≤ ε then L← L ∪ {r}

else

r ← ImproveRectangle(r)

nfa← NFA′(r)

if nfa ≤ ε then L← L ∪ {r}

return L

The reason of the setting NR = 3 · (MN)5/2 (instead of NR = 11 · (MN)5/2 in LSD) is that the total number

of segments is potentially multiplied by three (instead of 11 in LSD) because each rectangle may be modified

only two times (instead of 10 in LSD) during the refinement step (routine ImproveRectangle). Notice that, step 2)

can be accelerated by using a linear-time pseudo-ordering algorithm, as in LSD. Note also that, in step 3), one

precomputation is needed per considered value of the angle tolerance (τ, τ/2 and τ/4).
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(a) contrast=1.2 (b) contrast=1.3 (c) contrast=1.4 (d) contrast=1.5

Fig. 2: ROC curves [28, 29] obtained using GR as an edge detector over several 1-look images

with different edge contrasts values, and different values of α.

proper value for α should rely on a reasonable trade-off between these two effects.

We will evaluate the influence of α under two aspects: on the one hand, α must

be set in such a way that GR efficiently highlights the edges of the input image.

On the other hand, the amount of dependencies between local orientations must

be correctly taken into account using our Markov Chain approach, which can be

implicitly checked by looking whether or not, our modified NFA′ formula (12)

provides an effective control of the number of false detections.

In order to evaluate the performances of GR in terms of edge detection,

we used the ROC-curve strategy described in [28, 29]. Those ROC curves are

obtained by evaluating the number of true positive and false positive edge pixels

detected by thresholding the GR magnitude with a threshold λ. The ROC

curve is obtained by varying the λ parameter from the minimal to the maximal

gradient amplitude value. In Fig. 2, we display the ROC curves computed over 1-

look synthetic edge images with different contrast values and with sizes 512×512

pixels. The reference image corresponding to the synthetic edge with contrast

1.5 is displayed in Fig. 3 (a), and the associated ground truth is displayed in

Fig. 3 (b).

From Fig. 2 we can see that, when α = 4, GR gives the best performance

since the corresponding ROC curve remains above those obtained with lower

values of α. On the other hand, Table 2 gives the number of false detections

obtained by applying Algorithm 1 on a 1-look pure Nakagami noise of size

4096×4096 pixels with ε = 1 and for different values of α. We can see in Table 2
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(a) clean image (b) edge ground truth

Fig. 3: (a) synthetic image with a con-

trast amplitude of 1.5, (b) the correspond-

ing edge ground truth.

(a) α = 4

(b) α = 2

Fig. 4: Line segment detection on 20-looks

synthetic image of size 32× 128 pixels con-

taining horizontal edges with 2-pixel width

and amplitude contrast of 1.8.

(a) D = 0 (b) D = 0.4 (c) D = 0.5

Fig. 5: Line segment detection on 3-look

synthetic edge image (contrast 1.6) for dif-

ferent value of the density threshold.

(a) D = 0.4 (b) D = 0.6

Fig. 6: Line segment detection results on

3-look synthetic edge images (contrast 1.6)

for two different values of D. The angle

difference of the problematic line segments

is 16 degrees, while the angle tolerance is

22.5 degrees.

LSDSAR (tuned)
LSDSAR (default setting)
IEFA (tuned)
IEFA (tuned for contrast 1.2)

IEFA (tuned for contrast 1.9)
LSD+GR
original LSD
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Fig. 7: Performances evaluations in terms

of F1-score for different algorithms, using

1-look (a) and 3-look (b) synthetic edge im-

ages with contrast values ranging from 1.2

to 1.9.
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that the proposed Markov chain model succeeds in controlling the number of

false detections in the case α = 1 and α = 2, but as α becomes larger, the

number of false detections may be significantly above ε, especially when α = 5.

In the case α = 4, the number of false detections remains reasonably comparable

to ε, and considering that this value gives the best performance on the ROC

curves displayed in Fig. 2, we suggest to use α = 4 as a default setting. However,

one must be aware that, with the setting α = 4, LSDSAR may not be able to

distinguish line segments that are very close to each other, as illustrated in

Fig. 4. In situations where the accurate detection of close line segments is

required, a smaller value, such as α = 2, can be used.

Now, let us focus on the setting of D, the threshold for the density of aligned

pixels involved in LSDSAR. The density of aligned pixels within rectangle r is

defined as the ratio k(r)/(w(r) ·`(r)), noting w(r) and `(r) the width and length

of r. In Algorithm 1, after the region growing step, the rectangles are refined

until their density of aligned pixels becomes larger than D. As explained in [5],

this threshold aims to avoid situations where two straight edges are present in

the region with an angle between them smaller than the tolerance τ , leading to

inconsistent detections. Again, a tradeoff must be found, since low values of D

lead to inconsistent detections, while too large values of D will have the effect

of over-cutting the line segments into small subsegments. This phenomenon is

illustrated in Fig. 5, where we can see that one spurious line segment appears

when D = 0, line segments are fragmented when D = 0.5, while a better

satisfying detection is obtained with D = 0.4, that we recommend as default

setting. Although we observed that the setting D = 0.4 is generally safe, larger

values may sometimes be needed, as illustrated in Fig. 6 which shows that a

larger density threshold may be necessary when we need to distinguish two line

segments with an angle difference significantly smaller than the angle tolerance

τ .
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4. Experiments

In this Section, we study the performances of the proposed LSDSAR algo-

rithm over synthetic and real SAR images, and compare this algorithm with the

following concurrent methods:

a. the original LSD algorithm applied to the logarithm of the amplitude of

the SAR image;

b. what we refer to as the LSD+GR algorithm, which roughly corresponds

to the trivial adaptation of LSD where the finite-difference based gradient

suited to optical images is replaced by GR. More precisely, our LSD+GR

implementation is a variant of Algorithm 1 where we avoid the use of

Markov chains, and use the usual NFA formula (1) instead of NFA′ as

defined in formula (12);

c. a state-of-the-art Hough-transform based method, named IEFA, recently

proposed in [17]. IEFA relies on a ratio-based gradient [30] and a thresh-

old to suppress the pixels with small gradient magnitude. Then, non-

maximum suppression [31, 32, 33] is used to extract the local maxima of

the magnitude field. Instead of using a binary edge map as the input

of the Hough transform, the gradient magnitude field is selected as the

input. The accumulation weight in the Hough transform is the gradient

magnitude weighted by the gradient orientation with a Gaussian function,

as described in [17, 34, 35].

Unless explicitly mentioned, we will use the default setting ε = 1, α = 4,

τ = 22.5◦, and D = 0.4 in our LSDSAR algorithm. In particular, we will show

that LSDSAR performances are robust with respect to the parameter settings,

and that the proposed default parameters yields essentially near optimal perfor-

mances in most situations. In the LSD+GR variant, we set α = 4 and keep the

other parts of the LSD algorithm unchanged. We also keep the default setting

of the original LSD [22] algorithm unchanged. In the case of IEFA, which relies
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on many parameters, we will use a specific parameter tuning procedure in our

numerical experiments. This procedure will be detailed below.

4.1. Ability to control the NFA

One of the requirements of the proposed LSDSAR algorithm is its ability to

control the number of false detections. As discussed before, the filtering pro-

vided by GR introduces important dependencies between local orientations, so

that the LSD+GR approach does not fulfill the independence assumption re-

quired by the original LSD algorithm. This phenomenon is clearly demonstrated

in Table 3 (column 2), where we indicate, for several values of α, the number

of false detections obtained using LSD+GR over a pure speckle image of size

4096× 4096 pixels. On the contrary, we see in Table 3 (column 3) that, thanks

to the Markov chain modeling of weak dependencies between local orientations,

the number of false detections obtained with LSDSAR is better controlled and

remains comparable to ε, even for large values of α. The ability of LSDSAR

to provide a reasonable control of false detections is further confirmed in Ta-

ble 4, for different values of the NFA threshold ε, where we can see that the

average number of false detections done in pure speckle noise images is roughly

comparable to ε.

4.2. Detection performances on synthetic data

In order to provide a quantitative evaluation of the detection quality of the

considered algorithms, we propose to use the F1-score, which is defined as

F1-score = 2 · precision× recall

precision + recall
,

where precision denotes the ratio between the number of pixels correctly de-

tected as line segments and the total number of pixels detected as line segment.

Thus, 1 − precision measures the proportion of false positive pixels among de-

tected pixels. Recall denotes the ratio between the number of pixels correctly

detected as line segments and the actual number of pixels corresponding to line

segments and 1− recall measures the proportion of false negative pixels among
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actual line segment pixels. Those quantitative measures of F1-score will be per-

formed over some noisy single or multilook observation of synthetic images for

which a ground-truth is available (see Fig. 3).

We computed the performances in terms of F1-score for LSDSAR, IEFA,

LSD+GR and LSD, over 1-look and 3-look synthetic edge images with different

contrast values. In the case of IEFA, the algorithm was tested with a large

range of parameters. More precisely, the threshold that we used for the gradient

magnitude ranges from 0.1 to 0.40 with step 0.05. The number of peaks in the

Hough transform was set to 5000 so that all the line segments on the image

could be detected. The smallest value of a bin which can be considered as a

peak was set to 3. The minimum gap between two line segments extracted

from the same bin ranges from 3 to 15 with step 2. The minimum length of a

line segment was set to 13. In Fig. 7, the red plain curve (referred to as IEFA

(tuned) in the legend) represents the best F1-score value obtained among all

tested parameters for each contrast value. Therefore, this curve represents the

best F1-score performance that can be achieved by IEFA. Now, let us stress

that the parameters leading to this optimal performances are different from one

contrast value to the other. This observation is confirmed by the red dashed

curves of Fig. 7, where we used the optimal parameter setting found for contrast

1.2 and 1.9 to process the images with other contrast values (see the curves

referred to as IEFA (tuned for contrast 1.2) ans IEFA (tuned for contrast 1.9 )).

One can see that the performances of IEFA can be very different from the

optimal performances when the input parameters are fixed (and even optimized

for a given contrast value). In the case of LSDSAR, except for the default

parameter settings, we also tuned the parameters to demonstrate that the F1-

score obtained by LSDSAR can be improved. The value of ε ranges over 1, 102,

104 and 106. The value of α ranges from 4 to 7 with step 1. The value of τ

can be 22◦ or 33.75◦. We keep the parameter D = 0.4 unchanged. LSDSAR

with tuned parameter values leads to the blue plain curve, referred as LSDSAR

(tuned) in the legend of Fig. 7. This optimal F1-score can be compared to

the F1-score obtained using the default setting of LSDSAR (blue dashed curve)

24



that we recommend in this paper (ε = 1, α = 4, τ = 22◦ and D = 0.4). We

can see that the default recommended setting for LSDSAR leads to F1-score

performances that are similar to that obtained when tuning the parameters of

LSDSAR, which demonstrates the robustness of the algorithm with respects to

the setting of its parameters. Besides, we can see that, in most situations, the

F1-score achieved by LSDSAR with default parameter setting is comparable or

better than the F1-score achieved by IEFA with tuned parameters, and also

significantly better than the F1-score obtained using LSD+GR and the original

LSD. Indeed, in the 3-look experiments displayed in Fig. 7 (b), the performance

of LSDSAR is clearly above that of IEFA. Some of the images corresponding

to this experiments are displayed in Fig. 8. In the 1-look experiment displayed

in Fig. 7 (b), IEFA with tuned parameters may lead to slightly better results

than LSDSAR in low contrast situations (in fact, this is only clear for contrast

1.3), but it should be noted that, in this particular case, the IEFA algorithm’s

performance is very dependent on the parameter setting and may collapse if

the parameters are slightly changed. Last, it must be noted that, in the case of

IEFA, multiple responses may be obtained for the same line segment, which may

be an issue for practical applications, while it is not the case for the LSDSAR

algorithm.

4.3. Stability comparison between LSDSAR and IEFA

The stability of a detector, that is, its ability to produce stable performances

for different noisy observations of the same image, is important in practical

applications. In order to test whether LSDSAR and IEFA yield stable perfor-

mances, both algorithms were used to process fifty single-look noisy observations

of a synthetic edge image with an amplitude edge contrast of 1.6. We display in

Table 5 the minimal, maximal, average and median values of F1-score achieved

by LSDSAR (with default parameters) and IEFA (with tuned parameters) for

this experiment. We can see from this experiment that the stability of the

detection performance provided by both algorithms is similar.
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LSDSAR (default parameters) IEFA (tuned for contrast 1.2) IEFA (tuned for contrast 1.9)
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LSDSAR (default parameters) IEFA (tuned for contrast 1.2) IEFA (tuned for contrast 1.9)

F1-score = 92% F1-score = 78% F1-score = 80%

Fig. 8: Detection results obtained using LSDSAR (with default parameters) and

IEFA (tuned for contrast 1.2 or 1.9) over 3-look synthetic images with contrast values

equal to 1.2 (first row) or 1.9 (second row). We can see that, in both situations,

LSDSAR with defaults parameters yields better performances in terms of F1-score

than IEFA (even with tuned parameters).

(a) IEFA (tuned for contrast 1.2)

(b) IEFA (tuned for contrast 1.9)

Fig. 9: Line segment detection obtained using IEFA (tuned for contrast 1.2) and

IEFA (tuned for contrast 1.9) over a 1-look real SAR image.
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4.4. Comparison between LSDSAR and IEFA on real SAR images

In this section, we focus on the performances of IEFA and LSDSAR on

real SAR images. Details about the SAR images that we used are provided in

Table 6. We observed that, for IEFA, the parameters yielding the best F1-scores

in the 1-look synthetic experiment were not appropriate to process real 1-look

SAR images, as we show in Fig. 9. Again, this illustrates the difficulty of using

IEFA in practical applications. In our experiments on real data, we manually

tuned the IEFA parameters on each considered image, by means of a visual

inspection of the detection result. The parameters of the IEFA algorithm were

explored as follows: the threshold of the gradient magnitude was set equal to

0.25 (the gradient magnitude of our SAR images varies from 0 to 0.93), the

number of peaks extracted in the Hough transform was set equal to 5000, the

smallest value of a bin that can be considered as a peak was set equal to 3,

the minimum gap between two line segments extracted from the same bin was

set equal to 7 and the smallest length of a line segment was set equal to 13.

In Fig. 10 and Fig. 11, we display the line segment detection results obtained

using LSDSAR and IEFA over two different single-look SAR images.

From the images displayed in Fig. 10 and Fig. 11, we can see that LSDSAR

detects more correct line segments than IEFA while the number of false detec-

tions is better controlled. There are nevertheless some line segments detected

by IEFA that are not detected by LSDSAR. Better performances could be ob-

tained with LSDSAR by increasing either α or ε, at the cost of increasing the

number of false detections. We also performed experiments on real SAR images

with better signal-to-noise ratio, by running the two algorithms on the temporal

averaging of 3 registered Sentinel images. We can see in Fig. 12 that LSDSAR

detects much more correct line segments in the multi-look situations while the

number of false detections is well controlled. Again, we must underline that the

parameter setting of IEFA is very dependent on the image content and all those

experiments involved a careful tuning of its parameters by means of a visual

inspection, while LSDSAR always provided satisfying results using its default

parameter setting.
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(a) LSDSAR

(b) IEFA

close-up view of (a)

close-up view of (b)

Fig. 10: Line segment detection using LSDSAR (a) and IEFA (b) over a 1-look

Sentinel 1 SAR image (Leystad).
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(a) LSDSAR (b) IEFA

close-up view of (a) close-up view of (b)

Fig. 11: Line segment detection using LSDSAR (a) and IEFA (b) over a 1-look

TerraSAR-X SAR image (San Francisco).

5. Conclusion

In this paper, we proposed a line segment detector for SAR images, inspired

from the LSD detector for optical images. Our experiments on synthetic and

real SAR images showed the ability of LSDSAR to detect correct line segments

even in 1-look situations while offering a valuable control of the number of false

detections. This LSDSAR algorithm only relies on few parameters which are

reasonably easy to set. We proposed a default setting that achieved satisfying

results in all our experiments. We also demonstrated that a first order Markov

chain can be efficiently used to handle the dependencies between the local orien-

tations computed by GR, yielding a reasonably accurate control of the number

of false detections for LSDSAR. An interesting perspective for this work would

be to consider higher order Markov chains, or two dimensional Markov mod-

els, in order to even better take into account all the dependencies and achieve

a strict control of the NFA, but in this case the complexity of the algorithm

may increase rapidly. More generally, we believe that the use of the first order
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(a) LSDSAR

(b) IEFA

close-up view of (a)

close-up view of (b)

Fig. 12: Line segment detection using LSDSAR (a) and IEFA (b) over a 3-look

Sentinel 1 SAR image (Leystad).
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Markov chains is a simple and effective way to take into account of the depen-

dencies in the a contrario framework, and that it is interesting to study how

such an approach can be further used to extend the a contrario methodology to

practical situations where dependencies are difficult to handle.
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