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Abstract An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed
for orthotropic, linear and elastic two dimensional membrane structures. The shape of the structure is parameterized by a density variable
that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity
tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is
treated and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy.
An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between
local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are
solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is
shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge
are presented.

Keywords Topology optimization · SIMP · Distributed orthotropy · Polar method ·Material design

1 Introduction

Weight and cost reductions of structures are permanent challenges for aeronautic industries. As a response to this concern, structural opti-
mization is on the rise [27], especially topology optimization. It consists of determining the best shape of a given structural component or
the best layout of structures. An objective function (e.g. total mass, global stiffness) is considered and constraints are imposed.
The problem of obtaining a targeted distribution of stiffness (or density) is today a crucial one in structural engineering, and in some cases
the research on metamaterials addresses precisely this problem by means of a suitable arrangement of the microstructure (see e.g. [8,12,
17,26,40,53]; a reference on fibrous structures is [18]). For structures of isotropic material, methodologies in the literature are abundant:
Sigmund et al. [49] and Deaton et al. [16] survey developments of topology optimization. Interesting recent results are in [32,37], and
in particular in [4,36] for applications to biomechanics. In order to reliably perform a topology optimization procedure, it is of crucial
importance to have an insight into the effect of constitutive parameters onto the overall behaviour of the material. This can be achieved
by means of suitable identification techniques, either experimental or numerical [28,44]. Two main methods are used to parameterize the
topology of the structure: boundary variation method and density based method. For boundary variation method, two main techniques are
used in the literature: the level set method [48,3,14] that uses a scalar function to represent the boundaries, and the phase-field method
[10,11] that uses a phase field function over a domain composed of two phases. Density based methods use a density variable to define
in each element of the structure if there is solid material (1) or void (0). The discrete problem is turned into a continuous one, conducting
to intermediate densities difficult to interpret. Many penalization methods exist to steer the solution towards a discrete solid/void solution,
among which: SIMP (Solid Isotropic Material Penalization) [7], RAMP (Rational Approximation of Material Properties) [51] and SINH
[13]. Another technique of penalizing was proposed by Fuchs et al. using reciprocal variables (SRV) [22]. Compared with density based
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methods, boundary variation methods give clear contour of the shape and give easy definition of geometrical parameters. Boundary variation
methods do not require penalization method, but they need computation of topological gradients and construction of interpolation schemes
that are complex [42]. In the present work, a density based method is used and the SIMP method is employed as penalization method.
The SIMP method can be applied to a broad range of applications and physical models. A topology optimization technique was developed
to solve thermal system in [23]. Desmorat [20] used the SIMP method for optimization with thermo-elastic stress loads. Elastic structures
with frictionless unilateral contact have also been optimized in [19]. As this method reaches maturity, it is implemented in various com-
mercial tools in the field of mechanics and multiphysics (e.g. fluid structure interaction). All the same, topology optimization methods are
performed on a conceptual design level. The optimization methodology gives a first approach of the final manufacturable designed structure
and a further step of reinterpreting the solution into a CAO model is needed. Afterwards, a parametric optimization is necessary for a more
detailed design.
An alternative solution for minimizing mass is the use of lighter materials. Composite structures have become popular in aerospace in-
dustries as they are lighter than metallic ones. Actually, composite materials have higher stiffness-to-weight and strength-to-weight ratios
than metallic materials. Therefore, great research effort was made to optimize their use as their anisotropic behavior is different from that
of metallic materials with isotropic behavior (a useful reference on the anisotropic behavior in the case of microstructured/micromorphic
continua is [21]). In particular, Ghiasi et al. reviewed the optimum stacking sequence of laminates by designing the anisotropy distribution
with constant stiffness [25] and variable stiffness [24]. The main characteristic of the composite optimization is the design of anisotropy
distribution.
Composite optimization use two main methods to design the material anisotropy: direct approach and multilevel method. The direct ap-
proach consists of performing parametric optimization on stacking sequence design variables. Stacking sequence and orientation of the
fibers are optimized in [30] using heuristic methods. Optimal thickness of laminated composites are sought in [50] using gradient-based
methods. Nevertheless the direct approach is difficult to implement and requires high number of variables (varying with the number of
plies). Furthermore, its main drawback is the lack of regularity in the mechanic response with respect to the local orientations in the ma-
terial. In the multilevel method, first, the material anisotropy is optimized by considering an homogenized stiffness of the material, and
second, a physical construction of the considered laminate is sought with the optimal design variables obtained in the first step (laminate
retrieval) [29,9,39]. The interest of this method is the possibility of taking advantage on the regularity of structural responses by using the
homogenized stiffness. To parameterize the homogenized stiffness laminated composite plates, lamination parameters are commonly used
[41]. Jibawy et al. [33] use polar invariants by change of frame to define the anisotropy of homogenized laminated plates. Examples of
works using polar method to parameterize laminates can be found also in [34,57,15]. Lamination parameters define only specific compos-
ite laminates. Rather, the polar method is used in this work to determine the material anisotropy as the polar invariants can parameterize a
general anisotropic homogenized material.
Composite optimization is generally done with a predefined shape of the structure, most of the time derived from the preexisting metallic
part. Nevertheless, shapes of metallic structures are not appropriate for anisotropic composite structures. Indeed, the material anisotropy
influences the optimal shape. Peeters et al. [43] obtained two different shapes in the case of a quasi-isotropic (QI) structure and in the
case of a composite laminate structure obtained by a combination of topology optimization and composite optimization with lamination
parameters. In the present study, results from initial work show systematically the influence of the orthotropic material orientations on the
optimal shapes. Topology optimizations of an unidirectional composite made of long and straigth carbon fibers in an epoxy matrix were
carried out for material orientations varying from 0◦ to 180◦ in steps of 1◦. A cantilever beam was optimized by minimizing its compliance
and by imposing a volume constraint (50% of the total volume amount). The left side of the structure was clamped and a vertical load was
applied in the middle of the right side. The optimizations give different optimal shapes with respect to the material orientation. Five different
optimal shapes are shown in Figure 1 with orthotropic materials oriented in five different directions (0◦, 18◦, 45◦, 90◦,-45◦). Compared with
the 0◦-case, the optimal shape in the 90◦-case has less material near the point load as the material is oriented as well as the load direction.
Optimal shape in the 45◦-case is symmetric to the optimal shape in the -45◦-case: the orientations are symmetric beside x-axis. The com-
pliance evolution in a polar representation is also shown in the figure with respect to the material orientation: the material oriented at 0◦ has
the lowest value and is therefore the stiffest. These results show the necessity of seeking the optimal shape and the optimal distribution of
anisotropy of the considered structure all at once.
In the literature, only few works seek simultaneously the optimal shape and the optimal anisotropy distribution. Irisarri et al. [31] used a
shell structure with a predefined and fixed geometry to optimize a variable stiffness in the structure. The material anisotropy distribution
was optimized on a wind turbine blade in [38]. Jibawy et al. [33] sought the optimal distribution of anisotropy of a hole plate with fixed
geometry. However, these cited methods seek the ply shape of a thin structure with a predefined and known shape of the shell (this last
one does not change). Rather, Peeters et al. [43] simultaneously optimized the topology and the fiber angle distribution of two dimensional
composite structures. In this last method, the optimal shape is sought at the same time as the optimal anisotropy distribution.
The novelty of this work is the concurrent optimization of the topology and the material anisotropy of a two dimensional structure with
general homogenized orthotropic material. The SIMP method is combined with the polar method to find the best spatial material distribution
and material anisotropy repartition. A general orthotropic material is considered in this work. Polar method allows for representing any two
dimensional fourth order elasticity tensor with invariants by change of frame [56]. In this way, thermodynamic bounds are established on
the polar invariants to work with general orthotropic materials. Nonetheless, the method can be applied on laminates as their elastic bounds
are known [55].
The remainder of the paper is organized as follows. The problem of optimizing concurrently the material spatial distribution and the ma-
terial anisotropy repartition is formulated in Section 2. The alternate directions algorithm used to solve iteratively and successfully local
minimizations and global minimizations is presented in Section 3. An optimization of a cantilever beam is performed in Section 4 giving its
optimal shape and optimal material anisotropy distribution. In Section 5, a comparison between sequential and concurrent optimization is
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Fig. 1: Optimal compliance with respect to material orientation in a polar representation (middle, bottom) and five optimal shapes corre-
sponding to 0◦ (left, top), 18◦ (middle top), 45◦ (right, top), 90◦ (left, bottom) and -45◦ (right, bottom) material uniform orientations of the
cantilever beam problem made of long and straigth carbon fibers in an epoxy matrix (left side of the structure is clamped, a vertical load is
applied in the middle of the right side).

made. Sequential optimization is made up of a topology optimization with a fixed isotropic material followed by an optimization of material
anisotropy distribution with the obtained shape.

2 Problem formulation: simultaneous optimization of the material density and anisotropy

2.1 Parameterization of the distributed material density and anisotropy

Two main methods are used to parameterize the topology of the structure: boundary variation method (level set method [48,?,?], phase
field method [10,11]) and density based method. Comparing to density based methods, boundary variation methods give clear contour of
the shape and the definition of geometrical parameters is easy. However, the computation of topological gradients and the construction
of interpolation schemes are complex. Thus, a density based method is used in this work. The shape of the structure is parameterized by
a density field variable ρ(x). This density variable defines at each point x of the structure whether there is material (ρ(x) = 1) or void
(ρ(x) = 0). ρ(x) takes any value in [ρmin,1] while, in order to avoid singularity of elasticity tensors, the lowest admissible value ρmin is
generally set to 10−3. Allowing ρ(x) to be valued in interval [ρmin,1] involves intermediate densities appearing in the optimum topologies.
Grey areas are difficult to interpret because they correspond to a mixture of void and material. To suppress grey areas, the so-called SIMP
method [7] is used. This method penalizes ρ(x) to be either 0 or 1 by using an exponant p. Optimized stiffness tensor C(x) and compliance
tensor S(x) are expressed in function of the considered material stiffness tensor C0(x) and compliance tensor S0(x) (Eq. (1))

C(x) = ρ(x)pC0⇔ S(x) =
1

ρ(x)p S0 (1)

The anisotropic material can be parameterized by several methods. Allaire et al. [1] use homogenization method to parameterize sequential
laminates made of a mixture of isotropic material and void. Peeters et al. use the lamination parameters to parameterize a laminated
composite. Laminated structures are parameterized by lamination parameters in [43] and by polar invariants by change of frame in [33,
15]. In the present work, the material is choosen to be general orthotropic (thermodynamically admissible). The stiffness properties of the
considered anisotropic material is then represented by the elasticity tensor with homogenized coefficients. Spatial variations of the material
anisotropy are allowed. A parameterization that allows to express the elasticity tensor in a general frame in a simple way is necessary.



4 Narindra Ranaivomiarana et al.

Change of frame is cumbersome using the Cartesian representation. The polar method permits to write the elasticity tensor with its intrinsic
properties using tensor invariants. By doing so, changing frame becomes simple as only a rotation of an angle with respect to the frame is
needed. Thus, the polar invariants are chosen to express the stiffness tensor for an orthotropic material under assumption of plane stress.
Equations (2) shows the relation between the polar components (T0,T1,R0,R1, Φ0 and Φ1) and the Cartesian ones of the reduced stiffness
tensor Q [34,57].

Q1111 = T0 +2T1 +R0cos4Φ0 +4R1cos2Φ1

Q1122 =−T0 +2T1−R0cos4Φ0

Q1112 = R0sin4Φ0 + 2R1sin2Φ1

Q2222 = T0 +2T1 +R0cos4Φ0−4R1cos2Φ1

Q2212 = − R0sin4Φ0 + 2R1sin2Φ1

Q1212 = T0 − R0cosΦ0

(2)

Each Cartesian component of the reduced stiffness tensor is expressed with isotropic terms (T0,T1) that do not depend on the orientation
of the material, and anisotropic terms R0e4iΦ0 , R1e2iΦ1 that depend on the orientations Φ0,Φ1 of the material. The polar invariants are the
moduli T0,T1,R0,R1 and the angle Φ0−Φ1. The isotropic parts do not influence the anisotropy of the material, thus (T0,T1) are supposed to
remain constant (in composite laminated plates made of identical unidirectional layers (with the same material and same thickness in each
layer), the homogenized isotropic part (T0,T1) of the laminate is equal to the isotropic part (T EL

0 ,T EL
1 ) of the elementary layer (EL) [33]).

The material optimization is performed with respect to the anisotropic parts (R0,R1,Φ1).

2.2 Optimization constraint: maximum volume and thermodynamical admissibility of the material

The optimization constraints are written in terms of the total volume amount of the structure and of the anisotropic part of the polar invariants
by expressing their bounds. During the optimization, a target volume V0 is defined for the structure. The volume V is equal to the material
density ρ(x) integrated in the domain Ω . At each step of the optimization, the volume must satisfy the optimization constraint Eq. (3):

V =
∫

Ω

ρ(x)dx =V0. (3)

The material to be designed is imposed to be orthotropic. For an orthotropic material:

Φ0−Φ1 = K
Π

4
with K = 0,1. (4)

The orthotropic material used in this paper is taken to be as general as possible: the optimized orthotropic material is thermodynamically
admissible, which means that the stiffness tensor is positive definite. The analytical bounds of the polar invariants are given in Eq. (3) [54]:

T0 > 0
T1 > 0
T0 > R0
T0T1 > R2

1
T1(T 2

0 −R2
0)> 2R2

1(T0−R0cos4(Φ0−Φ1))

(5)

2.3 Double minimization of the complementary energy

In topology optimization, criteria such as buckling, frequency or compliance may be considered, for instance [16]. In this paper, we aim at
maximizing the global structural stiffness measured by the compliance which is the external work. The criterion is written as:

Criterion =
∫

Ω

f.udV +
∫

Γ1

F.udS. (6)

The boundary of domain Ω is split into two parts: Γ0 where a zero displacement is imposed, and Γ1 where a surface load F is applied. f is
the volume load and u, the displacement vector. The more the structure is rigid, the lower is the external work. Thus, maximizing the global
structural stiffness means minimizing the compliance. Moreover, the compliance is equal to the double of the complementary energy. The
optimization is made with respect to the density and the anisotropic part of the stiffness tensor polar invariants:

min
{ρ,R0,R1,Φ1}

∫
Ω

f.udV +
∫

Γ1

F.udS = min
{ρ,R0,R1,Φ1}

∫
Ω

σ : C−1 : σdV. (7)

The complementary energy can be written as the minimization of a positive quantity with respect to the statically admissible stress field τ

which, for imposed displacements equal to zero, reads
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∫
Ω

σ : C−1 : σdV = min
τSA

∫
Ω

τ : C−1 : τdV. (8)

The stress field τ satisfies the elasticity problem (P), with assumption of small strains and small displacements:
divτ + f = 0 in Ω

τ.n = F on Γ1
τ =C : ε(u) in Ω

u = 0 on Γ0

(P)

where ε(u) = 1
2 (∇ u+∇uT ) is the strain tensor. By replacing the expression of the complementary in Eq (7), the optimization problem is

written as a double minimization with respect to the design variables {ρ,R0,R1,Φ1} and to the stress field τ . The density variable is subject
to a maximal volume constraint and the polar invariants of the stiffness tensor are constrained by thermodynamic bounds:

min
{ρ,R0,R1,Φ1}

min
τSA

∫
Ω

τ : C−1 : τdV with



∫
Ω

ρ(x)dx =V0
T0 > R0
T0T1 > R2

1
T1(T 2

0 −R2
0)> 2R2

1(T0−R0 cos4(Φ0−Φ1))

Φ0−Φ1 = K Π

4 (K = 0,1)

(9)

3 Complementary energy minimization using the alternate direction algorithm

3.1 Local minimizations of the complementary energy

Since the design variables {ρ,R0,R1,Φ1} are subjected only to algebraic constraints, the minimization with respect to them can be put
inside the integral:

min
τSA

∫
Ω

min
{ρ,R0,R1,Φ1}

τ : C−1 : τdV (10)

The minimization of the complementary energy with respect to the design variables is solved locally in each point of the domain, for a
fixed stress state. Since the density variable ρ(x) and the anisotropy variables {R0,R1,Φ1} are independent, the minimization is split in two
steps. First the complementary energy is minimized with respect to the anisotropy variables. Second, the minimization with respect to the
density variable is performed.
The complementary energy can be written as a simple function of the polar invariants of the stiffness tensor and the stress tensor. Calculating
its derivative is then straightforward. Hence, the minimization of the complementary energy with respect to the anisotropy variables is done
analytically. The optimal values of {R0,R1,Φ1} depending on the stress field are given in [34].
The volume constraint is taken into account in the minimization step with respect to the density variable ρ(x) through the introduction of a
Lagrangian multiplier k:

min
ρ

1
ρ(x)p τ : C−1(Ropt

0 ,Ropt
1 ,Φopt

1 ) : τ + kρ(x) (11)

The minimum of the local energy is attained by deriving the equation Eq (11) with respect to ρ .

ρ(x) =

(
p τ : C−1(Ropt

0 ,Ropt
1 ,Φopt

1 ) : τ

k

) 1
p+1

(12)

The value of k is calculated so that the volume constraint is satisfied.

3.2 Optimization Algorithm

Convex approximation methods such as MMA and GCMMA, (Globaly convergent) Method of Moving Asymptot [52,59] and descent
algorithm method such as SQP, Sequential Quadratic Programming [5,47], IPOPT [58] need the evaluation of the objective function as
well as its gradient. Optimality criteria method [45,35,6,46] computes the optimal values of design variables by expressing optimality
conditions. Therefore, optimality criteria method is less expensive than the methods above in terms of numerical cost. This is reason why a
method similar to optimality criteria is used in this work. The algorithm used to solve the numerical problem is an extension of the alternate
directions algorithm [2].
The advantage of the alternate direction algorithm is its simplicity and low numerical cost as the method iterates between local minimiza-
tions and finite element calculations of stresses. Moreover, the alternate direction algorithm is convergent, and it can take into account a
large number of variables.
The double minimization is solved with a fixed point method by considering the optimality conditions. At each iteration of the optimization,
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the minimization with respect to the design variables {ρ,R0,R1,Φ1} is first performed, then the minimization with respect to the stress field
τ is operated. The minimizations are treated alternatively and separately. Thanks to the polar method, the local complementary energy is
written with simple expressions. Hence, the local minimizations are solved analytically. The minimization with respect to the stress field τ

corresponds to a finite element analysis (FEA). The cost of the algorithm is directly related to the finite element calculation cost. In addition
to advantages cited earlier, the algorithm can manage an optimization only with respect to the density, only with respect to the anisotropy
(polar parameters) or both all at once: the procedure changes in the local minimizations solved with explicit formulas. Figure 2 shows the
flowchart of the algorithm:

1. The model and the design variables {ρ,R0,R1,Φ1} are initialized and a FEA is performed to compute the corresponding stress field.
2. Local minimizations with respect to the design variables are solved analytically, where the stress field is remained fixed. This step takes

into account the volume constraint. Optimal polar parameters and density are obtained.
3. Global minimization is carried out, where the design variables are remained fixed. This step is a FEA to update the stress field corre-

sponding to the obtained optimal design variables computed in the previous step.
4. A stop criterion is defined: if the objective function becomes stationary and the change in design variables is smaller than a preset

threshold, convergence is achieved. If the stop criterion is satisfied, optimal parameters are found, otherwise, new local minimizations
are performed (step 2).

Fig. 2: Alternate directions algorithm used to solve the double minimization of the complementary energy

4 Concurrent optimization of material density and anisotropy for a cantilever beam

Numerical results are presented in this section to prove the efficiency of the method. The optimization is made for a two dimensional
orthotropic linear elastic material. A Cantilever beam is optimized. The design domain is a rectangle clamped at the left side and loaded
at the middle of the right side (Figure 3). The domain size is 40 mm x 20 mm discretized with a rectangular 80 x 40 mesh. The volume
constraint is fixed at 50% of the total volume. The initial density is set to 1 in every element of the mesh. The initial material is an isotropic
material where the values of T0 and T1 correspond to the isotropic part of a monolayered composite made of long and straigth carbon fibers
in an epoxy matrix: T0 = 26.88 GPa, T1 = 24.74 GPa.

4.1 Strategy of penalization and convergence

The compliance and the volume are displayed in function of the iterations in Figure 4. The strategy of penalyzing the density is made in
two steps where the exponent p in ρ(x)p is increased gradually. The exponent p is generally taken to be equal to 3 to get a 0/1 layout.
A refinement is made afterwards where p is increased to 5 to suppress definitely intermediate density. Excepted for the first iteration, the
volume does not change through the iterations because its total amount is imposed to be 50 % of the total feasible volume. The compliance
decreases in each step (p = 3, p = 5). Global termination of each step is set to 0.1% on the compliance and to 0.01% on the density. The
compliance increases when the value of p is increased as the structure becomes less stiff. In comparison with the initial isotropic cantilever
with 100% volume amount, the optimal orthotropic one with 50% volume amount is 40% stiffer as the anisotropic part of this last one is
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optimized. Hence, by reducing by 50 % the volume amount of the isotropic strucutre, and optimizing its material anisotropy, one can save
40 % of its stiffness. At the end of the optimization, the compliance has converged.

4.2 Optimal material spatial distribution and optimal orthotropy distribution

Figure 5 shows the optimal shape of the structure where black represents the presence of material and white its absence. The material is
pictured when the density value is above 0.8. To avoid numerical problems such as checkerboard and mesh dependency, a filter is used: the
density of an element depends on the density of its neighbors so that there is no brutal discontinuity on the density in the structure. The
neighbour elements that influence the considered element are defined by a radius filter which can be interpreted as a bar width.
In the optimal shape, the orthotropy is distributed: the material orthotropy changes continuously inside the structure. The optimal orthotropy
direction Φ

opt
1 is presented in Figure 6. It is aligned with the direction of the principal stress (highest absolute value). The direction changes

continuously throughout the structure as the stress field is continuous, except on the areas that are solicited in shearing, where a bar intersect
another one. In these areas, the optimized material is square symmetric (i.e. R1 = 0). The apparent stiffness having the same value in Φ1
modulo π

4 , it is continuous in space in the optimal design.
The distribution of the moduli R0 and R1 are illustrated in Figure 7. The R0 values are quasi-constant whereas the R1 values vary from 0 to
25 GPa. In the areas where R1 are minimum, the shearing is maximum. Actually, the value of R1 depends on the deviatoric and spherics
stress ratio: if the ratio is low, shearing is predominant and R1 should be low; and vice versa. The optimal materials in these areas where
R1 = 0 are square symmetric materials, stiffened in two orthogonal directions. When R1 is maximum, the optimal material is stiffened in
one direction because it is solicited mostly in traction or compression.
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Fig. 7: Optimal distribution of the stiffness tensor anisotropic polar invariants

5 Comparison between sequential and concurrent optimization of material density and anisotropy

Sequential optimization consists of optimizing first the shape of a structure with a fixed isotropic material, and optimizing afterwards
its material anisotropy with the obtained shape. Concurrent optimization involves finding the optimal shape with the optimal material
anisotropy all at once. In this section, the sequential optimization of material density and anisotropy is compared with the concurrent one.

5.1 Cantilever beam optimization

The comparison between the two methods is first performed for the cantilever beam. The optimization initialization, for both methods, is
the same as in the above section: the initial volume amount is 100% and the initial material is made of an isotropic material where the values
of T0 and T1 correspond to the isotropic part of a monolayered composite made of long and straigth carbon fibers in an epoxy matrix.
Figure 8 shows that the optimal shapes are different. Since the optimal shape is sought with a fixed isotropic material in the sequential
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Table 1: Compliances resulting from sequential (2 steps) and concurrent (1 step) optimization for the cantilever beam optimization

Optimization Steps Compliance [mJ/mm]

Sequential
Shape with fixed isotropic material 35.89
Material anisotropy distribution with fixed shape 13.75

Concurrent Shape and material anisotropy distribution 13.69

optimization, whereas the optimal topology is sought simultaneously with the optimal anisotropy distribution in the concurrent optimization,
it is coherent that the obtained shapes from the two methods are dissimilar. This result confirms that the optimal shape depends on the
material anisotropy and that it is necessary to optimize them simultaneously.
Table 1 gives the compliance values for both methods. There is two steps in the sequential optimization: first, the shape is sought with
fixed isotropic material, second, the material anisotropy distribution is optimized. Between the first and the second step in the sequential
optimization, the compliance drops by 60 %. The reason is that the material anisotropy is optimized in the second step. Hence, comparing
to the initial isotropic structure, the anisotropic one is more stiff. Comparison between the sequential and the concurrent optimization gives
a gap of 0.3% in terms of compliance, where the solution from the simultaneous optimization is slightly better. The reason of this small
gap may be the elementary nature of the presented model, the simple kind of applied sollicitations and the study of the problem in two
dimensions. It would be interesting to treat a more intricate problem with complex load and boundary conditions in three dimensions space.
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(a) Optimal shape of the cantilever beam for sequential optimization
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(b) Optimal shape of the cantilever beam for concurrent optimization

Fig. 8: Comparison between the optimal shapes of sequential and concurrent optimization for the cantilever beam

5.2 Bridge optimization

A more complex structure is now optimized: a bridge. The design domain is a rectangle clamped in some elements at the bottom (Figure 9),
and a load pressure is applied on a deck. The domain size is 304 mm x 75 mm discretized with a rectangular 76 x 40 mesh. The elements
pictured in black are not designed. The volume constraint is fixed at 20% of the total volume. The initial density is set to 1 in every element
of the mesh. As for the cantilever beam, the initial material is an isotropic material where the values of T0 and T1 correspond to the isotropic
part of a monolayered composite made of long and straigth carbon fibers in an epoxy matrix: T0 = 26.88 GPa, T1 = 24.74 GPa.

Figure 10 compares the optimal shapes of the bridge from sequential and concurrent optimization. As for the cantilever beam, the
shapes resulting from the two methods are different. Furthermore, the concurrent optimized bridge has reduced size against the sequential
one. This smaller bulk is an interesting result but explanation has not been found yet.
The compliance of the bridge resulting from the concurrent optimization is 8% lower than that from the sequential optimization (Table 2).
Comparing with the cantilever case, the loads and boundary conditions are more complex. Thus, the gap between the compliances is higher.
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Fig. 9: Load and boundary conditions for the bridge optimization problem
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(a) Optimal shape of the bridge for sequential optimization
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(b) Optimal shape of the bridge for concurrent optimization

Fig. 10: Comparison between the optimal shapes of sequential and concurrent optimization

The advantage of the concurrent optimization compared with the sequential one is that there is no a priori on the initialization: there
is no need to guess the initial shape that should be used to optimize the anisotropic material. Indeed, the optimization process takes
simultaneously into account the shape and the anisotropic material distribution. Moreover, the relevance of the concurrent optimization
is proved when optimizing complex models (complex loads and boundary conditions). Actually, its resulting solution is stiffer than the
resulting solution of the sequential optimization. And since the material distribution influences the optimal shapes, optimizing them all at
once is necessary.

Table 2: Compliances resulting from sequential (2 steps) and concurrent (1 step) optimization for the bridge optimization

Optimization Steps Compliance [mJ/mm]

Sequential
Shape with fixed isotropic material 2.07
Material anisotropy distribution with fixed shape 1.047

Concurrent Shape and material anisotropy distribution 0.96

6 Conclusion

The proposed methodology gives concurrently optimal material spatial distribution and optimal material anisotropy repartition by mini-
mizing the compliance (maximizing the structure global stiffness). The optimization strategy lies on a similar method as optimality criteria
where iterations are made successively and separately between local minimizations and finite element calculations. Parameterizing the
shape of the structure with a density variable, and the material anisotropy with polar invariants by change of frame allows for solving the
local minimizations analytically as the optimality conditions are explicit. This leads to a cost of the numerical algorithm relying only on the
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finite element calculations. Gradient methods are nevertheless favorable for more general objective functions than compliance. However,
the simplicity and the convergence of the alternate directions algorithm makes its advantage. Furthermore, the algorithm permits the opti-
mization only with respect to the density, to the material anisotropy or both all at once: the procedure changes in the local minimizations
solved with explicit formulas.
The method is straightforward, efficient and gives coherent results. The optimal distribution of the material anisotropy is continous through-
out the structure as it depends on the stress field. The optimal material is stiffened in two orthogonal directions when solicited in shearing,
and in one direction when solicited in traction or compression. The orthotropy direction is aligned with the direction of the principal stress
(highest absolute value) and the apparent stiffness is countinous in space in the optimal design. Comparing to the sequential optimization
(optimal shape sought with fixed isotropic material then optimal material anisotropy optimized with the obtained shape), the concurrent
optimization is interesting as there is no a priori on the initialization. Indeed, the material anisotropy influences the optimal shape. Thus,
the shape of isotropic material structure, used for optimizing the material anisotropy may be suboptimal in the sequential optimization.
Optimizing the shape and the material anisotropy does not exhibit this problem. Furthermore, when complex loadings are applied on the
considered structure, the proposed solution from concurrent optimization is stiffer.
This methodology is a very promising when considering real composite material distribution, as the only change to be performed will be on
the admissible set of polar parameters that should take into account the feasibility of the considered composite material. Future work will
aim at optimizing a three dimensional structure, by using the same method.
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27. R. T. Haftka and Z. Gürdal. Elements of Structural Optimization, volume 11 of Solid Mechanics And Its Applications. Springer Netherlands, 1992.
28. J. Han, A. Bertram, J. Olschewski, W. Hermann, H.-G. Sockel, Identification of elastic constants of alloys with sheet and fibre textures based on resonance

measurements and finite element analysis, Materials Science and Engineering: A, 191(1–2): 105–111, 1995.
29. S. T. IJsselmuiden. Optimal design of variable stiffness composite structures using lamination parameters. Ph. D. Thesis. Delft University of Technology, Delft,

Netherlands, 2011.



12 Narindra Ranaivomiarana et al.

30. F.-X. Irisarri, D. H.m Bassir, N. Carrere, and J.-F. Maire. Multiobjective stacking sequence optimization for laminated composite structures. Composites Science
and Technology, 69(7):983–990, 2009.

31. F.-X. Irisarri, D. M.J. Peeters, and M. Abdalla. Optimisation of ply drop order in variable stiffness laminates. Composite Structures, 152:791–799, 2016.
32. H. Jia, A. Misra, P. Poorsolhjouy, and C. Liu. Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular

micromechanics. Materials & Design, 115: 422–432, 2017.
33. A. Jibawy, C. Julien, B. Desmorat, A. Vincenti, and F. Lén’e. Hierarchical structural optimization of laminated plates using polar representation. International

Journal of Solids and Structures, 48(18):2576–2584, September 2011.
34. C. Julien. Conception Optimale de l’Anisotropie dans les Structures Stratifiées á Rigidité Variable par la Méthode Polaire-Génétique. PhD thesis, UPMC, 2010.
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