
HAL Id: hal-01827319
https://hal.science/hal-01827319v3

Submitted on 29 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Confidence Intervals for Stochastic Arithmetic
Devan Sohier, Pablo de Oliveira Castro, François Févotte, Bruno Lathuilière,

Eric Petit, Olivier Jamond

To cite this version:
Devan Sohier, Pablo de Oliveira Castro, François Févotte, Bruno Lathuilière, Eric Petit, et al.. Con-
fidence Intervals for Stochastic Arithmetic. ACM Transactions on Mathematical Software, 2021, 47
(2), �10.1145/3432184�. �hal-01827319v3�

https://hal.science/hal-01827319v3
https://hal.archives-ouvertes.fr

Confidence Intervals for Stochastic Arithmetic

Devan Sohier∗ Pablo de Oliveira Castro†

Université Paris-Saclay, UVSQ, LI-PaRAD

François Févotte‡

TriScale innov
Bruno Lathuilière§

EDF R&D – PERICLES
Eric Petit¶

Intel Corp.

Olivier Jamond‖

CEA

April 29, 2021

Abstract

Quantifying errors and losses due to the use of Floating-Point (FP)
calculations in industrial scientific computing codes is an important part
of the Verification, Validation and Uncertainty Quantification (VVUQ)
process. Stochastic Arithmetic is one way to model and estimate FP
losses of accuracy, which scales well to large, industrial codes. It exists
in different flavors, such as CESTAC or MCA, implemented in various
tools such as CADNA, Verificarlo or Verrou. These methodologies and
tools are based on the idea that FP losses of accuracy can be modeled via
randomness. Therefore, they share the same need to perform a statistical
analysis of programs results in order to estimate the significance of the
results.

In this paper, we propose a framework to perform a solid statistical
analysis of Stochastic Arithmetic. This framework unifies all existing
definitions of the number of significant digits (CESTAC and MCA), and
also proposes a new quantity of interest: the number of digits contributing
to the accuracy of the results. Sound confidence intervals are provided for
all estimators, both in the case of normally distributed results, and in
the general case. The use of this framework is demonstrated by two case
studies of industrial codes: Europlexus and code aster.

∗devan.sohier@uvsq.fr
†pablo.oliveira@uvsq.fr
‡francois.fevotte@triscale-innov.com
§bruno.lathuiliere@edf.fr
¶eric.petit@intel.com
‖olivier.jamond@cea.fr

1

1 Introduction

Modern computers use the IEEE-754 standard for implementing floating point
(FP) operations. Each FP operand is represented with a limited precision.
Single precision numbers have 23 bits in the fractional part and double precision
numbers have 52 bits in the fractional part. This limited precision may cause
numerical errors [Hig02] such as absorption or catastrophic cancellation which
can result in loss of significant bits in the result.

Floating Point computations are used in many critical fields such as struc-
ture, combustion, astrophysics or finance simulations. Determining the precision
of a result is an important problem. For well known algorithms, bounds of the
numerical error can be derived mathematically for a given dataset [Hig02].

The Stochastic Arithmetic field proposes automatic methods for estimating
the number of significant digits for complex programs. Two main methods have
been proposed: CESTAC [Vig04] and Monte Carlo Arithmetic (MCA) [SP97],
which differ in many subtle ways, but share the same general principles. Nu-
merical errors are modeled by introducing random perturbations at each FP
operation. This transforms the output of a given simulation code into realiza-
tions of a random variable. Performing a statistical analysis of a set of sampled
outputs allows to stochastically approximate the impact of numerical errors on
the code results.

In this paper, we propose a solid statistical analysis of Stochastic Arithmetic
that does not necessarily rely on the normality assumption and provides strong
confidence intervals. As stated in [SP97, p.45], “MCA is not committed to any
assumption of normality. Sampling is an art and the right approach to sampling
can settle very tricky problems.” and, a little further: “MCA is not committed to
a statistical inference model”. Unlike traditional analysis which only considers
the number of reliable significant digits, this paper introduces a new quantity
of interest: the number of digits contributing to the accuracy of the final result.

Section 2 reviews the stochastic arithmetic methods. Section 3 formulates
the problem rigorously and defines several interesting scopes of study. Then we
provide in section 4 a statistical analysis for normal distributions and in sec-
tion 5 for general distributions. Section 6 validates our statistical framework on
two industrial scientific computing codes: Europlexus and code aster. Finally,
section 7 discusses some of the remaining limitations of stochastic arithmetic
methods, which should be addressed in future work.

2 Background on Stochastic Arithmetic Meth-
ods

Automatic methods for deriving bounds on round-off errors can be loosely cat-
egorized into two categories: exact methods and approximate methods.

Exact methods give a conservative and proven bound on the error of a com-
putation. One well established exact method for deriving error bounds is Inter-
val Arithmetic [MKC09], in which each real value in the algorithm is replaced

2

by an interval that contains all the possible values of the computation. The
operations are redefined to handle intervals operands and guarantee that the
resulting interval provide rigorous bounds on the computation. Multiple soft-
ware frameworks [Rum99, RR05] for interval arithmetic have been released.
Interval arithmetic have been applied to derive error bounds and optimize nu-
merical methods [Moo79, Kah96], linear algebra [Han65], and physical sim-
ulation [DTLJ01]. Because intervals are conservative, they tend to become
overly large when the algorithm or control flow is complex. It is possible to
refine the analysis by considering a union of interval subdivisions [HJVE01]
or more sophisticate objects such as zonotopes [GP06]; nevertheless in general
for complex computer programs of thousands of code lines, deriving such an
analysis is intractable. Exact approaches also include floating point proof as-
sistants [DDLM06, BFM09, BM11] which can derive semi-automatic certified
proofs on floating point errors on small programs.

On the other hand, approximate methods, do not provide deterministic
bounds on the numerical error and may not always model exactly IEEE-754
behavior but are able to efficiently analyze large and complex programs, such as
found in industrial codebases. For a more detailed comparison between stochas-
tic and exact numerical analysis methods please refer to [Kah96] and [SP97,
p. 71]. This paper contributions focus solely on the stochastic arithmetic meth-
ods, which we will present in the following.

2.1 Modeling accuracy loss using randomness

When a program is run on an IEEE-754-compliant processor, the result of each
floating-point operation x ◦ y is replaced by a rounded value: round(x ◦ y). For
example, the default rounding mode for IEEE-754 binary formats is given by:

round(x) = bxe,

where b.e denotes rounding to nearest, ties to even, for the considered precision
(binary32 or binary64).

When x◦y 6= bx◦ye, i.e. when x◦y is not in the set F of representable FP val-
ues for the considered precision, rounding causes a loss of accuracy. Stochastic
arithmetic methods model this loss of accuracy using randomness.

2.1.1 CESTAC

The CESTAC method models round-off errors by replacing rounding operations
with randomly rounded ones [VLP74, CV88]. The result of each FP operation
x ◦ y is substituted with random round(x ◦ y), where random round is a func-
tion which randomly rounds FP values upwards or downwards equiprobably:

random round(x) =

∣∣∣∣∣ x if x ∈ F

ζ bxc+ (1− ζ) dxe otherwise,

3

where b.c and d.e respectively represent the downward and upward rounding
operations for the considered precision, and ζ is a random variable such that
P[ζ = 0] = P[ζ = 1] = 1

2 . CESTAC proposes different variants by changing the
probability distribution ζ.

2.1.2 Monte Carlo Arithmetic

MCA can simulate the effect of different FP precisions by operating at a virtual
precision t. To model errors on a FP value x at virtual precision t, MCA uses
the noise function

inexact(x) = x+ 2ex−tξ,

where ex = blog2 |x|c + 1 is the order of magnitude of x and ξ is a uniformly
distributed random variable in the range

(
− 1

2 ,
1
2

)
. During the MCA run of

a given program, the result of each FP operation is replaced by a perturbed
computation modeling the losses of accuracy [SP97, DdOCP16, FL15]. It allows
to simulate the computation at virtual precision t. Three possible expressions
can be substituted to x ◦ y, defining variants of MCA:

1. “Random rounding” only introduces perturbation on the output:
round(inexact(x ◦ y))

2. “Inbound” only introduces perturbation on the input:
round(inexact(x) ◦ inexact(y))

3. “Full MCA” introduces perturbation on operand(s) and the result:
round(inexact(inexact(x) ◦ inexact(y)))

In any case, using stochastic arithmetic, the result of each FP operation
is replaced with a random variable modeling the losses of accuracy resulting
from the use of finite-precision FP computations. Since the result of each FP
operation in the program is in turn used as input for the following FP operations,
it is natural to assume that the outputs of the whole program in stochastic
arithmetic are random variables.

Stochastic Arithmetic methods run the program multiple times in order to
produce a set of output results (i.e. a set of realizations or samples of the ran-
dom variable modeling the program output). The samples are then statistically
analyzed in order to assess the quality of the result.

2.2 Estimating the result quality: significant digits

Let us denote by x the quantity computed by a deterministic numerical program.
Different values can be defined for this result:

• xreal is the value of x that would be computed with an infinitely precise,
real arithmetic;

4

• xieee is the value that is computed by the program, when run on a com-
puter that uses standard IEEE arithmetic with default rounding;

• X1, X2, . . . , Xn are the values returned by n runs of the program using
stochastic arithmetic. These are seen as n realizations of the same random
variable X.

Figure 1 illustrates some of the quantities of interest that can be useful to
analyze the quality of the results given by the program. The real density of
random variable X is unknown, but some of its characteristics can be estimated
using n sample values (X1, . . . , Xn). In particular:

• the expected value µ = E[X] can be estimated by the empirical average
value of Xi, µ̂ = 1

n

∑n
i=1Xi;

• the standard deviation σ =
√
E[(X − µ)2] can be estimated by the em-

pirical standard deviation, σ̂ =
√

1
n−1

∑n
i=1 (Xi − µ̂)

2
.

x

0 20 40 60 80 100 120 140 160

#
o
cc

u
rr

en
ce

s

0

2

4

6

8

µµ̂

xieee

Figure 1: Schematic view of the various quantities of interest when evaluating
the numerical quality of a result using stochastic arithmetic

To estimate the numerical quality of the result, we would like to compute
the number of significant bits. In the following we review the definitions of
significance used in CESTAC and MCA. Then, we introduce the definition that
will be used in this paper.

2.2.1 CESTAC definition of significant bits

5

In CESTAC, the average µ̂ of the small set of samples (usually three) is
taken as the computed result, and the analysis then estimates the accuracy of
this quantity, seen as an approximation of xreal.

Definition 1. With the notations defined above, the CESTAC number of exact
significant bits [Vig04] is defined as the number of bits in common between xreal
and µ̂:

scestac = − log2

∣∣∣∣xreal − µ̂xreal

∣∣∣∣ .
In order to estimate the number of exact significant digits, the CESTAC

analysis is based on two hypotheses:

1. the distribution X is normal, and

2. the distribution X is centered on the real result µ = xreal.

SinceX is assumed normal, one can derive the following Student t-distribution
interval with confidence (1− α):

µ ∈
[
µ̂± τn σ̂√

n

]
,

where τn is the 1− α
2 quantile of the Student distribution with n− 1 degrees of

freedom.
The maximum error between µ and µ̂ is bounded by this interval for a normal

distribution; it follows [Li13] that an estimated lower bound for the number of
exact significant bits is given by

scestac = − log2

∣∣∣∣µ− µ̂µ
∣∣∣∣ ≈ − log2

∣∣∣∣µ− µ̂µ̂
∣∣∣∣ > − log2

(
τn σ̂√
n |µ̂|

)
︸ ︷︷ ︸

ŝcestac

. (1)

This definition suffers from a few shortcomings. First, the two hypotheses,
while reasonable in many cases, do not always hold [Cha88, Kah96]: Stott Parker
shows that the normality assumption of X is not always true [SP97, p. 49] and
it is not necessarily centered on the real result. The robustness of CESTAC
with respect to violations of these hypotheses is discussed in [CV88].

Second, and more important, the CESTAC definition of the number of signif-
icant digits may not necessarily be the most useful for the practitioner. Often-
times, the objective of the numerical verification process consists in evaluating
the precision of the actual IEEE computer arithmetic. CESTAC does not evalu-
ate the number of significant digits of the IEEE result but rather of the average
of the CESTAC samples. But in practice, xieee does not match µ̂.

Last, with this definition, a problem clearly appears when considering the
asymptotic behavior of the bound: ŝcestac −−−−−→

n→+∞
+∞. Increasing the number

6

of samples arbitrarily increases the number of significant digits computed by
CESTAC. On the one hand, this is expected because, according to the definition
proposed, any computation is actually infinitely precise when n→∞ since the
strong law of large numbers states that the empirical average is in this case
almost surely the expected value. On the other hand, however, this asymptotic
case also questions the pertinence of the CESTAC metric for the evaluation of
the quality of the results produced by IEEE-754 computations. CESTAC is
usually applied to three samples [CV88], the validity of the special case where
n = 3 is discussed in section 4.3.

2.2.2 MCA definition of significant bits

In his study of MCA, Stott Parker proposes another definition for the number
of significant digits. Stott Parker lays this definition on the habits of biology
and physics regarding the precision of a measurement: if an MCA-instrumented
program is seen as a measurement instrument1, then the number of significant
digits can be defined as the number of digits expected to be found in agreement
between successive runs/measurements.

Definition 2. With the notations defined above, the MCA number of significant
bits is defined as

smca = − log2

∣∣∣∣σµ
∣∣∣∣ .

This definition, which computes the magnitude of the coefficient of variation,
is a form of signal to noise ratio: if most random samples share the same first
digits, these digits can be considered significant. On the contrary, digits varying
randomly among sampled results are considered noise. Another way of giving
meaning to this definition is to consider xieee as one possible realization of the
random variable X. As such, its distance to µ is characterized by σ. A problem
with the MCA definition of significant bits is that it is empirical: the actual
meaning of “significance” is not clearly laid, as well as the consequences one can
draw from it.

The MCA number of significant bits can be estimated by

ŝmca = − log2

∣∣∣∣ σ̂µ̂
∣∣∣∣ , (2)

a quantity which can be computed regardless of any hypothesis on the distri-
bution of X. However, since the number of samples n is finite, ŝmca is only an
approximation of the exact value smca. And no confidence interval is provided
in order to help choose an appropriate number of samples. As shall be seen

1In most applications, a measurement is modeled by a random variable following a normal
distribution.

7

in section 4.3, this estimate is nevertheless a good basis when the underlying
phenomenon is normal.

Our definition of significance generalizes Stott Parker’s. It requires a refer-
ence which can be either a scalar value2 or another random variable3. Informally,
in this paper, the significant digits are the digits in common between the samples
of X and the reference (up to a rounding effect on the last significant digit).
Section 3 formalizes this definition in a probabilistic framework and provides
sound confidence intervals.

2.3 Software tools presentation

The experimental validation of the presented confidence intervals on synthetic
and industrial use cases has been conducted thanks to the Verificarlo and Verrou
tools which are presented in the next subsections.

2.3.1 Verificarlo

Verificarlo [DdOCP16, Ver18a] is an open-source tool based on the LLVM com-
piler framework replacing at compilation each floating point operation by custom
operators. After compilation, the program can be linked against various back-
ends [CdOCP+18, CPdOC+19, DdOCIP20], including MCA to explore random
rounding and virtual precision impact on an application accuracy.

Doing the interposition at compiler level allows to take into account the
compiler optimization effect on the generated FP operation flow. Furthermore,
it allows to reduce the cost of this interposition by optimizing its integration
with the original code.

2.3.2 Verrou

Verrou [FL16, Ver18b] is an open-source floating point diagnostics tool. It is
based on Valgrind [NS07] to transparently intercept floating point operations
at runtime and replace them by their random rounding counterpart. The inter-
position at runtime allows to address large and complex-code applications with
no intervention of the end-user.

Verrou also provides two methods allowing to locate the origin of precision
losses in the sources of the analyzed computing code. The first one is based
on the code coverage comparison between two samples. Discrepancies in the
code coverage are good indicators of potential branch instabilities. The second
localization method leverages the delta-debugging algorithm [Zel09] to perform
a binary search to find a maximal scope for which MCA perturbations do not
produce errors or large changes in results. The remaining symbols (or lines if
the binary is compiled with debug mode) are good candidates for correction.

2Good choices for the scalar reference are xreal, xieee or µX depending on the aims of the
study

3Using a second random variable as reference allows comparing two versions of a program
or two algorithms variants, more details are given in section 3.

8

2.4 Synthetic example: Ill-conditioned linear system

To illustrate these methods in the following we use a simple synthetic example
proposed by Kahan [Kah66]: solving an ill-conditioned linear system,(

0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)
(3)

The exact and IEEE binary64 solutions of equation (3) are:

xreal =

(
2
−2

)
xieee =

(
1.9999999958366637
−1.9999999972244424

)
(4)

To keep the example simple, the floating-point solution xieee has been ob-
tained by solving the system with the naive C implementation of Cramer’s
formula in double precision, as shown in listing 1.

Listing 1: Solving 2x2 system a.x = b with Cramer’s rule

void s o l v e (const double a [4] , const double b [2] , double x [2]) {
double det = a [0] ∗ a [3] − a [2] ∗ a [1] ;
double det0 = b [0] ∗ a [3] − b [1] ∗ a [1] ;
double det1 = a [0] ∗ b [1] − a [2] ∗ b [0] ;
x [0] = det0 / det ;
x [1] = det1 / det ;

}

The condition number of the above system is approximately 2.5×108, there-
fore we expect to lose at least log2(2.5× 108) ≈ 28 bits of accuracy or, equiva-
lently, 8 decimal digits. By comparing the IEEE and exact values, we see that
indeed the last 8 decimal digits differ. The number of common bits between
xreal and xieee is given by

sieee = − log2

∣∣∣∣xreal − xieeexreal

∣∣∣∣ ≈ (28.8
29.4

)
.

Now let us use MCA to estimate the number of significant digits. We compile
the above program with Verificarlo [DdOCP16] which transparently replaces
every FP operation by its noisy MCA counterpart. Here a virtual precision
of 52 is used to simulate roundoff errors. Then, we run the produced binary
n = 10 000 times and observe the resulting output distribution X.

Both X[0] and X[1] are normal with high Shapiro-Wilk test p-values 73 %
and 74 % respectively.4 Figure 2 shows the distribution and quantile-quantile (QQ)
plots for X[0], for which the empirical average and standard deviation are given
by

µ̂ ≈ 1.99999999909,

σ̂ ≈ 5.3427× 10−9.

9

3 2 1 0 1 2 3
1e 8

0
1
2
3
4
5
6
7

1e7

4 2 0 2 4
Theoretical quantiles

2

1

0

1

2

Or
de

re
d

Va
lu

es

1e 8 Probability Plot

Figure 2: Normality of Cramer X[0] sample

Using Stott Parker’s formula (2) to compute ŝmca for X[0], we get a figure
close to the expected value 28.8:

ŝMCA = − log2

∣∣∣∣ σ̂µ̂
∣∣∣∣ ≈ 28.48. (5)

But how confident are we that ŝmca is a good estimate of smca? Could we have
used a smaller number of samples and still get a reliable estimate of the results
quality?

On the other hand, using these n = 10 000 samples to compute the CESTAC
lower bound defined in equation (1) with confidence 95 % gives

ŝ
(10 000)
cestac = − log2

(
τn σ̂√
n |µ̂|

)
≈ 34.2, (6)

which is a clear overestimation of the quality of the IEEE result, but also of the
CESTAC result, since the number of bits in common between the real result
and the sample average is given by

s
(10 000)
cestac = − log2

∣∣∣∣xreal[0]− µ̂
xreal[0]

∣∣∣∣ ≈ 31.0.

Such a large n exhibits the bias between µ and xreal[0], invalidating the CESTAC
hypotheses. In practice, CESTAC implementations such as CADNA use n =
3, a choice of which the validity is discussed in section 4.3. For the Cramer
benchmark, computing ŝcestac for only 3 samples of X[0] yields a conservative
estimate:

ŝ
(3)
cestac ≈ 27.5 6 s

(3)
cestac ≈ 28.5.

4Interestingly X[0] fails the Anderson-Darling test, 27 % p-value, due to some anomalies
on the tail.

10

In the following, we present a novel probabilistic formulation to get a con-
fidence interval for the number of significant bits with and without assumption
of normality.

3 Probabilistic accuracy of a computation

3.1 Definitions

We consider one output of a program performing FP operations as a random
variable X. The output is a random variable either because the program is
inherently nondeterministic or because we are artificially introducing numerical
errors through MCA, CESTAC, or another stochastic arithmetic model. We
want to study how the probabilistic properties of the computation impact its
accuracy. The real distribution of X is unknown but we can approximate it
with n samples, X1 . . . Xn.

The accuracy of a result must be defined against a reference value. If a real
mathematical result is known, it is a natural choice. If the program is determin-
istic when executed in IEEE arithmetic, the IEEE result is one straightforward
choice for the reference value. If the program is nondeterministic, one can also
choose as reference, the empirical average of X. Finally a third option consists
in computing the accuracy against a second random variable Y , which allows
computing the accuracy between runs of the same program or allows finding the
accuracy between two different programs, such as when comparing two different
versions or implementations of an algorithm. We will write the reference value
x when it is a constant and Y when it is another random variable.

Four types of studies can be led, depending on whether we are interested
in absolute or relative error, and whether we have a reference value. For each
study we can model the errors as a random variable Z defined as follows

reference x reference Y
absolute precision Z = X − x Z = X − Y
relative precision Z = X/x− 1 Z = X/Y − 1

We have reduced the four types of problems to study the probabilistic prop-
erties of Z whose error distribution represents the error of a computation in a
broad sense. If X is unbiased wrt. the reference, E[Z] = 0 (a constant refer-
ence x can be for instance the exact result of a computation that introduces a
bias, for instance when a division by a value close to 0 occurs; in such cases we
observe E[X] 6= x).

To define the significance of a digit we use Stott Parker’s 1
2ulsp algorithm [SP97,

p. 19]. The significant bit is at the rightmost position at which the digits differ
by less than one half unit in the last place. That is to say, two values x and y

11

have s significant digits5 iff

|x− y| <1

2
× 2ey−s = 2−s+(ey−1) (scaled absolute error)

|x/y − 1| <1

2
× 21−s = 2−s (relative error) (7)

Without loss of generality, to unify the definition for the relative and scaled
absolute cases, in the following sections we assume ey = 1. When working with
absolute errors, one should therefore shift the number of digits by (ey − 1), the
normalizing term6.

The first quantity of interest is the probability that the result is signif-
icant up to a given bit for a stochastic computation. The stochastic com-
putation can be for example a program instrumented with CESTAC or MCA.
By generalizing equation 7 to random variables, we define the probability of the
k-th digit being significant as P

(
|Z| < 2−k

)
.

Definition 3. For a given stochastic computation, the k-th bit of Z is said to
be significant with probability p if

P

(
|Z| < 2−k

)
> p.

The number of significant digits in Z with probability p is defined as the
largest number ssto ∈ R such that

P

(
|Z| < 2−ssto

)
> p.

Note that, by definition, if the k-th bit of Z is significant with probability
p, then any bit of rank k′ 6 k is also significant with probability p. In the
remainder of this paper, when not otherwise specified, the simple notation s
will refer to the ssto notion defined above.

The second quantity we will consider is the probability that a given bit
contributes to the precision of the result: even if a bit on its left is already
wrong, a bit can either improve the result precision, or deteriorate it. As noted
in [SP97, p.45]: ”In other words, in inexact values it can be worthwhile to carry
a nontrivial number r of random least significant bits”. Because the expected
result of Z is 0, a bit will improve the accuracy if it is 0 and deteriorate it if it
is 1.

Definition 4. The k-th bit of Z is said to be contributing with probability p if
and only if it is 0 with this probability, i.e. if and only if

P
(⌊

2k |Z|
⌋

is even
)
> p.

5A non-strict inequality is often used in this definition. Under the assumption made by most
previous works that the underlying distribution is continuous (e.g. normal), both definitions
agree. We chose a strict inequality that better fits with the notion of contributing digit that
we introduce.

6When Y is a random variable, we choose eY = blog2 |E[Y]|c+ 1.

12

Now, the k-th bit of Z is 0 if and only if there exists an integer i such that,⌊
2k |Z|

⌋
= 2i

⇔ 2i 6 2k |Z| < 2i+ 1

⇔ 2−k(2i) 6 |Z| < 2−k(2i+ 1). (8)

One should note that the notions of significance and contribution are distinct,
but related: if there are s significant bits with probability p, then all bits at
ranks c 6 s are contributing, with probability p. Indeed,

P
(
|Z| < 2−s

)
> p

⇒ ∀c 6 s, P (2c |Z| < 1) > p

⇒ ∀c 6 s, P
(⌊

2c |Z|
⌋

= 2× 0
)
> p.

However, the k-th bit of Z being contributing with probability p does not
imply that all bits at ranks k′ < k are also contributing7. This prevents the
definition of such a notion as the number of contributing bits.

In the following, we study these two properties, significant and contribut-
ing bits, under the normality assumption (section 4) and in the general case
(section 5).

3.2 Summary of the results

In the remainder of this paper, we obtain the following results, unifying the
various definitions of significance seen above and generalizing their validity to
the non-Gaussian case.

Under the Centered Normality Hypothesis (CNH), i.e. if X follows
a Gaussian law centered around the reference value or, equivalently, if Z fol-
lows a Gaussian law centered around 0, it is shown in section 4.1 that a lower
bound of the number of significant digits ssto (as introduced in definition 3)
with probability p and confidence level 1− α is given by

ŝcnh = − log2 (σ̂Z)−

[
1

2
log2

(
n− 1

χ2
1−α/2

)
+ log2

(
F−1

(
p+ 1

2

))]
,

where σ̂Z denotes the standard deviation of n samples of Z, and all notations are
relatively standard and are introduced in section 4. Furthermore, the following
results are established:

• ŝcnh can be computed simply by shifting the usual ŝmca estimator (intro-
duced in definition 2) by a certain number of bits, depending on n, p and
α and tabulated in Appendix A, Table 4;

7Although, it is the case for example when Z follows a Gaussian distribution.

13

• Consequently, ŝmca can be re-interpreted in this framework; it is a lower
bound on the number of significant bits with a certain probability and a
given confidence level;

• Although ŝcestac was not originally meant to do so, it can also be re-
interpreted as an estimate of ssto. For example in the CADNA case,
where the number of samples is set to n = 3 and a 95% confidence level
is used, ŝcestac estimates ssto with probability p = 0.3.

In the general case, when no assumption can be made about the distri-
butions of X or Z, we introduce the Bernoulli significant bits estimator

ŝb = max
{
k ∈ {1, 2, . . . , 53} such that ∀i ∈ {1, 2, . . . , n} , |Zi| < 2−k

}
.

It is shown in section 5 that ŝb provides a sound lower bound for s, provided
that the number of samples n is chosen accordingly to the desired probability p
and confidence level 1− α:

n >
ln(α)

ln(p)
.

The required number of samples is tabulated in Appendix A, Table 3

Regarding contributing bits, it is proved in section 4.2 that all bits of
rank k 6 ĉcnh are contributing with probability p and confidence level 1 − α
under the centered normality hypothesis, with

ĉcnh = − log2(σ̂)−

[
1

2
log2

(
n− 1

χ2
1−α/2

)
+ log2

(
p− 1

2

)
+ log2

(
2
√

2π
)]

.

In section 5, it is proved that in the general case, the k-th bit of Z is contributing
with probability p and confidence level 1− α if

∀i ∈ {1, 2, . . . , n} ,
⌊
2k |Zi|

⌋
is even,

provided that the number of samples n follows the rules described above.

Impatient readers may skip to section 6, where these results are used for the
analysis of industrial calculations. The more mathematically inclined reader is
of course encouraged to follow along sections 4 and 5, where these results are
detailed and proved.

4 Accuracy under the Centered Normality Hy-
pothesis

In this section we consider that Z is a random variable with normal distribution
N (0, σ). In practice, we only know an empirical standard deviation σ̂, measured

14

over n samples. Because Z is normal, the following confidence interval [Sap11,
p. 282] with confidence 1− α based on the χ2 distribution with (n− 1) degrees
of freedom is sound 8:

(n− 1)σ̂2

χ2
α/2

6 σ2 6
(n− 1)σ̂2

χ2
1−α/2

. (9)

It is important to note that σ is the standard deviation of Z and not of X.
For example, when taking a second independent random variable Y as reference,
if X and Y both follow a distribution N (µ, σ′), Z = X −Y follows N (0,

√
2σ′).

4.1 Significant bits

The theorem below is a more precise restatement of Stott Parker’s Theorem
1: “the difference in the orders of magnitude of the mean µ and the standard
deviation σ measures the number of significant digits of X (if µ 6= 0, σ 6= 0).”
We define the notion of “measuring the number of significant digits” as the
estimation of the probability that a given bit is significant at a given confidence
level. We then prove that the number of significant bits is given by − log2

µ
σ as

exposed by Stott Parker (since in a relative precision analysis, σZ = σX
x = σ

µ

if X is normal and centered at the reference value), but adjusted by a quantity
that depends only on the target probability and confidence level (so, constant
wrt the sample). This new formulation allows to assess the consequences of
taking the considered bits into account or not.

Theorem 1. For a normal centered error distribution Z ∼ N (0, σ), the s-th
bit is significant with probability

ps = 2F

(
2−s

σ

)
− 1,

with F the cumulative distribution function of the normal distribution with mean
0 and variance 1.

Proof. The probability that the k-th bit is significant is P
[
|Z| < 2−k

]
= P

[
Z < 2−k

]
−

P
[
Z < −2−k

]
. Now P

[
Z < −2−k

]
= 1−P

[
Z < 2−k

]
by symmetry of the nor-

mal distribution, so that P
[
|Z| < 2−k

]
= 2P

[
Z < 2−k

]
− 1. Therefore,

P
[
|Z| < 2−k

]
= 2P

[
Z

σ
<

2−k

σ

]
− 1 = 2F

(
2−k

σ

)
− 1.

The number of significant digits with probability p is s such that 2F
(

2−s

σ

)
−

1 = p, i.e. F
(

2−s

σ

)
= p+1

2 ⇔ 2−s

σ = F−1
(
p+1
2

)
, so that

8This interval is bilateral. If we were only interested in a lower bound for significant and
contributing bits we could use the unilateral bound σ2 6 (n− 1)σ̂2/χ2

1−α.

15

s = − log2 (σ)− log2

(
F−1

(
p+ 1

2

))
.

The above formula is remarkable because, whatever σ, the confidence interval
to reach a given probability is constant and can be computed from a table for
F−1. Therefore, one just needs to subtract a fixed number of bits from − log2(σ)
to reach a given probability, as illustrated in figure 3.

In practice, only the sampled standard deviation σ̂ can be measured, but it
can be used to bound σ thanks to the the χ2 confidence interval in equation (9).
This allows computing a sound lower bound ŝcnh on the number of significant
digits in the Centered Normality Hypothesis:

s > − log2 (σ̂)−

[
1

2
log2

(
n− 1

χ2
1−α/2

)
+ log2

(
F−1

(
p+ 1

2

))]
︸ ︷︷ ︸

δcnh︸ ︷︷ ︸
ŝcnh

. (10)

Again, this formula is interesting since ŝcnh can be determined by just mea-
suring the sample standard deviation σ̂ and shifting − log2(σ̂) by a value δcnh,
which only depends on a few parameters: the size of the sample n, the confi-
dence 1 − α and the probability p. Some values for this shift are tabulated in
appendix A, table 4. This is an improvement over the proposition of [SP97,
p.23] to use a confidence interval on the estimate of µ. Instead, we propose a
confidence interval directly on the quantity of interest, namely, the number of
significant digits.

Application Let us consider the X[0] variable from the the ill-conditioned
Cramer system from section 2.4. Statistical tests did not reject the normality
hypothesis for X[0]. Here we would like to compute the number of significant
digits relative to the mean of the sample with a 99 % probability. Following

section 3, we consider the relative error, Z = X[0]
µ̂ − 1 → N (0, σ). Here σ

will be estimated from σ̂ with the χ2 95 % confidence interval presented in
equation (9). Computing δcnh for n = 10 000, p = 0.99 and 1 − α = 0.95 (or
reading it in table 4), yields δcnh ≈ 1.4. Recalling the sampled measurements
from section 2.4, we get − log2(σ̂) ≈ 28.5.

Therefore, at least 28.5 − 1.4 = 27.1 bits are significant, with probability
99 % at a 95 % confidence level. Figure 4 shows that the proposed confidence
interval closely matches the empirical probability on the X[0] samples. When
the number of samples increases, the confidence interval tightness increases.

4.2 Contributing Bits

In the previous section we computed the number of significant bits. Now we
are interested in the number of contributing bits: even if a bit is after the last

16

10 5 0 5 10 15 20
k+ log2(σ)

0.0

0.2

0.4

0.6

0.8

1.0
pr

ob
ab

ilit
y

s-th bit significant
s= − log2(σ)

Figure 3: Profile of the significant bit curve: when the dashed line is positioned
on the − log2 σ abscissa, the curve corresponds to the probability that the result
is significant up to a given bit.

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

30 samples
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

10000 samples
empirical
CI lower bound

Figure 4: Significant bits for Cramer x[0] variable computed under the normal
hypothesis using 30 and 10000 samples. The Confidence Interval (CI) lower
bound is computed by using the probability of theorem 1 and bounding σ with
a 95% Chi-2 confidence interval.

17

−3× 2−k −2× 2−k −1× 2−k 0 1× 2−k 2× 2−k 3× 2−k 4× 2−k 5× 2−k
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Figure 5: Normal curve; the gray zones correspond to the area where the k-th
bit contributes to make the result closer to 0 (whatever the preceding digits).

significant digit, it may still contribute partially to the accuracy if it brings the
result closer to the reference value.

The theorem below gives an approximation of the number of contributing
bits which has the same property as theorem 1: this approximation computes
the number of bits to shift from − log2(σ̂) to obtain the contributing bits based
on the same few parameters (sample size n, confidence 1−α and probability p),
and the shift being independent of σ̂.

Theorem 2. For a normal centered error distribution Z ∼ N (0, σ), when
2−c

σ → 0, the c-th bit contributes to the result accuracy with probability

pc ∼
2−c

2σ
√

2π
+

1

2
.

Proof. As shown in equation 8, the k-th bit of Z contributes if and only if
there exists an integer i > 0 such that 2−k(2i) 6 |Z| < 2−k(2i + 1), i.e. there
exists an integer i > 0 such that 2−k(2i) 6 Z < 2−k(2i+ 1) or i < 0 such that
2−k(2i) < Z 6 2−k(2i+1). Z being continuous, P[2−k(2i) < Z 6 2−k(2i+1)] =
P[2−k(2i) 6 Z < 2−k(2i+ 1)].

For a normal centered Z distribution, this inequality corresponds to the gray
stripes in figure 5. Let us write the integral of one stripe as,

u(k,2i) = P
[
2−k(2i) 6 Z < 2−k(2i+ 1)

]
=

∫ 2−k(2i+1)

2−k(2i)

f(x) dx,

where f(x) = e
− x2

2σ2

σ
√
2π

is the probability density function of N (0, σ). The

probability of contribution for the k-th bit, pk, is therefore

18

pk =
∑
i∈Z

u(k,2i) = 1−
∑
i∈Z

u(k,2i+1)

⇔ 2pk = 1 +
∑
i∈Z

(
u(k,2i) − u(k,2i+1)

)
⇔ pk =

1

2
+
∑
i>0

(
u(k,2i) − u(k,2i+1)

)
=

1

2
+
∑
i>0

(−1)iu(k,i) (by symmetry of f).

Now, according to the trapezoidal rule, there exists ξ(k,i) in the interval

Iik = [2−k(i), 2−k(i+ 1)] such that

u(k,i) =

∫ 2−k(i+1)

2−ki

f(x) dx = 2−k

(
f
(
2−ki

)
+ f

(
2−k(i+ 1)

)
2

)
+

(
2−k

)3
12

f ′′(ξ(k,i)).

Introducing v(k,i) = 2−k
(
f(2−ki)+f(2−k(i+1))

2

)
and w(k,i) =

(2−k)
3

12 f ′′(ξ(k,i)),

we have u(k,i) = v(k,i) + w(k,i), and

pk =
1

2
+
∑
i>0

(−1)iv(k,i) +
∑
i>0

(−1)iw(k,i).

Now we compute the alternate series
∑
i>0(−1)iv(k,i). Since the series is al-

ternate and its terms tend to 0, all term cancellations are sound. All trapezoidal
terms cancel, except the first half-term:

∑
i>0

(−1)iv(k,i) =
∑
i>0

(−1)i2−k

(
f
(
2−ki

)
+ f

(
2−k(i+ 1)

)
2

)
= 2−k−1

∑
i>0

(−1)i
(
f
(
2−ki

)
+ f

(
2−k(i+ 1)

))
= 2−k−1f(0) =

2−k

2σ
√

2π
.

We can also sum the error terms w(k,i). We have:

(
2−k

)3
12

min
ξ∈Iik

f ′′(ξ) 6 w(k,i) 6

(
2−k

)3
12

max
ξ∈Iik

f ′′(ξ). (11)

The second derivative f ′′(ξ) = (ξ2/σ4−1/σ2)

σ
√
2π

e−
ξ2

2σ2 is increasing between 0 and
√

3σ and decreasing from
√

3σ onward. We distinguish four possible cases, based

19

on the monotony of f ′′ (if f ′′ is increasing on Iik, minξ∈Iik f
′′(ξ) = f ′′(2−ki),

maxξ∈Iik f
′′(ξ) = f ′′(2−k(i+ 1)); if it is decreasing, minξ∈Iik f

′′(ξ) = f ′′(2−k(i+

1)), maxξ∈Iik f
′′(ξ) = f ′′(2−ki); and if

√
3σ ∈ Iik, maxξ∈Iik f

′′(ξ) = f ′′(
√

3σ)):

• Case 1: when 2−k(2i+ 2) 6
√

3σ, then(
2−k

)3
12

f ′′(2−k(2i)) 6 v(k,2i) 6

(
2−k

)3
12

f ′′(2−k(2i+ 1))

−
(
2−k

)3
12

f ′′(2−k(2i+ 2)) 6 −v(k,2i+1) 6 −
(
2−k

)3
12

f ′′(2−k(2i+ 1))

• Case 2: when 2−k(2i) 6
√

3σ 6 2−k(2i+ 1) then(
2−k

)3
12

f ′′(2−k(2i)) 6 v(k,2i) 6

(
2−k

)3
12

f ′′(
√

3σ)

−
(
2−k

)3
12

f ′′(2−k(2i+ 1)) 6 −v(k,2i+1) 6 −
(
2−k

)3
12

f ′′(2−k(2i+ 2))

• Case 3: when 2−k(2i+ 1) 6
√

3σ 6 2−k(2i+ 2) then(
2−k

)3
12

f ′′(2−k(2i)) 6 v(k,2i) 6

(
2−k

)3
12

f ′′(2−k(2i+ 1))

−
(
2−k

)3
12

f ′′(
√

3σ) 6 −v(k,2i+1) 6 −
(
2−k

)3
12

f ′′(2−k(2i+ 1))

• Case 4: when 2−k(2i) >
√

3σ, then(
2−k

)3
12

f ′′(2−k(2i+ 1)) 6 v(k,2i) 6

(
2−k

)3
12

f ′′(2−k(2i))

−
(
2−k

)3
12

f ′′(2−k(2i+ 1)) 6 −v(k,2i+1) 6 −
(
2−k

)3
12

f ′′(2−k(2i+ 2))

The bounds on these error terms also cancel two by two, except the first one,

and the two terms around
√

3σ (we consider cases with 2−k <
√

3σ ⇔ 2−k

σ <
√

3,

so that the maximum of f ′′ is not in the first stripe). At worst, − (2−k)
3

12 f ′′(
√

3σ)

and − (2−k)
3

12 f ′′(2−k(2i+ 1)) with 2i+ 1 = d
√

3σe remain on the right side, and

(2−k)
3

12 f ′′(
√

3σ) and
(2−k)

3

12 f ′′(2−k(2i)) with 2i = d
√

3σe on the left (these worst
cases cannot all occur at once).

All in all, we are left with (using that f ′′ reaches its maximum at
√

3σ):

20

(
2−k

)3
12

f ′′(0)− 2

(
2−k

)3
12

f ′′(
√

3σ) 6
∑
i>0

(−1)iw(k,i) 6 2

(
2−k

)3
12

f ′′(
√

3σ)

−
(
2−k

)3
12σ3

√
2π
− 2

(
2−k

)3
12

2

σ3
√

2π
e−3/2 6

∑
i>0

(−1)iw(k,i) 6 2

(
2−k

)3
12

2

σ3
√

2π
e−3/2

Finally:

1

2
+

2−k

2σ
√

2π
−
(
2−k

)3
(4e−3/2 + 1)

12σ3
√

2π
6 pk 6

1

2
+

2−k

2σ
√

2π
+

(
2−k

)3
(4e−3/2)

12σ3
√

2π
(12)

It follows that, when 2−k

σ is small, bit k contributes to the result accuracy
with probability

pk ∼
2−k

2σ
√

2π
+

1

2
. (13)

Remark. Equation 12 shows that pk is closer to 2−k

2σ
√
2π

+ 1
2 than to

(2−k)
3
(4e−3/2+1)

12σ3
√
2π

>

(2−k)
3
(4e−3/2)

12σ3
√
2π

. Now, x 7→ x3(4e−
3
2)

12
√
2π

is increasing, and for x = 1
2 , less than 0.05.

Hence, for 2−k

σ 6 1
2 ,

2−k

2σ
√

2π
+

1

2
− 0.05 < pk <

2−k

2σ
√

2π
+

1

2
+ 0.05.

If we wish to keep only bits improving the result with a probability greater
than p, then we will keep c contributing bits, with

c = − log2(σ)− log2

(
p− 1

2

)
− log2

(
2
√

2π
)
. (14)

As above, this formula can be further refined by replacing σ with σ̂ and
adding a term taking into account the confidence level:

c > − log2(σ̂)−

[
1

2
log2

(
n− 1

χ2
1−α/2

)
+ log2

(
p− 1

2

)
+ log2

(
2
√

2π
)]

︸ ︷︷ ︸
ĉcnh

.

Figure 6 plots the approximation of equation 13. We note that for a centered
normal distribution the probability of contribution decreases monotonically to-
wards 0.5. Close to 0.5, bits become more and more indistinguishable from
random noise since their probability is not affected by the computation.

21

0 5 10 15 20
c+ log2(σ)

0.2

0.4

0.6

0.8

1.0

0.5

0.7

pr
ob

ab
ilit

y

c-th bit significant (approximation)
c= − log2(σ)

Figure 6: Profile of the contribution bit curve: when the dashed line is positioned
on the − log2 σ abscissa, the curve corresponds to the approximation 13 of the
probability that the bit contributes to the result accuracy. The shaded area
represents the bound on the error given by equation 12.

30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

30 samples
empirical
CI lower bound

30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

10000 samples
empirical
CI lower bound

Figure 7: Contributing bits for Cramer x[0] variable computed under the normal
hypothesis using 30 and 10000 samples with the approximation of equation 13.

The approximation of equation 13 is tight for k > − log2 σ: in this case, the
absolute error of the approximation formula is less than 2 %. The probability
of contribution at k = − log2 σ is 0.7. Therefore, equation 14 can be safely used
for probabilities less than 0.7. In this paper, we want to find the limit after
which bits are random noise. This limit corresponds to a probability of 0.5 and
the approximation is tight for p < 0.7.

Application Figure 7 shows that the approximation proposed in this section
tightly estimates the empirical samples in Cramer x[0] example.

If we consider a 51 % threshold for the contribution of the bits we wish
to keep, then we should keep c = − log2(σ) − log2(p − 1

2) − log2(2
√

2π) =
− log2(σ) + 4.318108. As in section 4.1, we estimate − log2(σ) with a 95 %
Chi-2 confidence interval, and compute c = 32.8.

22

0 . . . 25 26 27 28 29 30 31 32 33 34 . . . 52

− log2 σ > 28.45

− log2(p′ − 1
2
)− log2(2

√
2π) ≈ +4.32− log2

(
F−1

(
p+1
2

))
≈ −1.37

significant at p = .99

contributing at p′ = .51

significant at p = .50

random noise

Figure 8: Summary of results on the X[0] Cramer example. 28.45 ≈ − log2 σ̂ −
1
2 log2

(
n−1

χ2
1−α/2

)

This means that with probability 51% the first 32 bits of the mantissa will
round the result towards the correct reference value. After the 34th bit the
chances of rounding correctly or incorrectly are even: the noise after the 34th
bit is random and does not depend on the computation. Bits 34 onwards can
be discarded.

4.3 Summary of results for a Normal Centered Distribu-
tion

Under the normality hypothesis, the quantity − log2
σX
|µX | introduced by Stott

Parker is pivotal, but needs to be refined. In our framework, Stott Parker’s
definition maps to Z = X

|µX | −1, which computes the relative error to the mean.

In this case Stott Parker’s formula computes the position of the bit until which
the result has 68 % chance of being significant, and that contributes to the result
precision with a probability of 70 %.

However, from this bit, for each desired probability level, there is a simple
way to compute a quantity by which to move back to be sure that the result is
significant. It is also easy to compute a quantity by which to move forward in
order to guarantee that all bits contributing more than a fixed level are kept.
Figure 8 demonstrates this on the Cramer’s example.

We recall from section 2.4 that in this example ŝmca = − log2

∣∣∣ σ̂Xµ̂X ∣∣∣ =

− log2(σ̂) ≈ 28.48. First a lower bound, 28.45, on − log2 σ is computed with the
Chi-2 95 % confidence interval. With this confidence level, it is a lower bound
of smca (as introduced in definition 2). It is also a lower bound of ssto with
68 % probability (as introduced in definition 3). To compute a lower bound on
bits that are significant with probability 99 %, we simply subtract 1.37 from
this number. By adding 4.32 to this number we get the number of bits that
contribute or round towards the reference with a probability of 51 %. The
remaining bits in the mantissa are random noise.

23

It is important to understand the difference between contributing and sig-
nificant bits. To illustrate this difference, we show in figure 8 the number of
significant bits with 50 % probability which we estimate at 29 bits (28.45 shifted
by +0.57 bits). We deduce, since the probability of significant bits decreases
monotonically, that bits in the range 30-33 are significant with a probability
under 50 %; in other words they are likely to be non significant. Yet taken
individually, these bits are contributing with probability over 51%. Therefore,
bits in the range 30-33 still contain useful information about the computation
and cannot be considered random noise. It is up to the practitioner to decide
how many bits to keep depending on their use-case.

Taking this into account, we propose to give a result, by printing all con-
tributing bits at the chosen probability and confidence levels and an annota-
tion bounding the error term at the chosen probability and confidence levels.
This would result, for k = − log2 σ, in the following: for an absolute error with
dk+(ey−1)+4.318108e bits with the annotation ±2bk+(ey−1)−1.365037c at 99 %;
for a relative error with dk + 4.318108e and ±2bk−1.365037c × y at 99 % for a
relative error. In this notation, only digits that are likely to round correctly
the final result with a probability greater than 1 % are written; the error at
probability 99 % is written. In decimal, this notation takes up to two additional
digits (4.318108× log10 2 ≈ 1.29 digits) that are probably wrong, but still have
a chance to contribute to the result precision. As an example, using this nota-
tion to display the IEEE-754 result of Cramer’s X[0] yields, with 9 contributing
digits and 8 significant digits:

1.999999996 ± 1.4e-08 (at 99% with confidence 95%).

These 10 digits contain all the valuable information in the result, and are the
only ones that it would make sense to save, for example in a checkpoint-restart
scheme.

Interestingly enough, the CESTAC definition of significance can be reinter-
preted in this statistical framework. Equation (1) defines the CESTAC estima-
tor as

ŝcestac = log2

(
τn σ̂X√
n |µ̂X |

)
= log2 σ̂ − log2

τn√
n

(taking Z =
X

|µX |
− 1)

This estimator was originally designed to estimate scestac (as introduced in
definition 1) under the CESTAC model hypothesis. We showed previously that
the formula tends to infinity when increasing the number of samples n. Yet
CADNA [LCJ10], the most popular library implementing CESTAC, sets n = 3
and 1− α = 95 %. In this case,

ŝcadna ≈ log2 σ̂ − 1.31.

24

Reinterpreting the -1.31 shift as the δcnh term from equation (10), we see
that ŝcadna can be seen as an estimator for our stochastic definition of signif-
icant bits, ssto, with probability 30.8% at a 95% confidence level. With only
three samples, using σ̂ as an estimator of σ can introduce a strong error. The

term 1
2 log2

(
(n− 1)/χ2

1−α/2

)
which accounts for this error inside δcnh becomes

important, which explains the low probability (30.8%) of the estimation.
To mitigate this issue, it is recommended to take a safety margin of 1 decimal

digit from the number of significant digits estimated by CADNA. In our formal-
ism, shifting ŝcadna further by 1 decimal digit (or approximately 3.32 bits), the
result can be reinterpreted as a shift of −1.31 − 3.32 = −4.63 bits, estimating
ssto with probability over 99% (with 95% confidence).

5 Accuracy in the General Case

The hypothesis that the distribution Z is normal, or that it has expectation
0 is not always true. We propose statistical tools to study the significance of
bits as well as their contribution to the result accuracy that do not rely on any
assumption regarding the distribution of the results.

To address the problem in the general case we reframe it in the context of
Bernoulli estimation, which is interesting because:

• it does not rely on any assumptions on the distribution of Z;

• it provides a strong confidence interval for determining the number of
significant digits when using stochastic arithmetic methods;

• thanks to a more conservative bound, it allows to estimate a priori in all
cases for a given probability and confidence a safe number of sample to
draw from the Monte Carlo experiment.

5.1 Background on Bernoulli estimation

In the next section, we restate the problem of estimating the number of signif-
icant bits as a series of estimations of Bernoulli parameters. We present here
some basic results on such estimations.

Consider a sequence of independent identically distributed Bernoulli exper-
iments with an unknown parameter p and outcomes (pi). Each value of the
parameter p gives a model of this experiment, and, among them, we will only
keep an interval of model parameters under which the probability of the given
observation is greater than α. The set of possible values for p will then be
called a confidence interval of level 1−α for p : if the actual value of p is not in
the confidence interval computed from the outcome, it means that the observed
outcome was an “accident” the probability of which is less than α.

A case of particular interest in our study is the one when all experiments
succeed. Then, the probability of this outcome is pn under the model that the
Bernoulli parameter value is p. We then reject models (i.e., values of p) such

25

that pn < α ⇔ n ln(p) < ln(α). Now, ln(p) 6 p− 1 and ln(p) ∼ p− 1 is a first

order approximation when p is close to 1. Thus, taking p < 1 + ln(α)
n leads to a

probability of the observation less than α, and one can reject these values of p.
In particular, taking 1−α = 95 %, we keep values of p greater than 1− 3

n , and[
1− 3

n , 1
]

is a 95 % confidence interval. This result is known in clinical trial’s
literature as the Rule of Three [ELKT95]. Vice versa, in an experiment with no
negative outcome, one can conclude with confidence 1− α that the probability

of a positive outcome is greater than p after
⌈
ln(α)
ln(p)

⌉
positive trials.

The general case can be dealt with by using the Central Limit Theorem,
which shows that for a number n of experiments large enough (with respect to
p̂ = 1

n

∑
pi),
√
n(p̂− p)/(p̂(1− p̂)) is close to a Gaussian random variable with

law N (0, 1). This approximation is known to be unfit in many cases, and can be
improved by considering p̃ = 1

n+4 (
∑
pi + 2) rather than p̂ as shown by Brown

et al. [BCD01] (this paper also presents other estimators to build confidence
intervals in this situation; in particular, it proposes a revised method when p̃ is
close to 0 or 1, a situation in which the confidence interval below may be overly
optimistic). Then, with F the cumulative distribution function of N (0, 1),[

p̃−
√
p̃(1− p̃)/nF−1(1− α/2), p̃+

√
p̃(1− p̃)/nF−1(1− α/2)

]
is an 1 − α confidence interval for p. If we focus on a lower bound on the

parameter p, we can also use
[
p̃−

√
p̃(1− p̃)/nF−1(1− α), 1

]
as a confidence

interval of level 1− α.
Thus, from n independent experiments, of which ns have been a success, we

can affirm with confidence 95 % that the probability of success is greater than
ns+2
n+4 − 1.65

√
(ns+2)(n−ns+2)

(n+4)3 . We can note that when ns = n, this confidence

interval is valid, but much more conservative than the one obtained above, that
can thus be preferred in this particular case.

5.2 Statistical formulation as Bernoulli trials

Now, for each of the four discussed settings, presented in section 3, we can form
two series of Bernoulli trials based on collected data.

reference x reference Y
absolute precision Z = X − x Z = X − Y
relative precision Z = X/x− 1 Z = X/Y − 1

When the reference is a constant x, we consider n samples Xi. We form N
pieces of data by computing Zi = Xi − x or Zi = Xi/x− 1 respectively.

When the reference is another random variable Y , we form N pieces of data
by computing Zi = Xi − Yi or Zi = Xi/Yi − 1. In the case where X = Y and
we study the distance between samples of a random process, this requires 2N
samples from X.

26

From these N pieces of data, we form Bernoulli trials by counting the number
of success of

Ski = 1|Zi|<2−k

for studying k-th bit significance, and

Cki = 1b2k|Zi|c is even

for studying k-th bit contribution, where 1 is the indicator function.
From these two Bernoulli samples, the estimation can be made as above to

determine the probability that the k-th bit is significant and the probability
that it contributes to the result, for any k. The result can then be plotted as
two probability plots, one for significance, the other for the contribution. The
significance plot is non-increasing by construction, should start at 1 if at least
one bit can be trusted, and tends to 0. The contribution plot should tend to
1
2 in most cases, since the last digits are pure noise and are not affected by the
computation.

5.3 Evaluation

The main goal of the Bernoulli formulation is to deal with non normal distri-
butions. In this section, we evaluate the Bernoulli estimate on Cramer’s X[0]
samples which follow a normal distribution. This is to keep a consistent example
across the whole paper and to compare the results with the Normal formulation
estimates. Later, in section 6, we will apply the Bernoulli estimate to distribu-
tions produced by the industrial simulation codes EuroPlexus and code aster,
some of which are not normal.

Figure 9 plots the significance and the contribution per bit probabilities
for X[0] using the Bernoulli estimation. The estimation closely matches the
empirical results. It is interesting to compare the Bernoulli estimates with 30
samples to the Normal estimates in figures 4 and 7. The Bernoulli estimates are
less tight and more conservative. This is expected since they do not build upon
the normality assumption of the distribution.

If we are only interested in the number of significant digits, we can consider
the Bernoulli trial with no failed outcomes since it provides an easy formula
giving the required number of samples. In this case, the number of needed
samples is n = d− lnα

ln p e. We then determine the maximal index k for which the
first k bits of all n sampled results coincide with the reference:

ŝb = max
{
k ∈ {1, 2, . . . , 53} such that ∀i ∈ {1, 2, . . . , n} , Ski is true

}
. (15)

We applied this method to the X[0] sample from section 2.4. Assuming a
(1 − α) = 95% confidence interval and a probability of p = 99% of getting s
significant digits, we gather n = 299 samples. Among the collected samples, the
27th digit is sometimes different compared with the reference solution, but the
first 26 digits coincide for all samples. Therefore we conclude with probability
99% and 95% confidence, that the first ŝb = 26 binary digits are significant.

27

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y
significant (30 samples)

empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

significant (10000)
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

contributing (30 samples)
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

contributing (10000)
empirical
CI lower bound

Figure 9: Significance and contribution per bit for variable X[0] of the Cramer’s
system with 30 and 10000 samples.

6 Experiments on industrial use-cases

6.1 Reproducibility analysis in the Europlexus Simulation
Software

In this section we show how to apply our methodology to study the numerical
reproducibility of the state-of-the-art Europlexus [Eur18] simulator. Europlexus
is a fast transient dynamic simulation software co-developed by the French Com-
missariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), the Joint
Research Center (JRC) of the European Commission, and other industrial and
academic partners. While its first lines of code date back to the mid seventies,
the current source code has grown to about 1 million lines of Fortran 77 and
Fortran 90. Europlexus runs in parallel on distributed memory architectures
through a domain decomposition strategy, and on shared memory architectures
through loop parallelism.

Europlexus has two main fields of application: simulation of severe accidents
in nuclear reactors to check the soundness of the mechanical confinement bar-
riers of the radioactive matters for the CEA; and simulation of explosions in
public places in order to measure their impact on the surrounding citizens and
structures for the JRC.

It handles several non-linearities, geometric or material, some of which lead
to a loss of unicity of the evolution problem considered. This is for example the

28

0.15 0.10 0.05 0.00 0.05 0.10 0.15
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

z

0
1
2
3
4

5
6

789
10

11
12

13
14
15
16

IEEE execution

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

100 MCA samples

Figure 10: Europlexus buckling simulation of a doubly clamped column subject
to a vertical pressure. The nodes of the column are labeled in the plot from 0 to
16. The left plot shows the deterministic and reproducible results produced by
an IEEE-754 run of the simulation. In the right plot, a two-digits numerical error
is simulated by collecting one hundred MCA samples with Verificarlo (t = 50).
The buckling direction is completely dominated by the small numerical error
introduced.

case for some configurations with frictional contact between structures, or when
the loadings cause fracture and fragmentation of the matter. Another obvious
source of bifurcations of the dynamical system is the dynamic buckling.

Due to the small errors introduced by the floating point arithmetic, the intro-
duction of parallel processing in Europlexus raises a difficulty for the developer
and the users: the solutions of a given simulation may differ when changing
the number of processors used for the computation. We show here how the
confidence intervals proposed in this paper help the developer to design rele-
vant non-regression tests. To this end, we study in the following a simple case
which could serve as a non-regression test, and which is symptomatic of a non-
reproducibility related to FP arithmetic. It involves a vertical doubly clamped
column to top and bottom plates. A vertical pressure is applied by lowering the
top plate, which causes buckling of the column. The column is modeled as a set
of discrete elements (here segments) connected at moving points called nodes.

The left plot in figure 10 shows the result after 300 simulation time-steps
with the out-of-the-box Europlexus software using standard IEEE arithmetic.
The sequential result is deterministic and does not change when run multiple
times. We wish to study how the simulation is affected by small numerical
errors.

We run the same simulations but this time using the Verificarlo [DdOCP16]
compiler to introduce MCA randomized floating point errors with a precision
of t = 50. The cost to instrument the whole Europlexus software and its ac-
companying mathematical libraries was low. In particular no change to the
source-code was necessary thanks to the transparent approach to instrumen-

29

0.004 0.002 0.000 0.002 0.004 0.0060

50

100

150

200

250

300

2 1 0 1 2
Theoretical quantiles

0.004

0.002

0.000

0.002

0.004

Or
de

re
d

Va
lu

es

Probability Plot

Figure 11: Non normality of buckling samples on z axis and node 1. Shapiro
Wilk rejects the normality hypothesis.

tation of Verificarlo, only the build system had to be configured to use the
Verificarlo compiler.

The right plot in figure 10 shows the result of one hundred Verificarlo exe-
cutions. The direction of the buckling is chaotic and completely dominated by
the small FP errors introduced. This is not surprising as the buckling direction
is physically unstable.

When parallelizing Europlexus or making changes to the code, it is important
to check that there are no regression on standard benchmarks. Changing the
order of the floating point operations may introduce small rounding errors. As
we just saw, even small numerical errors change the buckling direction. This
makes such a benchmark unsuitable for classical non-regression tests.

The column is modeled as a set of discrete elements connected by nodes.
The distribution on the x-axis is normal but whatever the node there are no
significant digits among the samples. The variation between samples is strong
on the x-axis, the x position clearly cannot be used as a regression test.

The distribution along the z axis is more interesting as it is non normal for all
the nodes. Figure 11 shows the quantile-quantile plot for node 1 (Shapiro-Wilk
rejects normality with W = 0.9 and p = 1.8e− 06). Because the distribution on
the z axis is non normal we should apply the Bernoulli significant bits estimator.
In this study, we measure the number of significant digits considering the relative
error against the sample mean, so Z = X

µX
− 1.

To test the robustness of the proposed confidence interval, we computed the
Bernoulli estimate on the first 30 samples of the distribution. This corresponds
to a probability of 90% with a confidence of 95%. We also computed the Normal
estimate on the first 30 samples with the same probability and confidence.

Figure 12 compares the estimates to the empirical distribution observed
on 100 samples. The Bernoulli estimate on 30 samples is fairly precise and
accurately predicts the number of significant bits (except for node 2). The
clamped node 16 has a fixed position and therefore all its digits are significant.

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
node

1

2

4

8

16

32

52

z s
ig

ni
fic

an
t b

its

empirical (100 samples)
bernoulli 90% estimate (30 samples)
normal 90% estimate (30 samples)

Figure 12: Significant bits on the z axis distribution. Bernoulli estimation cap-
tures precisely the behavior (except for node 2). Normal formula overestimates
the number of digits, this is expected since the distribution is strongly non nor-
mal.

1 2 3 4 5 6 7 8 9 101112131415
node

0.2

0.1

0.0

0.1

0.2

z r
el

at
iv

e
er

ro
r

Bernoulli

1 2 3 4 5 6 7 8 9 101112131415
node

0.2

0.1

0.0

0.1

0.2

z r
el

at
iv

e
er

ro
r

Normal

samples in CI
outliers
confidence interval

samples in CI
outliers
confidence interval

Figure 13: Relative error between the samples and the mean of the z-axis distri-
bution. The shaded envelope corresponds to the computed confidence interval
with 30 samples. Black dots are samples that fall inside the CI. Red crosses
are outliers that fall outside the CI. In the Bernoulli case, only 3 samples out
of 70 fall outside of the interval; which is compatible with the 90% probability
threshold.

31

0.15 0.10 0.05 0.00 0.05 0.10 0.15
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

z

fragilized

IEEE execution

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

100 MCA samples

Figure 14: Europlexus buckling simulation with a fragilized node 2. By weak-
ening the column, the physical process becomes reproducible in the presence of
small numerical noise.

The other nodes have between 2 and 10 significant digits depending on their
position.

Figure 13 shows the expected relative error on each node. We see that the
Bernoulli estimate is robust and only mis-predicts the error on three samples
of node 2. On the other hand, as expected, the Normal formula is not a good
fit in this case due to the strong non normality of the distribution: the normal
estimate is too optimistic and fails to capture the variability of the distribution.

The previous experiments show that the x-axis has no significant digits and
that the z-axis distribution has between 2 and 10 significant digits. For example
node 6 has 4 significant digits on the z-axis. Therefore, if the practitioner uses
the z-axis position in this benchmark as a regression test, she should expect
the first four digits of the mantissa to match in 90 % of the runs. If the error
is higher than that then a numerical bug has probably been introduced in the
code.

Another possibility for the practitioner is to adapt slightly the benchmark
to make it more robust to numerical noise so it can be used in regression tests.
For example, we can introduce a small perturbation in the numerical model
by slightly moving node 2 along the x-axis. Then the buckling is expected
to always occur in the same direction. Figure 14 shows what happens when
node 2 is slightly displaced: the buckling becomes deterministic and robust to
numerical noise: 51 bits are significant for the x-axis and z-axis samples with
probability 90 %; the two bits of precision lost correspond to the stochastic noise
introduced. In this case, stochastic methods allow checking that the benchmark
has become deterministic and assessing its resilience to noise.

32

6.2 Verification of a numerical stability improvements in
code aster

code aster [Cod18] is an open source scientific computation code dedicated to
the simulation of structural mechanics and thermo-mechanics. It has been ac-
tively developed since 1989, mainly by the R&D division of EDF, a French
electricity utility. It uses the finite elements method to solve models coming
from the continuum mechanics theory, and can be used to perform simulations
in a wide variety of physical fields such as mechanics, thermal physics, acoustics,
seismology and others. code aster has a very large source code base, with more
than 1,500,000 lines of code. It also uses numerous third-party software, such
as linear solvers or mesh manipulation tools. Its development team has been
dedicated to code quality for a long time, and has accumulated several hundreds
of test cases which are run daily as part of the Verification & Validation process.

In a previous study [FL17] of code aster, the Verrou tool was used to assess
the numerical quality of quantities tested in the non-regression database. The
error localization features of Verrou were used to find the origin of errors in
the source code, and improvements were proposed. In this section, we first
summarize the results of this study, before using the new estimators described
in this paper to confidently assess the benefits of the proposed corrections.

The study focuses on one test case named sdnl112a [Ado16], which com-
putes 6 quantities related to the vibrations of steam generator tubes in nuclear
reactors. These quantities will be denoted here as a, b, c, d, e and f . In the
original implementation of code aster – which will be referred to as version0

in the following – the test case successfully completes on some hardware archi-
tectures, and fails on others. In this case, failing means that some quantities
are computed with relative discrepancies larger than 10−6 with respect to some
reference values. Using the Verrou tool to assess the numerical quality of these
results fails: some runs perturbated by random rounding bail out without pro-
ducing results. This exhibits somewhat severe instabilities, but does not allow
quantifying their impact on the results accuracy.

The methodology then proceeds to finding the origin of such instabilities
using Verrou. In a first stage, a test coverage comparison between two samples
uncovers an unstable branch which is reproduced, after simplification, in figure
15. A reformulation of the incriminated computation (cf. figure 16) is proposed,
which leads to a first corrected implementation, which will be referred to as
version1. This version still does not pass automated non-regression testing.
However, this time, assessing the stability of the results using Verrou and the
standard MCA estimator (with 6 samples) yields meaningful results. Quantity e
is evaluated to be the most problematic, with only 5 reliable significant decimal
digits (19 bits), when users expect at least 6. Other computed quantities seem
to meet the expected precision. For example, 9 decimal digits (30 bits) are
estimated to be reliably computed for quantity a. In the following, we will use
notations consistent with the rest of this paper, the computed result x being
either quantity a or e.

33

i f (a . eq . b) then
area = a

else
area = (b−a) / (log (b)− log (a))

endif

Figure 15: Unstable branch de-
tected in code aster

i f (abs (a−b) . l t . t o l ∗ min(abs (a) , abs (b))) then
area = a

else
r = a / b
area = a ∗ (r−1) / log (r)

endif

Figure 16: Unstable branch corrected

Implementation ŝmca comment
a e

version0 Fail Fail original version
version1 30.89 19.73 fixes an unstable test
version2 30.96 19.80 compensated summation
version3 32.82 21.65 fully compensated dot product

Table 1: Summary of the numerical quality assessment of 4 versions of
code aster, using Verrou and the standard MCA estimator with 6 samples.

In a second stage, the delta-debugging feature of Verrou is used to locate the
origin of remaining instabilities in version1. The delta-debugging pinpoints
the dot product in a sparse matrix vector product (routine mrmmvr). A first
approach to mitigate the loss of precision, implemented in version2, consists
in using a compensated summation algorithm in the dot product: algorithm
sum2 from [ORO05]. In version3, a fully compensated dot product algorithm
is implemented: algorithm dot2 from [ORO05].

Still using the standard MCA estimator, the study concludes that version2
slightly improves results precision: respectively 30 and 19 reliable bits for quan-
tities a and e. Only version3 meets user thresholds, with respectively 32 and
21 reliable bits for a and e. This version is also the only one to pass automated
non-regression and verification tests.

These different variants of code aster, along with the estimated quality of
their results, are summarized in table 1.

Therefore, version3 should be considered as a good candidate to fix the
implementation of code aster. However, this raises many questions. Are we
confident enough that this version really produces more accurate results? Should
results produced by “older” versions of code aster be considered invalid?

While 6 samples were enough for the purpose of debugging code aster, and in
light of what is at stake with a change in the actual implementation of code aster,
a higher degree of confidence should be required here.

Following the rules of Bernoulli experiments without failure and choosing
p = 1 − α = 0.995, the required number of samples is N = 1058. Table 2
reports accuracy estimations of the three versions of code aster for this new
number of samples. Four estimators are compared:

34

Implementation ŝµ̂b ŝieeeb ŝcnh (normality
test p-value)

ŝmca

version1 28 28 29.01 (0.10) 30.59
version2 29 29 29.55 (0.89) 31.13
version3 30 31 31.22 (0.52) 32.79

(a) quantity a

Implementation ŝµ̂b ŝieeeb ŝcnh (normality
test p-value)

ŝmca

version1 17 17 17.85 (0.10) 19.43
version2 18 18 18.39 (0.89) 19.97
version3 19 19 20.05 (0.52) 21.63

(b) quantity e

Table 2: Comparison of stochastic estimators for 3 version of code aster, with
1058 samples.

1. ŝµ̂b : estimator based on Bernoulli experiments without failure, with a ref-
erence result taken to be the average of all samples;

2. ŝieeeb : estimator similar to the previous one, but taking the ieee compu-
tation as reference;

3. ŝcnh: estimator based on the Centered Normal Hypothesis. Value µ̂ is
taken as the reference to satisfy the centered hypothesis. This estimator
should be used together with a normality test, such as Shapiro-Wilk, of
which the p-value is displayed in parentheses.

4. ŝmca: standard MCA estimator.

With the 4 estimators, version3 is more accurate for both variables. As
the normality test sometimes fails, this version can be selected only based on
ŝµ̂b and ŝieeeb , which give similar results.

When results follow a Gaussian distribution9, the estimate provided by ŝcnh
is slightly less conservative than ŝb while remaining, by construction, sound and
more conservative than ŝmca.

It is interesting to note here that the Bernoulli indicator ŝb is by definition an
integer, which can somewhat be limiting. Looking for example at ŝµ̂b for quan-
tity e, as computed by version2 and version3 and reported in Table 2b, is the
difference between 18 and 19 bits really significant, or does it only come from

9The normality of version1 results might be subject to caution, but the normality of
version2 and version3 was not rejected with Shapiro-Wilk p-values significantly higher
than 0.1.

35

definition (15) restricting ŝb to integer values? Using the centered normality hy-
pothesis estimator, the accuracy improvement between version2 and version3

can be estimated to 1.66 bits. It is also possible to generalize definition (15) to
fractional values of k. In this example, this would yield estimated numbers of
significant bits of 18.16 for version2 and 19.75 for version3 respectively, again
estimating the gain in accuracy to approximately 1.6 bits.

In any case, the results produced by version3 are confidently estimated to
be computed with 20 reliable bits for quantity e (i.e. relative error in the order
of 2−20 ≈ 9.5 × 10−7), which now satisfies the user requirement of 6 decimal
digits (although barely). Quantity a is estimated to be computed with at least
31 reliable bits, or approximately 4.7× 10−10 relative error. And it is also safe
to conclude that this implementation is the most robust among all three tested
versions. Version3 can thus be safely introduced in the code aster code base.

One could also wonder, in retrospect, whether results produced by the IEEE
execution of the original version of code aster (version0) were valid. The com-
parison of IEEE results produced by version0 and version3 yields relative
discrepancies of 4.29× 10−10 and 9.84× 10−7 respectively for quantities a and
e. These discrepancies have the same order of magnitude as the uncertainties
estimated above, an observation which does not invalidate the IEEE results
produced by version0.

7 Conclusion and Future Works

Stochastic arithmetic methods like MCA or CESTAC suffer from some limita-
tions. Some of these are addressed by the current work; some others are not
and should therefore be addressed in future work.

First, stochastic arithmetic methods provide accuracy assessments which are
valid only for the specific set of input data that were used at run-time. Similarly
to other run-time based analysis, the robustness of the conclusions can only be
obtained through the multiplication of test cases to maximize the coverage of
the analysis.

One way to overcome this limitation consists in using formal tools based
on the static analysis of the source code. The aim of such tools is to prove
that a given program follows its specifications for all possible input data in its
admissible range. However, although much progress has been done in this area
over the last few years [BCF+13], to the authors’ knowledge, the use of such
methods, especially in the field of scientific computing codes, is limited to small
programs.

Second, stochastic arithmetic methods do not provide a formal proof of cor-
rectness. Interval Arithmetic [Rum10] is an example of guaranteed run-time
analysis method, which provides a sound interval for the result of a floating
point computation. However, the use of such a method is not always tractable,
especially for complex programs with data dependent control paths. In that

36

case the solution often rapidly diverges to dramatic overestimation of the er-
ror and therefore does not bring useful information [Mar05]. Affine arithmetic
can somewhat mitigate this effect and extend the applicability of guaranteed
analyses to larger or more complex programs [GGP09].

On the other hand, stochastic arithmetic methods model round-off and can-
cellation errors with a Monte Carlo simulation. Stochastic methods scale well
to programs with greater code size and complexity and do not suffer from the
intractability problems of other. However, stochastic methods require multiple
executions of the program, but the cost can be offset since they run in an em-
barrassingly parallel way. Their estimates are based on a limited number of
random samples for each particular use-case input data. Therefore, as shown in
this paper, stochastic methods do not provide formal guarantees but statistical
confidence and probability.

Finally, there remains an important limitation to stochastic arithmetic meth-
ods, even using our methodology: the practical usefulness of quality assessments
provided by stochastic methods relies on the implied hypothesis that MCA or
CESTAC correctly model the mechanisms causing accuracy losses in industrial
calculations.

If a stochastic arithmetic method fails to reproduce the effect of floating-
point round-offs, threads scheduling changes or other important factors affect-
ing the accuracy of the computed result, then the quality assessment will be
affected not only by sampling errors as seen above, but also by model errors.
CESTAC and MCA have been designed to model realistically the round-off
and cancellation errors in IEEE-754 floating-point arithmetic. Practice shows
they correctly simulate floating-points bugs in many cases. However, it is pos-
sible to find corner cases where CESTAC or MCA diverge from the IEEE-754
computation, producing results which can be more accurate [CV93] or less ac-
curate [DdOCP16].

Since the confidence intervals introduced in this paper tackle sampling errors,
the next step consists in preventing and detecting model errors. This requires
in-depth understanding of the limitations and hypotheses of each stochastic
arithmetic model, documentation informing the practitioner of these hypothe-
ses and, when possible, automated run-time checks raising warnings when these
hypotheses are not met in a particular calculation. Some of the stochastic arith-
metic software tools, such as CADNA, implement runtime checks that detect
some cases violating the hypotheses of the model [JC08].

In the meantime, model errors can be mitigated with simple sanity checks.
For example, taking the IEEE-754 computation of the program as a reference
value is a good sanity check. Indeed, if the stochastic model diverges from the
IEEE-754 computation, the large error with respect to the reference value will
raise a red flag.

The results of this paper are applicable to both centered normal distribution
and general distributions. In the case of centered normal distributions, we show
that to reach a given confidence level it is enough to apply a constant shift to
the number of significant digits computed using the standard MCA estimator.

37

In the case of general distribution, we provide a simple formula to decide how
many samples are needed to reach a given confidence level. Appendix A provides
tables for the shifts and number of samples in the centered normal and general
cases.

This paper also introduces a novel measure for the precision of a result, the
number of contributing digits, after which digits are random noise. This metric
can help choosing how many digits to keep when forwarding a result to another
tool or storing a result during a checkpoint.

An accompanying Jupyter notebook 10 provides a reference Python imple-
mentation that can be used by the practitioner to compute the confidence in-
tervals from this paper in the normal and Bernoulli cases.

Acknowledgements

The authors thank Yohan Chatelain for helpful reviews and feedbacks and the
anonymous reviewers for their helpful comments.

References

[Ado16] André Adobes. Code Aster : Sdnl112. https://www.code-
aster.org/V2/doc/v14/en/man v/v5/v5.02.112.pdf, 2016.

[BCD01] Lawrence D Brown, T Tony Cai, and Anirban DasGupta. Interval
estimation for a binomial proportion. Statistical science, pages
101–117, 2001.

[BCF+13] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Mi-
caela Mayero, Guillaume Melquiond, and Pierre Weis. Wave
Equation Numerical Resolution: a Comprehensive Mechanized
Proof of a C Program. Journal of Automated Reasoning,
50(4):423–456, April 2013.

[BFM09] Sylvie Boldo, Jean-Christophe Filliâtre, and Guillaume
Melquiond. Combining coq and gappa for certifying floating-
point programs. In International Conference on Intelligent
Computer Mathematics, pages 59–74. Springer, 2009.

[BM11] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library
for proving floating-point algorithms in coq. In Computer Arith-
metic (ARITH), 2011 20th IEEE Symposium on, pages 243–252.
IEEE, 2011.

[CdOCP+18] Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit, David De-
four, Jordan Bieder, and Marc Torrent. VeriTracer: Context-
enriched tracer for floating-point arithmetic analysis. In

10https://github.com/interflop/stochastic-confidence-intervals

38

25th IEEE Symposium on Computer Arithmetic, ARITH 2018,
Amherst, MA, USA. June 25th-27th, 2018, page (to appear),
2018.

[Cha88] Françoise Chatelin. On the general reliability of the cestac
method. C. R. Acad.Sci. Paris, 1:851–854, 1988.

[Cod18] Code Aster. Structures and thermomechanics analysis for studies
and research. http://www.code-aster.org/, 2018.

[CPdOC+19] Yohan Chatelain, Eric Petit, Pablo de Oliveira Castro, Ghislain
Lartigue, and David Defour. Automatic exploration of reduced
floating-point representations in iterative methods. In Euro-Par
2019 Parallel Processing - 25th International Conference, Lecture
Notes in Computer Science. Springer, 2019.

[CV88] Jean-Marie Chesneaux and Jean Vignes. On the robustness of
the cestac method. C. R. Acad.Sci. Paris, 1:855–860, 1988.

[CV93] Jean-Marie Chesneaux and Jean Vignes. L’algorithme de gauss
en arithmétique stochastique. Comptes rendus de l’Académie
des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de
l’univers, Sciences de la Terre, 316(2):171–176, 1993.

[DDLM06] Florent De Dinechin, Christoph Quirin Lauter, and Guillaume
Melquiond. Assisted verification of elementary functions using
gappa. In Proceedings of the 2006 ACM symposium on Applied
computing, pages 1318–1322. ACM, 2006.

[DdOCIP20] David Defour, Pablo de Oliveira Castro, Matei Istoan, and Eric
Petit. Custom-precision mathematical library explorations for
code profiling and optimization. In 27th IEEE Symposium on
Computer Arithmetic, ARITH 2020, 2020.

[DdOCP16] Christophe Denis, Pablo de Oliveira Castro, and Eric Petit. Ver-
ificarlo: Checking floating point accuracy through monte carlo
arithmetic. In 23nd IEEE Symposium on Computer Arithmetic,
ARITH 2016, Silicon Valley, CA, USA, July 10-13, 2016, pages
55–62, 2016.

[DTLJ01] Olivier Dessombz, Fabrice Thouverez, J-P Lâıné, and Louis
Jézéquel. Analysis of mechanical systems using interval compu-
tations applied to finite element methods. Journal of Sound and
Vibration, 239(5):949–968, 2001.

[ELKT95] Ernst Eypasch, Rolf Lefering, C K Kum, and Hans Troidl. Prob-
ability of adverse events that have not yet occurred: a statistical
reminder. BMJ, 311(7005):619–620, 1995.

[Eur18] Europlexus. Project web page, 2018.

39

[FL15] Michael Frechtling and Philip H.W. Leong. Mcalib: Measur-
ing sensitivity to rounding error with monte carlo programming.
ACM Transactions on Programming Languages and Systems,
37(2):5, 2015.

[FL16] François Févotte and Bruno Lathuilière. VERROU: a CESTAC
evaluation without recompilation. In International Symposium
on Scientific Computing, Computer Arithmetics and Verified Nu-
merics (SCAN), Uppsala, Sweden, September 2016.

[FL17] François Févotte and Bruno Lathuilière. Studying the numer-
ical quality of an industrial computing code: A case study on
code aster. In International Workshop on Numerical Software
Verification, pages 61–80. Springer, 2017.

[GGP09] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. The zonotope
abstract domain taylor1+. In International Conference on Com-
puter Aided Verification (CAV), 2009.

[GP06] Eric Goubault and Sylvie Putot. Static analysis of numerical
algorithms. In International Static Analysis Symposium, pages
18–34. Springer, 2006.

[Han65] Eldon Hansen. Interval arithmetic in matrix computations, part
i. Journal of the Society for Industrial and Applied Mathematics,
Series B: Numerical Analysis, 2(2):308–320, 1965.

[Hig02] Nicholas J. Higham. Accuracy and stability of numerical algo-
rithms. Siam, 2002.

[HJVE01] Timothy Hickey, Qun Ju, and Maarten H Van Emden. Interval
arithmetic: From principles to implementation. Journal of the
ACM (JACM), 48(5):1038–1068, 2001.

[JC08] Fabienne Jézéquel and Jean-Marie Chesneaux. Cadna: a library
for estimating round-off error propagation. Computer Physics
Communications, 178(12):933 – 955, 2008.

[Kah66] William Kahan. Numerical linear algebra. In Canadian Mathe-
matical Bulletin, pages 756–801, 1966.

[Kah96] William Kahan. The improbability of probabilistic error analyses
for numerical computations. In UCB Statistics Colloquium, Evans
Hall edition, page 20, 1996.

[LCJ10] Jean-Luc Lamotte, Jean-Marie Chesneaux, and Fabienne
Jézéquel. Cadna c: A version of cadna for use with c or c++ pro-
grams. Computer Physics Communications, 181(11):1925–1926,
2010.

40

[Li13] Wenbin Li. Numerical accuracy analysis in simulations on hybrid
high-performance computing systems. PhD thesis, University of
Stuttgart, 2013.

[Mar05] Matthieu Martel. An overview of semantics for the validation of
numerical programs. In International Workshop on Verification,
Model Checking, and Abstract Interpretation, 2005.

[MKC09] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Intro-
duction to interval analysis, volume 110. Siam, 2009.

[Moo79] Ramon E Moore. Methods and applications of interval analysis,
volume 2. Siam, 1979.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In ACM SIG-
PLAN 2007 Conference on Programming Language Design and
Implementation (PLDI), 2007.

[ORO05] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate
sum and dot product. SIAM J. Sci. Comput., 26:1955–1988, 2005.

[RR05] Nathalie Revol and Fabrice Rouillier. Motivations for an arbi-
trary precision interval arithmetic and the mpfi library. Reliable
computing, 11(4):275–290, 2005.

[Rum99] Siegfried M Rump. Intlab—interval laboratory. In Developments
in reliable computing, pages 77–104. Springer, 1999.

[Rum10] Siegfried M Rump. Verification methods: Rigorous results using
floating-point arithmetic. Acta Numerica, 19:287–449, 2010.

[Sap11] Gilbert Saporta. Probabilités, analyse de données et statistiques
(3eme édition). Editions Technip, 2011.

[SP97] Douglas Stott Parker. Monte carlo arithmetic: exploiting random-
ness in floating-point arithmetic. Technical Report CSD-970002,
UCLA Computer Science Dept., 1997.

[Ver18a] Verificarlo. Project repository, 2018.

[Ver18b] Verrou. Project repository, 2018.

[Vig04] Jean Vignes. Discrete stochastic arithmetic for validating results
of numerical software. Numerical Algorithms, 37(1-4):377–390,
2004.

[VLP74] Jean Vignes and Michel La Porte. Error analysis in computing.
In Proceedings of IFP 1974, pages 610–614. IFP, 1974.

[Zel09] Andreas Zeller. Why Programs Fail. Morgan Kaufmann, Boston,
second edition, 2009.

41

A Tabulated numbers of samples and variance
shifts

This appendix presents tabulated values allowing the practitioner to easily
choose a desired number of samples (table 3) in the case of a general distribution
of results (Bernoulli framework), or determine the shifting levels to build sound
estimators from the sampled variance in the centered normality hypothesis (ta-
ble 4).

42

Confidence
level 1− α

Probability p

0.66 0.75 0.8 0.85 0.9 0.95 0.99 0.995 0.999

0.66 3 4 5 7 11 22 108 216 1079
0.75 4 5 7 9 14 28 138 277 1386
0.8 4 6 8 10 16 32 161 322 1609
0.85 5 7 9 12 19 37 189 379 1897
0.9 6 9 11 15 22 45 230 460 2302
0.95 8 11 14 19 29 59 299 598 2995
0.99 12 17 21 29 44 90 459 919 4603
0.995 13 19 24 33 51 104 528 1058 5296
0.999 17 25 31 43 66 135 688 1379 6905

Table 3: Number of samples necessary to obtain a given confidence interval with
probability p, according to the Bernoulli estimator (i.e. without any assumption
on the probability law).

43

p 0.66 0.66 0.75 0.75 0.75 0.9 0.9 0.9 0.95 0.95 0.95 0.99 0.99 0.99 0.995 0.995 0.995 0.999 0.999
1− α 0.66 0.75 0.66 0.75 0.9 0.75 0.9 0.95 0.9 0.95 0.99 0.95 0.99 0.995 0.99 0.995 0.999 0.995 0.999

N
sa

m
p
le
s

3 1.145 1.385 1.415 1.655 2.345 2.171 2.861 3.370 3.114 3.623 4.791 4.017 5.186 5.687 5.310 5.811 6.972 6.040 7.202
4 0.817 0.990 1.086 1.260 1.749 1.776 2.264 2.617 2.517 2.870 3.665 3.264 4.059 4.396 4.183 4.520 5.298 4.749 5.527
5 0.650 0.790 0.919 1.060 1.449 1.576 1.965 2.241 2.218 2.494 3.108 2.888 3.502 3.759 3.626 3.883 4.473 4.112 4.703
6 0.546 0.667 0.816 0.936 1.266 1.452 1.781 2.013 2.034 2.266 2.772 2.660 3.167 3.377 3.291 3.501 3.981 3.730 4.210
8 0.423 0.519 0.693 0.789 1.048 1.305 1.564 1.744 1.817 1.997 2.383 2.391 2.777 2.935 2.901 3.059 3.415 3.288 3.645
9 0.382 0.470 0.652 0.740 0.977 1.256 1.493 1.656 1.746 1.909 2.258 2.303 2.652 2.794 2.776 2.918 3.236 3.147 3.465
10 0.350 0.432 0.620 0.701 0.921 1.217 1.437 1.587 1.690 1.840 2.159 2.234 2.553 2.682 2.677 2.806 3.095 3.036 3.324
12 0.301 0.373 0.570 0.643 0.835 1.159 1.351 1.482 1.604 1.735 2.011 2.129 2.405 2.516 2.529 2.640 2.886 2.869 3.115
14 0.265 0.330 0.535 0.600 0.773 1.116 1.289 1.406 1.542 1.659 1.905 2.054 2.299 2.397 2.423 2.521 2.737 2.750 2.967
15 0.250 0.313 0.520 0.583 0.748 1.099 1.264 1.376 1.517 1.629 1.862 2.023 2.256 2.349 2.380 2.473 2.678 2.702 2.907
20 0.197 0.250 0.467 0.520 0.657 1.036 1.173 1.265 1.426 1.518 1.708 1.912 2.102 2.177 2.226 2.301 2.465 2.530 2.695
22 0.182 0.232 0.452 0.502 0.631 1.018 1.147 1.234 1.400 1.486 1.664 1.881 2.059 2.129 2.183 2.253 2.406 2.482 2.635
25 0.164 0.210 0.434 0.479 0.599 0.995 1.115 1.195 1.368 1.448 1.611 1.842 2.005 2.070 2.129 2.194 2.333 2.423 2.562
29 0.144 0.186 0.414 0.456 0.566 0.972 1.081 1.154 1.334 1.407 1.555 1.801 1.950 2.008 2.074 2.132 2.257 2.361 2.487
30 0.140 0.181 0.410 0.451 0.558 0.967 1.074 1.145 1.327 1.398 1.543 1.792 1.938 1.994 2.062 2.118 2.241 2.348 2.471
40 0.108 0.143 0.378 0.413 0.504 0.929 1.019 1.079 1.272 1.332 1.453 1.726 1.847 1.895 1.971 2.019 2.120 2.248 2.349
45 0.097 0.129 0.366 0.399 0.484 0.915 1.000 1.056 1.253 1.308 1.421 1.703 1.815 1.859 1.939 1.983 2.077 2.212 2.306
50 0.087 0.118 0.357 0.388 0.468 0.904 0.984 1.036 1.236 1.289 1.395 1.683 1.789 1.830 1.913 1.954 2.042 2.183 2.271
59 0.073 0.102 0.343 0.371 0.444 0.887 0.960 1.008 1.213 1.261 1.356 1.655 1.751 1.788 1.875 1.912 1.991 2.141 2.220
75 0.056 0.081 0.326 0.350 0.414 0.866 0.930 0.972 1.183 1.224 1.308 1.619 1.702 1.734 1.826 1.858 1.927 2.087 2.156
90 0.044 0.067 0.314 0.336 0.394 0.852 0.910 0.947 1.163 1.200 1.275 1.595 1.670 1.698 1.794 1.822 1.884 2.052 2.113
100 0.038 0.059 0.308 0.329 0.383 0.845 0.899 0.935 1.152 1.188 1.258 1.582 1.652 1.680 1.776 1.804 1.861 2.033 2.091
200 0.005 0.020 0.275 0.290 0.327 0.806 0.843 0.868 1.096 1.120 1.169 1.515 1.563 1.581 1.687 1.705 1.744 1.935 1.973
299 -0.008 0.004 0.261 0.273 0.304 0.789 0.820 0.839 1.072 1.092 1.131 1.486 1.525 1.540 1.649 1.664 1.695 1.893 1.924
300 -0.008 0.003 0.261 0.273 0.304 0.789 0.819 0.839 1.072 1.092 1.131 1.486 1.525 1.540 1.649 1.664 1.695 1.893 1.924
459 -0.020 -0.011 0.250 0.259 0.284 0.775 0.799 0.815 1.052 1.068 1.099 1.462 1.493 1.505 1.617 1.629 1.653 1.858 1.883
500 -0.022 -0.013 0.248 0.257 0.280 0.773 0.796 0.811 1.049 1.064 1.093 1.458 1.487 1.499 1.611 1.623 1.646 1.852 1.876
528 -0.023 -0.015 0.246 0.255 0.278 0.771 0.794 0.808 1.047 1.061 1.090 1.455 1.484 1.495 1.608 1.619 1.642 1.848 1.871
750 -0.031 -0.023 0.239 0.247 0.265 0.762 0.781 0.793 1.034 1.046 1.070 1.441 1.464 1.473 1.588 1.597 1.616 1.827 1.846
919 -0.034 -0.028 0.235 0.242 0.259 0.758 0.775 0.786 1.028 1.039 1.060 1.433 1.455 1.463 1.579 1.587 1.604 1.816 1.833
1000 -0.036 -0.029 0.234 0.241 0.257 0.756 0.773 0.783 1.026 1.036 1.057 1.430 1.451 1.459 1.575 1.583 1.599 1.812 1.828
1058 -0.037 -0.030 0.233 0.239 0.255 0.755 0.771 0.781 1.024 1.034 1.054 1.428 1.448 1.456 1.572 1.580 1.596 1.809 1.825
1379 -0.040 -0.035 0.229 0.235 0.249 0.751 0.764 0.773 1.017 1.026 1.044 1.420 1.438 1.444 1.562 1.568 1.582 1.798 1.812
5296 -0.054 -0.051 0.216 0.219 0.226 0.735 0.742 0.746 0.995 0.999 1.008 1.393 1.402 1.405 1.526 1.529 1.536 1.759 1.766
6905 -0.055 -0.053 0.214 0.217 0.223 0.733 0.739 0.743 0.992 0.996 1.003 1.390 1.397 1.400 1.521 1.524 1.530 1.754 1.760
10000 -0.057 -0.055 0.212 0.214 0.219 0.730 0.735 0.739 0.988 0.991 0.998 1.386 1.392 1.394 1.516 1.518 1.523 1.748 1.753

Table 4: Tabulated values of the shift δcnh used to compute sound lower bounds in the Centered Normality Hypothesis, for
various sets of parameters.

44

