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1 Niche model, primary producers and cannibal species20

Food webs are composed by S species (sensu trophic species) and one resource. Species are linked by21

L trophic interactions, so that food web connectance is C = L/S2 (directed connectance, as defined by22

Martinez, 1991). In order to statistically investigate the effect of trophic complexity, we need to produce23

millions of different food webs. We use the niche model (Williams & Martinez, 2000) to randomly build24

food webs with the desired number of species and an a priori fixed connectance. This stochastic model25

generates quickly numerous food webs with patterns that are roughly empirically consistent (Allesina26

et al., 2008; Cattin et al., 2004; Williams & Martinez, 2000). It is based on the principle of ecological27

niche (Hutchinson, 1957). A species i is characterized by a niche value ni, that indicate its position on the28

segment [0, 1], the niche axis (figure 1). Each species is also characterized by a continuous feeding range,29

a sub-interval of this axis. Species i feeds on all species whose niche value belongs to this range. It is30

defined by its center ci and its relative width ri. So this feeding range is [ci ± niri/2]. The niche value ni31

is uniformly drawn in the interval [0, 1]. The relative width of the feeding range ri is drawn from a beta32

distribution B
(
1, 1

2C − 1
)
, where C is the desired food web connectance. If C is high (low), the expected33

width of the feeding range is also high (low), and thus the expected number of prey species is high (low)34

too. The center of the feeding range ci is uniformly drawn in the interval [niri/2,min(ni, 1− niri/2)]35

so that the feeding range is always a sub-interval of [0, 1] (Williams & Martinez, 2004). Species whose36

feeding range does not contain any other species niche value do not feed on any prey species and define37

primary producers. Other species are called predators. Species whose niche value does not belong to any38

other species feeding range define top predators. Construction of the feeding range intervals allows the39

possibility that the feeding range of a species contains its own niche value, so that it becomes its own40

prey (this is cannibalism). A predator may even feed on prey of higher niche value than itself, what may41

generate trophic loops in resulting food webs. In order to have at least one primary producer in the food42

web, the species with the lowest ni has always ri = 0.43

The construction method in the niche model is such that the average connectance among numerous44

generated food webs is equal to the desired a priori connectance (through the second parameter of the45

beta distribution). Nevertheless, due to the variability of random draws, all food webs do not have46

exactly this desired connectance. Beside that, some generated food webs present unrealistic patterns. So47

we added a rejection step after food webs construction. We only studied food webs with a connectance48
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Figure 1. Scheme of the principle of the niche model (left, redrawn from Williams &
Martinez, 2000, 2004) and an example of a 20 species food web generated by this model
(right). This model is used to build all food webs studied in the remaining of the paper. The left
scheme represents a food web with S = 6 species. The set of all possible ecological niches is summarized
by the segment [0, 1]. The ecological niche of each species i is summarized by a niche value ni ∈ [0, 1].
Each species feeds on a continuous range of prey species defined by its center ci and its relative width ri.
Species which do not have any prey species in their feeding range are defined as primary producers. See
section 2.1 for details on how the parameters values are randomly drawn.

that deviated at most by 0.01 of the desired one, that are connected (no disconnected parts), and in which49

all predators feed (as a prey or through a food chain) upon at least one primary producer. The average50

number of primary producers and the average proportion of cannibal species in food webs generated by51

the niche model are shown in figure 2.52

2 Algorithm to classify asymptotic dynamics53

In order to characterize the asymptotic dynamics of the numerous food webs studied, we built the following54

automatized classification algorithm. The algorithm starts by a time Tini of initial simulation in order55

to limit transient effects due to the arbitrary initial condition. After that, the asymptotic dynamics is56

considered as associated to extinction(s) if at least one species has a biomass that becomes lower than57

an arbitrary extinction threshold Bmin. Else, if the system converges to a point in the phase space58

(criterion
∑
i∈S |dBi/Bidt| < εcv) where all eigenvalues of the jacobian matrix have negative real parts,59

the asymptotic dynamics is a positive equilibrium. As long as no criterion is reached, the simulation60
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(b)
average proportion of cannibal species
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Figure 2. Average number of primary producers and proportion of cannibal species in the
food webs studied. These numbers vary with trophic complexity (number of species and connectance).
Estimations are realized on 10 000 food webs generated using the niche model proposed by Williams &
Martinez (2000, 2004) for each trophic complexity.

continues. The whole simulation is divided in subparts of length Tsub. After each subpart, jacobian’s61

eigenvalues at the temporal average of the dynamic during the current subpart are computed. If all62

eigenvalues have a negative real part the simulation continues, and finally an equilibrium is reached in all63

our simulations ending before Tmax (see below). If at least one eigenvalue has a positive real part and if64

fluctuations do not change significantly between subparts of the simulation (
∑
i∈S |B̄i

m−B̄i
m−1| < εmean,65

with B̄i
m

being the average of Bi(t) for t ∈ [Tini, Tini + mTsub]), the asymptotic dynamics will be66

considered as a fluctuating dynamic without any extinction. This is done because the multiple estimations67

of the jacobian matrix indicate that the flow is divergent at the average of the fluctuating dynamics. This68

means that the presence of a stable equilibrium around this average is very unlikely. Sometimes, reaching69

one of the criteria needs a long time of simulation. So we fixed a maximal time of simulation Tmax. If70

the algorithm fails to classify a food web dynamics in one of the three classes before the simulation end,71

the dynamics is consider as unknown.72

The algorithm used to solve ODEs is a Runge-Kutta-Fehlberg-4,5 numerical scheme, with absolute73

and relative error tolerances set to 10−6. Preliminary tests showed that the choice of a specific numerical74

scheme among those tested does not affect the results. Tests were also done to choose the values of absolute75
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and relative error tolerance. The parameter values used for our algorithm were tuned after preliminary76

tests to improve the algorithm efficiency. We set Tini = 500, Tsub = 5 000, Tmax = 50Tsub + Tini,77

Bmin = 10−6, εcv = 10−6 and εmean = 0.01. Results are the same if a lower Bmin value is used to define78

extinctions. All simulations start with the arbitrary initial condition Bi(0) = 1 ∀i. We used only one79

initial condition. Tests with 10 random initial conditions on 20-species food webs (connectance equals to80

0.15) indicate that a small fraction of these food webs (< 1 %) can reach significantly different asymptotic81

dynamics depending on the initial condition. For computational reasons, we choose to use only one initial82

condition per food web.83

The algorithm failed to classify food web dynamics before reaching Tmax in 0.2 % of the food webs84

with Holling’s FR and 2 % with Ivlev. However, a study of the calculus made by the algorithm along the85

simulation allows to determine which asymptotic dynamics the system is likely to reach is the simulation86

continues. The proportion of these food webs which will likely reach a positive equilibrium is close to87

the proportion observed in food webs for which the algorithm determines the dynamics before Tmax88

is reached. For example, among the 2 % of unknown dynamics with Ivlev, 98.5 % are likely to reach89

a positive equilibrium (εcv <
∑
i∈S |dBi/Bidt| < 10−5) on average within the tested range of trophic90

complexity. This proportion is roughly equal to that observed in food webs for which dynamics have91

been determined (figure 2 in the article). So using a greater Tmax will not significantly affect our results.92

For some food webs which dynamics seems to converge on a positive equilibrium, the point reached93

is unstable. We found for some of these food webs that in fact the dynamics converges on a limit cycle94

which size is such that the algorithm considers it as an equilibrium. This happens when the food web is95

closed to a Hopf bifurcation (i.e. a pair of complex conjugated eigenvalues have small positive real parts).96

For some other food webs, we supposed that the dynamics fluctuates around one (or more) saddle(s)97

connected by an homoclinic or an heteroclinic loop (one eigenvalue is real and slightly positive), but98

stays bounded in a set of the phase space which size is again such that the algorithm considers it as an99

equilibrium. This phenomenon is negligible with Holling’s FR, with less than 10 cases observed among100

the hundreds thousands positive equilibria studied. With Ivlev’s functional response, it concerns up to101

4.5 % of the food webs with a positive equilibrium. This proportion decreases with trophic complexity,102

mainly with connectance. When functional response fit at low prey densities is improved (see section 3.3103

in the article), it concerns up to 30 % of the food webs with a positive equilibrium. We consider these104

food webs as food webs which reach a positive equilibrium, because the ecological meaning of such small105
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fluctuating dynamics is the same as an equilibrium. Considering these food webs as food webs with106

fluctuating dynamics, or neglecting them, do not affect our qualitative results and conclusions.107

3 Different parameter sets for Ivlev’s functional response108

Table 2 in the article presents the dynamics of 30 species food webs (with a connectance of 0.15) predicted109

by different parameter sets for Ivlev’s FR. These parameter sets come from different ways to fit the110

functional responses. To test the robustness of our main conclusions to the method of fit, some of111

these parameter sets are used to predict complexity-stability relationships with Ivlev’s FR. We used the112

parameter sets obtained with a fitting range Ti ∈ [0, 3.5] with both weight functions (uniform ωU and ωP113

presented in figure 1b of the article), as well as the parameter set obtained using the empirical distribution114

of total prey biomass available predicted by Holling’s FR (figure 3b in the article).115

The three parameter sets predict the same qualitative complexity-stability relationships as the ones116

presented in figure 2 in the article (figures 3-5). The two parameter sets obtained with the more classical117

methods (see discussion in section 3.6 in the article) predict a higher frequency of equilibrium dynamics118

than Holling’s FR (×2.1 for the uniform weight function, figure 3, and ×1.9 for the empirical distribution,119

figure 5). A higher frequency of equilibrium dynamics is also predicted by the parameter set derived using120

ωP over Ti ∈ [0, 3.5], despite the difference is quantitatively lower (×1.2, figure 4).121

4 Changes in model assumptions122

We tested the influence of three assumptions on food web dynamics: fixing the number of primary123

producer species in food webs, deleting cannibalistic links, setting the body mass of primary producers124

equals to 1. Some of these assumptions are made in some previous studies about complexity-stability125

relationships in food webs, but the same combination is not always use. So we tested their influence in126

order to get the widest picture as possible. These results are used in section 3.5 in the article to explain127

the complexity-stability relationships predicted by the model. Here, we present the dynamics obtained128

within the tested range of trophic complexity for different combinations of assumptions, as well as a short129

description of their trends.130

When food webs with a fixed number of five primary producer species are considered (figure 6),131
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Figure 3. Food web dynamics as a function of trophic complexity predicted by Ivlev’s
functional response, fitted using a uniform weight function over Ti ∈ [0, 3.5]. a: fraction of
food webs with at least one species extinction. b: fraction of persistent food webs with a stable positive
equilibrium. The number of food webs studied for each pair of parameters is enough to obtain 1 000 food
webs with a stable positive equilibrium.

Ivlev’s FR predicts on average less extinctions than Holling’s FR (from −10 % to +3 %). Their frequency132

increases with the number of species (on average ×1.6 with Holling’s FR and ×1.7 with Ivlev’ FR) and133

decreases with connectance (×0.8 and ×0.9). On average, there are 2.6 times more equilibrium dynamics134

with Ivlev’s FR (from 92 % to 99 %) than with Holling’s FR (from 15 % to 78 %). The frequency of135

equilibrium dynamics increases with connectance (×4.3 with Holling’s FR and +3 % with Ivlev’s FR).136

We do not discuss any effect of the number of species as the number of food webs studied is lower for137

food webs with 40 and 60 species.138

When body mass is set to 1 for primary producers (figures 7a,b and 8a,b), Ivlev’s FR predicts on139

average less extinctions than Holling’s FR (from −5 % to +2 %). Their frequency increases more with the140

number of species (×1.6 with Holling’s FR and ×1.7 with Ivlev’s FR) than with connectance (×1.2 with141

Holling’s FR and ×1.3 with Ivlev’s FR). Within the tested range of trophic complexity, the proportion142

of persistent food webs reaching an equilibrium is always 100 % with Ivlev’s FR and ranges from 38 %143

to 86 % with Holling’s FR. With the latter, this proportion increases with connectance (×2.2) and does144

not show a clear trend with the number of species (from −3 % to +4 % depending on connectance).145

When cannibalistic link are deleted and body mass is set to 1 for primary producers (figures 7c,d146
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Figure 4. Food web dynamics as a function of trophic complexity predicted by Ivlev’s
functional response, fitted using the weight function ωP over Ti ∈ [0, 3.5]. a: fraction of food
webs with at least one species extinction. b: fraction of persistent food webs with a stable positive
equilibrium. NA means that the precise data has not been acquired for computational reasons (fraction
of food webs with extinction(s) close to 1). The number of food webs studied for each pair of parameters
is enough to obtain 1 000 food webs with a stable positive equilibrium.

and 8c,d), Ivlev’s FR predicts less extinction(s) than Holling’s FR (from −9 % to no difference). Their147

frequency increases more with the number of species (×1.4 with Holling’s FR and ×1.5 with Ivlev’s FR)148

than with connectance (×1.2 and ×1.3). Within the tested range of trophic complexity, the proportion149

of persistent food webs reaching an equilibrium is always 100 % with Ivlev’s FR and ranges from 35 %150

to 81 % with Holling’s FR. With the latter, this proportion increases more with connectance (×2.2) than151

with the number of species (from −2 % to +7 % depending on connectance).152

5 Different metrics to quantify food web persistence and vari-153

ability154

We tested different metrics to quantify food web persistence and variability. Their estimation is based on155

the analysis of species biomass after a simulation of 100 000 time steps. Mean and variation coefficient156

were computed for each species over the last 10 000 time steps of the simulation.157

Relationships between these metrics and those used in the article are presented in figures 9 and 10158
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Figure 5. Food web dynamics as a function of trophic complexity predicted by Ivlev’s
functional response, fitted using the empirical distribution of prey biomass observed with
Holling’s disc equation (figure 3b in the article). a: fraction of food webs with at least one species
extinction. b: fraction of persistent food webs with a stable positive equilibrium. The number of food
webs studied for each pair of parameters is enough to obtain 1 000 food webs with a stable positive
equilibrium.

for Holling’s FR and Ivlev’s FR respectively. Both functional responses again predict similar food web159

persistence if it is quantified using the average proportion of extincted species in networks (mean species160

biomass below 10−6, panel a in both figures). Using this metrics, food web persistence also decreases161

more with the number of species than with connectance. Food web variability is again significantly162

lower with Ivlev’s FR (non-overlapping ranges of values between formulations) when different metrics163

are used. Metrics based on the variation coefficient predict different complexity-stability relationships164

between formulations (panels c and d). However, we will not discuss relationships obtained with Ivlev as165

the estimated values are close to 0 and within a small range of variations. Opposite complextity-stability166

relationships are also obtained if we focus on the fraction of food webs with fluctuating dynamics, whatever167

the number of species extinctions that occured (panel b). However, the predicted food web variability168

is still lower with Ivlev. Furthermore, considering food webs with extinctions, as for all these metrics,169

introduces a biais as the number of species and connectance are changed during simulation.170
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Figure 6. Food web dynamics as a function of trophic complexity predicted by Holling’s (a,
b) and Ivlev’s functional responses (c, d) for food webs with a fixed number of five primary
producer species. a, c: fraction of food webs with at least one species extinction. b, d: fraction of
persistent food webs with a stable positive equilibrium. NA means that the precise data has not been
acquired for computational reasons (fraction of food webs with extinction(s) close to 1). The number of
food webs studied for each pair of parameters is enough to obtain N food webs with a stable positive
equilibrium. For computational reasons, the value of N depends on the number of species (S), N = 100
if S = 60, N = 1 000 if S = 40 and N = 10 000 otherwise.
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Mi = 1 for primary producers
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Figure 7. Food web dynamics as a function of trophic complexity predicted by Holling’s
disc equation, if the body mass Mi of all primary producer species is set to 1, for food webs
in which cannibalistic links are kept (a, b) or removed (c, d). a, c: fraction of food webs with
at least one species extinction. b, d: fraction of persistent food webs with a stable positive equilibrium.
The number of food webs studied for each pair of parameters is enough to obtain 10 000 food webs with
a stable positive equilibrium.
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Figure 8. Food web dynamics as a function of trophic complexity predicted by Ivlev’s
functional response, if the body mass Mi of all primary producer species is set to 1, for
food webs in which cannibalistic links are kept (a, b) or removed (c, d). a, c: fraction of food
webs with at least one species extinction. b, d: fraction of persistent food webs with a stable positive
equilibrium. The number of food webs studied for each pair of parameters is enough to obtain 10 000
food webs with a stable positive equilibrium.

12



(a)
persistence

●

●
●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9

1.0

fraction food webs without extinction(s)

av
er

ag
e 

pr
op

or
tio

n 
of

 n
on

−e
xt

in
ct

ed
 s

pe
ci

es
 in

 fo
od

 w
eb

s

20−species

30−species

40−species

60−species

connectance 0.30

connectance 0.20

connectance 0.15connectance 0.10

(b)
variability

●

●

●

●

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

fraction of food webs with fluctuating dynamics
among food webs without extinction(s)

fr
ac

tio
n 

of
 fo

od
 w

eb
s 

w
ith

 fl
uc

tu
at

in
g 

dy
na

m
ic

s

(c)
variability

●

●

●

●

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.02

0.04

0.06

0.08

0.10

fraction of food webs with fluctuating dynamics
among food webs without extinction(s)

av
er

ag
e 

va
ria

to
n 

co
ef

fic
ie

nt
 o

f s
pe

ci
es

 b
io

m
as

s

(d)
variability

●

●

●

●

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.02

0.04

0.06

0.08

0.10

fraction of food webs with fluctuating dynamics
among food webs without extinction(s)

av
er

ag
e 

va
ria

tio
n 

co
ef

fic
ie

nt
 o

f
no

n−
ex

tin
ct

ed
 s

pe
ci

es
 b

io
m

as
s

Figure 9. Relationships between different measures of the persistence (a) and the variability
(b-d) of the food webs modeled using Holling’s disc equation. The x-axis corresponds to the
measure used in our study whereas the y-axis corresponds to another one. Each point indicates the
values obtained for 10 000 food webs with the same number of species and connectance. Sixteen pairs
of values are studied: four number of species (20: circle, 30: square, 40: diamond, 60: triangle) times
four connectance levels (0.10: blue, 0.15: green, 0.20: red, 0.30: black). Simulations of 100 000 time
units were performed to estimate the measures which are not used in the remaining of our study. The
average and the standard deviation of species biomass were calculated across the 10 000 last time units.
Extincted species are those with an average biomass below 10−6.
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Figure 10. Relationships between different measures of the persistence (a) and the variabil-
ity (b-d) of the food webs modeled using Ivlev’s functional response. The x-axis corresponds
to the measure used in our study whereas the y-axis corresponds to another one. Each point indicates
the values obtained for 10 000 food webs with the same number of species and connectance. Sixteen pairs
of values are studied: four number of species (20: circle, 30: square, 40: diamond, 60: triangle) times
four connectance levels (0.10: blue, 0.15: green, 0.20: red, 0.30: black). Simulations of 100 000 time
units were performed to estimate the measures which are not used in the remaining of our study. The
average and the standard deviation of species biomass were calculated across the 10 000 last time units.
Extincted species are those with an average biomass below 10−6.
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6 Identification of stabilizing factors through Generalized Mod-171

elling172

We want to identify the stabilizing factors in the food web model for any type-II functional response and173

use them to explain our results from dynamical simulations. Here, we start by explaining how we derived174

the generalized model use to identify these factors expressed in terms of generalized parameters. Then175

we summarize the key results about the role of generalized parameters in equilibria stability. Finally,176

these generalized parameters are calculated in food webs at equilibrium in our dynamical simulations to177

explain why more equilibrium dynamics are predicted by Ivlev’s FR.178

To build the generalized model, we first consider the differential system made of S equations corre-179

sponding to S species (1) (see section 2.2 of the article for details):180

dBi

dt
= λqφi Bi + λ

∑
j∈Ri

Gφi,jBi −
∑
j∈Ci

Gφj,iBj − αiBi − βiB
2
i i = 1, ..., S (1)

without specifying the functional response Gφi,j and the parameter values. We only claim that the func-181

tional response assumes no prey switching with constant fractional foraging effort, fulfills properties):182

Gφ,toti ∈ C2, Gφ,toti (0) = 0, Gφ,toti ≥ 0, Gφ,toti

′
(Ti) > 0, Gφ,toti

′′
(Ti) < 0, lim

Ti→+∞
Gφ,toti (Ti) < +∞. (2)

So we consider in fact a family of models. Generalized modelling supposes that some models in this183

family have positive equilibria. The qualitative stability of a positive equilibrium is then studied using184

the Jacobian matrix:185 

Jφi,i = λ

qφi +Gφ,tot∗i +B∗i

∂Gφ,toti

∂Bi

∣∣∣∣∣∣∣
B∗

−Gφ∗i,i − ∑
k∈Ci

B∗k

∂Gφk,i

∂Bi

∣∣∣∣∣∣∣
B∗

− αi − 2βiB
∗
i i = 1, ..., S

Jφi,j = λB∗i

∂Gφ,toti

∂Bj

∣∣∣∣∣∣∣
B∗

−Gφ∗j,i +
∑
k∈Ci

∂Gφk,i

∂Bj

∣∣∣∣∣∣∣
B∗

i, j = 1, ..., S, j 6= i

(3)

evaluated at a positive equilibrium B∗ = (..., B∗i , ...). Then we re-write this matrix using generalized186
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parameters that describe the system close to this equilibrium (table 1):187


Ji,i = τi

[
1− (1− δi)µi − δi

(
ρi,i(1− λγi) +

∑
k∈Ci

ρk,i[(γk − 1)χk,i + 1]

)]

Ji,j = τiνi,j

[
θiγiχi,j − δi

(
ρj,i +

∑
k∈Ci

ρk,i(γk − 1)χk,j

)] ∀i, j ∈ {1, ..., S}

j 6= i

(4)

Details on the derivation procedure to define generalized parameters are presented in Gross & Feudel188

(2006) and Yeakel et al. (2011). Then, equilibrium stability is studied as a function of the generalized189

parameter values without specific assumptions on the functions and original parameter (such as aφ or190

hφ) values behind them.191

This generalized model is an extension of a model proposed by Plitzko et al. (2012). First, we correct a192

mistake in Plitzko et al. (2012)’s calculus by adding the parameter νi,j (a biomass ratio) to non-diagonal193

terms. We checked that this mistake does not affect results presented by Plitzko et al. (2012) under194

the assumptions they made for their numerical study. Second, we also complete the diagonal terms to195

take cannibalism into account. Finally, we provide a generalized parameter formulation independent of196

a specific functional response.197

For food webs made with S species, there are 5S(S + 1)/2 degrees of freedom in the parameter set198

of the generalized model (4) if no special assumption is made. It is not possible to realize a bifurcation199

analysis like for a predator-prey model (Aldebert et al., 2016). Furthermore, results depend on the trophic200

complexity and food web structure. So, numerous food webs have to be studied to obtain statistical201

results. To avoid unreasonable computing costs, we need to make some assumptions to decrease the202

number of degrees of freedom and study only some parameters of interest. As in all this study, we first203

assume that a species is either a primary producer (θi = 0) or a predator (θi = 1), the selection being204

done during food web construction by the niche model (see section 2.1 in the article for details). Since205

Gross et al. (2009) reported that the time scale τi does not significantly affect equilibria stability, it is206

arbitrarily set to 1 for all species. Then, as the mean biomass ratio is ν̄ = 1 by definition, we assume207

νi,j = 1 ∀i, j. It implies that B∗i = B∗j ∀i, j and so that χi,j = 1/|Ri| if j ∈ Ri (0 otherwise). Note that208

1/|Ri| is also by definition the mean fraction of total prey biomass represented by each prey of species i.209

Similarly, 1/|Ci| is by definition the mean fraction of total predative losses represented by each predator210

of species i. We assume ρj,i = 1/|Ci| if j ∈ Ci (0 otherwise). Values of other parameters are assumed211
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Table 1. Formulation and ecological meaning of the generalized parameters used to build
the generalized model. Generalized parameters are used in the generalized model to describe the local
dynamics of the system close to an equilibrium. Their value are independent of the specific formulation
of the functional response because they only describe a local dynamics. So the stability of an equilibrium
depends only of their value at these equilibrium. The scale parameters describe the time scale of species
dynamics (for τi) and the relative contribution of the different processes to this dynamics. Elasticities
(called exponent parameters by some authors) measure the non-linearity of processes.

generalized parameter formulation ecological meaning
scale parameters

τi = λ
(
qφi +Gφ,tot∗i

)
=

∑
j∈Ci

Gφ∗j,i
B∗j

B∗i
+
(
α+ βB∗i

)
M−0.25
i

time scale of species i’s dynamics

θi =
1

τφi

λGφ,tot∗i fraction of gains of species i obtained by predation

1− θi =
1

τφi

λqφi fraction of gains of species i obtained by primary production

δi =
1

τφi

∑
j∈Ci

Gφ∗j,i
B∗j

B∗i
fraction of losses of species i due to predation

1− δi =
1

τφi

(
α+ βB∗i

)
M−0.25
i fraction of losses of species i due to intrinsic dynamics

χi,j =


B∗j

T ∗i
if j ∈ Ri

0 otherwise

fraction of gains by predation of species i from species j

ρi,j =


1

τφi δ
φ
i

Gφ∗j,i
B∗j

B∗i
if i ∈ Rj

0 otherwise

fraction of losses by predation of species i due to species j

νi,j = B∗i /B
∗
j biomass ratio between species i and j

elasticities (also called exponent parameters)

µi = 1 +
βB∗i

α+ βB∗i
∈ [1, 2] non-linearity of intrinsic mortality for species i

γi = gφi
′
(1) ∈ [0, 1]

with ti =
Ti

T ∗i
and gφi (ti) :=

Gφ,toti (tiT
∗
i )

Gφ,toti (T ∗i )

slope of the normalized functional response of species i

to be constant across a food web. Numerical simulations were realized with µi = µ ∈ {4/3, 3/2, 5/3},212

δi = δ ∈ {1/3, 1/2, 2/3} if species i has predators and δi = 0 if species i is a top-predator, γi = γ ∈ [0, 1]213

(discretized by step of 0.01) and λ ∈ {0, 1/4, 1/2, 3/4, 1}. We studied food webs of varying number of214

species S ∈ {20, 30, 40, 60} and connectance C ∈ {0.10, 0.15, 0.20, 0.30} as in the rest of this study.215

According to the jacobian matrix of the generalized model (4), the proportion of food webs with a216

stable positive equilibrium is higher if density-dependent mortality is high (high value of µ) and/or if217

there is a small fraction of losses due to predation (low value of δ, figure 11). This corresponds to a high218

value of (1− δ)µ, which plays a negative role in the diagonal elements of the jacobian matrix. Negative219

terms in diagonal elements of the jacobian matrix are known to increase local stability of equilibria in220
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some food web models (Takeuchi, 1996). If (1 − δ)µ is high, more food webs have a stable equilibrium221

for intermediate values of γ, whatever the trophic complexity. Otherwise, the proportion of all the food222

webs with a stable equilibrium increases on average with γ values.223

For each set of generalized parameter valued, we use a statistical linear model to quantify the effect of224

the number of species and connectance on the proportion of food webs with a stable positive equilibrium225

(arrows in figure 11). For low values of γ (high prey biomass), there is a positive complexity-stability226

relationship. It is mainly due to connectance, which affect more the fraction of food webs with a stable227

equilibrium than the number of species. For intermediate values of γ, the fraction of food webs with a228

stable equilibrium is increased by connectance and decreased by the number of species. For high values229

of γ (low prey biomass), there is a negative complexity-stability relationship, with a similar impact of the230

number of species and connectance. The assimilation efficiency λ slightly affects the quantitative results,231

but not the qualitative trends (figures 12 and 13). The highest proportions of food webs with a stable232

equilibrium are obtained in the limit case of λ = 0, and the lowest in the opposite limit case λ = 1. On233

average, deleting cannibalistic links decreases the proportion of food webs with a stable equilibrium but234

do not affect the qualitative results on complexity-stability relationships (figure 14). Considering only235

food webs with a fixed number of primary producers has only a little quantitative impact on the results236

(figures 15 and 16) as the positive equilibrium is assumed to exist.237

To summarize, the stabilizing factors of positive equilibria found in a predator-prey model (Aldebert238

et al., 2016) are also observed at the food web scale. Nevertheless they are less straightforward, because239

of the interplay with trophic complexity. For example, highest stability is found for a high or intermediate240

slope of the functional response γ, depending on other parameter values and trophic complexity.241

We calculated generalized parameters for food webs at positive equilibrium simulated in figure 3 of242

the article. Generalized parameters can be viewed as indicators of the food web functioning close to this243

equilibrium. Because the statistical distributions of species biomass at equilibrium are similar between244

functional responses (figure 17a), similar distributions for the parameters (such as δi) and for the non-245

linearity of species mortality µi are also observed (figure 17c,d). At the opposite, different distributions are246

observed for the normalized slope of the functional response γi (figure 17b). The average value obtained247

with Ivlev’s FR (γ̄ = 0.60) is 1.6 times higher than the average obtained with Holling’s functional response248

(γ̄ = 0.37).249
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Figure 11. Fraction of food webs with a stable positive equilibrium for the generalized
model, as a function of generalized parameters values and trophic complexity (number of
species and connectance). Food web topology is generated using niche model (Williams & Martinez,
2000, 2004). For each set of parameters, 10000 food webs are studied. Assimilation efficiency λ is set to
0.75 (the value has a little impact on the results).
Results are presented for 9 pairs of density-dependence of mortality (µ, varying across columns) and
fraction of losses due to predation (δ, varying across rows). In each panel, the fraction of food webs
with a stable positive equilibrium is presented as a function of the slope of the normalized functional
response (γ, discretized by step of 0.01). Results were estimated for 16 pairs of connectance (C ∈
{0.10, 0.15, 0.20, 0.30}) and number of species (S ∈ {20, 30, 40, 60}). The grey area on each graph indicates
the range of values obtained. For each value of γ, a linear model y = z1 + z2S + z3C + ε (with y the
fraction of stable food webs, z = t(z1, z2, z3) ∈ R3 the vector of parameters and ε the error of prediction)
is used to estimate the respective effect of the number of species and connectance on the proportion of
food webs with a stable positive equilibrium. Changes in the sign of z2 and/or z3 occur at values of γ
corresponding to vertical dashed lines. Blue and red arrows represent respectively the average z1 and
z2 between two vertical dashed lines. The length of the arrow’s tail is equal to the average value of its
associated parameter (normalized value of the parameter readable on the left axis with a ±0.01 precision).
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Figure 12. Fraction of food webs with a stable positive equilibrium for the generalized
model, as a function of generalized parameters values and trophic complexity (number of
species and connectance) when assimilation efficiency λ is set to 0. Food web topology is
generated using niche model (Williams & Martinez, 2000, 2004). For each set of parameters, 10000 food
webs are studied.
Results are presented for 9 pairs of density-dependence of mortality (µ, varying across columns) and
fraction of losses due to predation (δ, varying across rows). In each panel, the fraction of food webs
with a stable positive equilibrium is presented as a function of the slope of the normalized functional
response (γ, discretized by step of 0.01). Results were estimated for 16 pairs of connectance (C ∈
{0.10, 0.15, 0.20, 0.30}) and number of species (S ∈ {20, 30, 40, 60}). The grey area on each graph indicates
the range of values obtained. For each value of γ, a linear model y = z1 + z2S + z3C + ε (with y the
fraction of stable food webs, z = t(z1, z2, z3) ∈ R3 the vector of parameters and ε the error of prediction)
is used to estimate the respective effect of the number of species and connectance on the proportion of
food webs with a stable positive equilibrium. Changes in the sign of z2 and/or z3 occur at values of γ
corresponding to vertical dashed lines. Blue and red arrows represent respectively the average z1 and
z2 between two vertical dashed lines. The length of the arrow’s tail is equal to the average value of its
associated parameter (normalized value of the parameter readable on the left axis with a ±0.01 precision).
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Figure 13. Fraction of food webs with a stable positive equilibrium for the generalized
model, as a function of generalized parameters values and trophic complexity (number of
species and connectance) when assimilation efficiency λ is set to 1. Food web topology is
generated using niche model (Williams & Martinez, 2000, 2004). For each set of parameters, 10000 food
webs are studied.
Results are presented for 9 pairs of density-dependence of mortality (µ, varying across columns) and
fraction of losses due to predation (δ, varying across rows). In each panel, the fraction of food webs
with a stable positive equilibrium is presented as a function of the slope of the normalized functional
response (γ, discretized by step of 0.01). Results were estimated for 16 pairs of connectance (C ∈
{0.10, 0.15, 0.20, 0.30}) and number of species (S ∈ {20, 30, 40, 60}). The grey area on each graph indicates
the range of values obtained. For each value of γ, a linear model y = z1 + z2S + z3C + ε (with y the
fraction of stable food webs, z = t(z1, z2, z3) ∈ R3 the vector of parameters and ε the error of prediction)
is used to estimate the respective effect of the number of species and connectance on the proportion of
food webs with a stable positive equilibrium. Changes in the sign of z2 and/or z3 occur at values of γ
corresponding to vertical dashed lines. Blue and red arrows represent respectively the average z1 and
z2 between two vertical dashed lines. The length of the arrow’s tail is equal to the average value of its
associated parameter (normalized value of the parameter readable on the left axis with a ±0.01 precision).
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Figure 14. Fraction of food webs with a stable positive equilibrium for the generalized
model, as a function of generalized parameters values and trophic complexity (number
of species and connectance) in absence of cannibalism. Food web topology is generated using
niche model (Williams & Martinez, 2000, 2004). For each set of parameters, 10000 food webs in which
cannibalistic links have been removed are studied.
Results are presented for 9 pairs of density-dependence of mortality (µ, varying across columns) and
fraction of losses due to predation (δ, varying across rows). In each panel, the fraction of food webs
with a stable positive equilibrium is presented as a function of the slope of the normalized functional
response (γ, discretized by step of 0.01). Results were estimated for 16 pairs of connectance (C ∈
{0.10, 0.15, 0.20, 0.30}) and number of species (S ∈ {20, 30, 40, 60}). The grey area on each graph indicates
the range of values obtained. For each value of γ, a linear model y = z1 + z2S + z3C + ε (with y the
fraction of stable food webs, z = t(z1, z2, z3) ∈ R3 the vector of parameters and ε the error of prediction)
is used to estimate the respective effect of the number of species and connectance on the proportion of
food webs with a stable positive equilibrium. Changes in the sign of z2 and/or z3 occur at values of γ
corresponding to vertical dashed lines. Blue and red arrows represent respectively the average z1 and
z2 between two vertical dashed lines. The length of the arrow’s tail is equal to the average value of its
associated parameter (normalized value of the parameter readable on the left axis with a ±0.01 precision).
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Figure 15. Fraction of food webs with a stable positive equilibrium for the generalized
model, as a function of generalized parameters values and trophic complexity (number of
species and connectance) for food webs with a fixed number of primary producer species.
Food web topology is generated using niche model (Williams & Martinez, 2000, 2004). For each set of
parameters, 10000 food webs with five primary producers are studied. Assimilation efficiency λ is set to
0.75 (the value has a little impact on the results).
Results are presented for 9 pairs of density-dependence of mortality (µ, varying across columns) and
fraction of losses due to predation (δ, varying across rows). In each panel, the fraction of food webs
with a stable positive equilibrium is presented as a function of the slope of the normalized functional
response (γ, discretized by step of 0.01). Results were estimated for 16 pairs of connectance (C ∈
{0.10, 0.15, 0.20, 0.30}) and number of species (S ∈ {20, 30, 40, 60}). The grey area on each graph indicates
the range of values obtained. For each value of γ, a linear model y = z1 + z2S + z3C + ε (with y the
fraction of stable food webs, z = t(z1, z2, z3) ∈ R3 the vector of parameters and ε the error of prediction)
is used to estimate the respective effect of the number of species and connectance on the proportion of
food webs with a stable positive equilibrium. Changes in the sign of z2 and/or z3 occur at values of γ
corresponding to vertical dashed lines. Blue and red arrows represent respectively the average z1 and
z2 between two vertical dashed lines. The length of the arrow’s tail is equal to the average value of its
associated parameter (normalized value of the parameter readable on the left axis with a ±0.01 precision).
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Figure 16. Fraction of food webs with a stable positive equilibrium for the generalized
model, as a function of generalized parameters values and trophic complexity (number of
species and connectance) for food webs with a fixed number of primary producer species
and in absence of cannibalism. Food web topology is generated using niche model (Williams &
Martinez, 2000, 2004). For each set of parameters, 10000 food webs with five primary producers and in
which cannibalistic links have been removed are studied.
Results are presented for 9 pairs of density-dependence of mortality (µ, varying across columns) and
fraction of losses due to predation (δ, varying across rows). In each panel, the fraction of food webs
with a stable positive equilibrium is presented as a function of the slope of the normalized functional
response (γ, discretized by step of 0.01). Results were estimated for 16 pairs of connectance (C ∈
{0.10, 0.15, 0.20, 0.30}) and number of species (S ∈ {20, 30, 40, 60}). The grey area on each graph indicates
the range of values obtained. For each value of γ, a linear model y = z1 + z2S + z3C + ε (with y the
fraction of stable food webs, z = t(z1, z2, z3) ∈ R3 the vector of parameters and ε the error of prediction)
is used to estimate the respective effect of the number of species and connectance on the proportion of
food webs with a stable positive equilibrium. Changes in the sign of z2 and/or z3 occur at values of γ
corresponding to vertical dashed lines. Blue and red arrows represent respectively the average z1 and
z2 between two vertical dashed lines. The length of the arrow’s tail is equal to the average value of its
associated parameter (normalized value of the parameter readable on the left axis with a ±0.01 precision).
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Figure 17. Estimated probability densities of the species biomass and 3 generalized pa-
rameters for food webs which reach a positive equilibrium at the end of the dynamical
simulations for Holling’s disc equation (plain) and Ivlev’s functional response (dashed).
Generalized parameters are here used as indicators to describe system dynamics close to equilibrium.
Results are obtained from 160 000 food webs with 16 pairs of number of species and connectance values
(10 000 food webs by pair of values). The null values (γi for primary producers and δi for top-predators)
are not taken into account. Density estimates are realized using non-parametric kernel methods (Simonoff,
1996) with the same weight for all simulated food webs.
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