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REPRESENTATIONS OF AFFINE GROUP SCHEMES OVER

GENERAL RINGS

GIULIA BATTISTON AND MATTHIEU ROMAGNY

In memory of Michel Raynaud

Abstract. Among all a�ne, �at, �nitely presented group schemes, we focus
on those that are pure; this includes all groups which are extensions of a �nite
locally free group by a group with connected �bres. We prove that over an
arbitrary base ring, pure group schemes have a classifying space satisfying the
resolution property, an embedding into some GLn, a tensor generator for their
category of �nite type representations, and can be reconstructed from their
category of projective �nite type representations. In the case of an Artinian
base ring, the same is true for all a�ne, �at, �nitely presented group schemes;
this answers a question of Conrad. We also prove that quotients of pure
groups by closed pure subgroups over an arbitrary base scheme are Zariski-
locally quasi-projective. This answers a question of Raynaud, in the case of
a�ne groups. We give various applications.

1. Introduction

In this paper we are interested in some properties of a�ne group schemes that
are related to their categories of representations. To make this more precise, we
introduce the category of a�ne schemes (Aff), the �bred category of a�ne, �at,
�nitely presented group schemes C → (Aff), and the following full subcategories:

• Clin: group schemes G→ S which are linear, in other words admit a closed
embedding G ↪→ GLn,R for some n > 0.

• Cmono: group schemes whose category Rep(G) of �nite type representations
possesses a tensor generator (we shall call them monogenic).

• Crecons: group schemes that satisfy Tannaka reconstruction, that is can be
reconstructed from the category PRep(G) of representations whose under-
lying module is projective of �nite type.

• Cresol: group schemes G whose classifying stack BG satis�es the resolution
property (see beginning of Section 2 for the de�nitions).

Following custom, for a subcategory D ⊂ C we write D(R) instead of D(S) when
S = Spec(R). One thing we want to know is whether D(R) is �big� for some rings R.
For example D(k) = C (k) for all four categories in the simplest case where R = k
is a �eld; we review the current state of our knowledge on this question below.

In order to gain better understanding of these categories, it is natural to exploit
the group-theoretic and algebro-geometric features of the situation. For example,
the following properties may help in producing objects of D by �at descent, ap-
proximation, or extensions:

(α) D is a stack for the fpqc topology.
(β) D is limit-preserving, or in other words locally of �nite presentation.
(γ) D is stable under group extensions.
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2 GIULIA BATTISTON AND MATTHIEU ROMAGNY

However, the relations between Representation Theory and Geometry are often
unpredictable, and it is di�cult in general to decide whether the categories C∗ with
∗ ∈ {lin,mono, recons, resol} satisfy these properties. In fact, it is not even clear a
priori if the C∗ are �bred subcategories of C .

∴

Let us come to our contributions. We propose the subcategory Cp ⊂ C of pure
group schemes as the �good� object of study in relation with the questions raised.
The notion of purity was introduced by Raynaud and Gruson in [RG71] in order to
understand the geometric meaning of projectivity of modules; it is de�ned in terms
of a kind of �valuative criterion at generic points� (see 3.1 for the precise de�nition).
While �at morphisms have �bres enjoying some continuity properties, �at and pure
morphisms have �bres even closer to each other. The power and relevance of this
notion is proved by the following landmark result of Raynaud and Gruson.

Theorem. Let R → A be a �at, �nitely presented morphism of rings. Then the
morphism on spectra is pure if and only if A is a projective R-module.

Proof. See [RG71, Première partie, Th. 3.3.5]. �

This gives a way to think about groups in Cp that may be more appealing
to algebraists, and the index `p' in Cp may be interpreted as meaning `pure' or
`projective' according to the reader's preference.

Our �rst main theorem builds on the results of Raynaud and Gruson; it gives the
�rst reasons why Cp is arguably a good object, namely, it enjoys some geometric
properties and is big enough.

Theorem A. (See 3.4, 3.5, 3.7, 3.8)

(1) Cp satis�es properties (α), (β), (γ);

(2) Cp contains all group schemes with connected �bres, all �nite �at group
schemes, and all extensions of such groups;

(3) Cp(R) = C (R) if R is a zero-dimensional ring.

Next we enquire about the relations between Cp and the other four categories
presented at the outset. Over �elds or Noetherian base rings, classical arguments
show that Cresol is a subcategory of Clin, Cmono and Crecons. This can be extended
to arbitrary rings by calling upon recent results of Rydh and Schäppi (see 2.1,
2.3, 2.4). Thus the key question becomes: which groups have a classifying space
satisfying the resolution property, or otherwise said how big is Cresol? Known results
are available mostly when R is Noetherian, regular of dimension at most 2; in this
case Cp(R) = Cresol(R) (Thomason [Tho87, 2.5]) and Clin(R) = C (R) ([SGA3I,
Exp. VIB, Prop. 13.2]). Thomason also showed that Cresol contains all semisimple
groups over a Noetherian ring, as well as groups of multiplicative type and reductive
groups over a Noetherian normal ring, see [Tho87, 2.16, 2.17, 2.18]. Not much
is known apart from these cases; for instance, the linearity question as raised in
[SGA3II, Exp. XI, Rem. 4.3] remains open for base rings as simple as the ring of
dual numbers, even for smooth group schemes, see Conrad [Con14, Rem. 2.3.3] and
the MathOver�ow post [Con12].

Our second main theorem gives another reason why Cp is nice: it is included
in Cresol, hence a good lower approximation to our four favourite categories. For
completeness, we include all known inclusions in the diagram.
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Theorem B. (See 4.3) We have the following diagram where all arrows feature
inclusions:

Clin

Cp Cresol Cmono C .

Crecons

The proof that any G ∈ Cp(R) lies in Cresol(R) derives from the key case where
O(G) is a free R-module, together with the result of Bass on freeness of non�nitely
generated projective modules over Noetherian rings (see [Bas63], recalled in 4.2).
Let us emphasize that together with A(2) this answers the linearity question (and
others), for arbitrary base rings, and all groups which are extensions of �nite locally
free group schemes by �brewise connected group schemes. Also, together with A(3)
this answers the most general version of Conrad's question: all a�ne, �at, �nitely
presented group schemes over a zero-dimensional (for instance Artinian) ring have
an embedding into GLn for some n > 0.

Our third main theorem is about homogeneous spaces. Recall that Raynaud
asked the following questions for a smooth (possibly non-a�ne) �nitely presented
S-group scheme G and a �at, �nitely presented, closed subgroup scheme H.

(i) Is G/H representable by a scheme, at least if all residue characteristics of S
are 0 or if H has connected �bres?

(ii) Is G/H quasi-projective if S is normal, Noetherian, integral, and G has
connected �bres?

See [Ray70, XV, 6] and [Ray70, XV, 2.ii)]. We stick to the case where G is a�ne,
as both questions are already di�cult in this situation. Positive answers were
given when S is Noetherian of dimension at most 1 (see Anantharaman [An73,
Chap. IV] who does not assume a�neness of G,H) or when S is a�ne excellent
Noetherian regular of dimension 2, and G,H are smooth �brewise connected (see
Pappas and Zhu [PZ13, Cor. 11.5]). In general, Raynaud gave a counterexample
to representability by a scheme where S = A2

k is the a�ne plane over a �eld k of
characteristic 2, the group G = (Ga,S)2 is the square of the additive group, and H
is a closed étale subgroup scheme ([Ray70, X, 13]). Our result improves on Pappas
and Zhu's in two directions: we allow an arbitrary base scheme S, and we allow
arbitrary groups G,H ∈ Cp(S).

Theorem C. (See 5.2) Let S be a scheme and G,H ∈ Cp(S) such that H ⊂ G is
a closed subgroup. Then the fppf quotient G/H is representable and Zariski-locally
quasi-projective over S. More precisely, for every a�ne open U ⊂ S the restriction
(G/H)U → U is quasi-projective.

The method of proof is to establish the analogue of Chevalley's theorem real-
izing H as the stabilizer of a line in a suitable representation of G, see 5.1. We
deduce a criterion of descent for homogeneous spaces that have a section after a
�nite locally free surjective morphism (see 5.3). Finally, we mention various appli-
cations to multiplicative groups. In particular, we prove that a �nitely presented
group of multiplicative type is always locally isotrivial (see 6.3), and correct the un-
proven claimed counterexample that appears in [SGA3II, Exp. X, 1.6 and Exp. XI,
Rem. 4.6].

∴
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In most of the paper, we work over a�ne base schemes. In some places however,
when it does not cost more, we allow more general bases. Sometimes slight modi�-
cations are necessary; for example, for an arbitrary scheme S the category Clin(S)
should be de�ned as the category of a�ne, �at, �nitely presented group schemes
G → S which admit a closed embedding G ↪→ GL(V ) for some �nite, locally free
OS-module V . We added such precision when needed.

The organization of the article follows the order in which the results were pre-
sented, so that we do not need to say much. In Section 2 we recall the arguments
showing that Cresol is a subcategory of Clin, Cmono and Crecons. In Section 3 we
prove Theorem A; in Section 4 we prove Theorem B; in Section 5 we prove Theo-
rem C. Section 6 is then devoted to the applications of these results to the study of
groups of multiplicative type. Finally, Section 7 collects some questions left open
by our work.

Acknowledgements. We thank Brian Conrad and K¦stutis �esnavi£ius for inter-
esting comments on a �rst version of this article. The second author would like to
thank the executive and administrative sta� of IRMAR and of the Centre Henri
Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environ-
ment.

2. Consequences of the resolution property

Let X be an algebraic stack, then X is said to satisfy the resolution property if
for every quasi-coherent module of �nite type M on X there exists a locally free
OX -module of �nite rank P and an epimorphism P →M . To satisfy the resolution
property is quite strong; if X is quasi-compact quasi-separated and the stabilizers
at closed points are a�ne, it is actually equivalent (see [Tot04] and [Gro17]) for the
algebraic stack X to be isomorphic to [U/GLn] for some quasi-a�ne scheme U .

We will be interested in the classifying stack X = BG for a group scheme G ∈ C .
In this case the resolution property translates into the more down-to-earth property
that every G-module of �nite type over S is the quotient under a G-equivariant map
of a locally free G-module of �nite rank over S.

Note that if BG has the resolution property then so does S, but while there exist
a�ne group schemes over some separated k-variety for k a �eld not satisfying the
resolution property (see [SGA3I, Exp. X, Sec. 1.6]) to our knowledge there is no
example of a separated scheme of �nite type over a �eld not satisfying the resolution
property (the diagonal of a scheme satisfying the resolution property needs to be
an a�ne morphism and hence there are non-separated counterexamples, see [Tot04,
Prop. 1.3]).

2.1. Resolution property implies Linearity. If the base S is Noetherian then
it is well known that if BG satis�es the resolution property then G is linear, that
is it is isomorphic to a closed subgroup scheme of GL(P ), for some P locally free
of �nite rank over S. The Noetherian hypothesis on S though can be relaxed:

Proposition 2.1. Let G be an a�ne, �at, �nitely presented group scheme over a
quasi-compact quasi-separated scheme S. If every G-module of �nite type is the G-
equivariant quotient of a locally free G-module of �nite rank (that is, if BG satis�es
the resolution property) then G admits a closed group embedding in GL(P ) over S,
where P is a locally free module of �nite rank over S.

Proof. If S is Noetherian the result is due to Thomason when G is essentially free
over S ([Tho87, Thm. 3.1]) and is generalized in [SGA3I, Exp. VIB, Prop. 13.5])
without the extra assumption on G. In general, the only missing part is some ap-
proximation theorem for G-quasi-coherent modules. But as S is quasi-compact and
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quasi-separated so isBG: the surjective map S → BG ensures quasi-compactedness,
while the diagonal morphism of BG is quasi-compact as its base change through the
fppf map S ×S S → [S/G]×S [S/G] is simply G→ S which is quasi-compact. The
Main Theorem of [Ryd16] says that every quasi-coherent G-module is the union
of its sub-G-modules of �nite type. As S is quasi-compact, there exists a �nite
open covering by a�ne opens on which G is a�ne and its algebra is �nitely gener-
ated. As S is quasi-separated, every open embedding of an a�ne open subscheme
is quasi-compact. Hence by [EGA1

new
, Cor. 6.9.3] every �nite type quasi-coherent

sub-module of the restriction of h∗OG on these open a�nes extends to a �nite type
coherent submodule of h∗OG on the whole S. In particular, by the approximation
theorem for BG, there exists a �nitely generated sub-G-module M of h∗OG, con-
taining a generating set of h∗OG as a OS-algebra. If P is a locally free G-module
of �nite rank and P →M a G-equivariant epimorphism, it induces a S group mor-
phism G→ GL(P ). The rest of the proof goes as in [SGA3I, Exp. VIB, Prop. 13.5]:
in order to check that it is a closed embedding it su�ces to do it locally on S hence
we can assume that S is a�ne and P is free, but then the classical argument (see
for example the proof of [Mil17, Th. 4.9]) carries over giving the surjectivity of the
map on the level of Hopf algebras. �

2.2. Resolution property implies Monogenicity. Let R be a ring and G ∈
C (R) an a�ne, �at, �nitely presented R-group scheme. We want to extend some
classical results about the category of representations of G (we refer to [Mil17,
Section 4e] for the same results when R is a �eld).

Lemma 2.2. Let G be an a�ne, �at group scheme over an a�ne scheme SpecR.
Then every free �nite dimensional representation V of G embeds in a �nite sum of
copies of the regular representation.

Proof. This is [Mil17, Prop. 4.12] which is stated over a base �eld but carries over
verbatim provided O(G) is �at. �

Proposition 2.3. Let G be a closed subgroup of GLn,R, �at over R and let V be
the induced free faithful representation of G. Then every free �nite dimensional
representation of G over R is a subquotient of a �nite sequence of direct sums,
tensor and duals of V . In particular, if BG satis�es the resolution property, then
the same holds for every representation of �nite type over R.

Proof. Because of Proposition 2.1, the second part of the proposition follows from
the �rst, for which we recall the proof of [Mil17, Th. 4.14]. By Lemma 2.2 it is
enough to prove the proposition for each free representation of �nite rank V ⊂
O(G)m seen as direct sum of m copies of the regular representation. Let B be the
ring of global sections of GLn,R, that is

B = R
[
Xij ,det−1 | 1 6 i, j 6 n

]
,

as G is a closed subgroup scheme of the latter we have a surjection

π : Bm → O(G)m.

Moreover, as V has �nite rank, there exist s, r ∈ N such that V is contained in
the image of Fmr,s, where Fr,s = det−r{P (Xij) | deg(P ) 6 s}. In particular, we can
assume without loss of generality that V = Fmr,s.

The rest of the proof goes as in [Mil17, Th. 4.14]: if {vj} is a basis of Rn,
then the morphism V = Rn → B, vj 7→ Xij is a morphism of comodules, in
particular F0,1 ' V n as R-comodules. The module of homogeneous polynomials
of degree s is a quotient of F s0,1 and F0,s is hence obtained as direct product of
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the homogeneous terms. Moreover F0,n contains the determinant, hence the 1-
dimensional representation M 7→ detM , whose dual is M 7→ (detM)−1 and Fr−1,s

with the latter gives Fr,s. �

2.3. Resolution property implies Reconstruction. Let O(G) be the Hopf al-
gebra associated to an a�ne group �nitely presented over S = SpecR, then it is a
classical result that O(G) can be uniquely reconstructed from its category of O(G)-
comodule �nitely presented over R (see for example [Mil17, Note 9.4]). If one wants
to reconstruct G only from the projective O(G)-comodules of �nite type, though,
this may not always be true. Fortunately, the resolution property for BG implies
that this is the case for G, hence the following.

Theorem 2.4 ([Sch13, Thm. 1.3.2]). Let R be any ring and G be an a�ne �at
R-group scheme. If BG satis�es the resolution property, then G can be uniquely
reconstructed, up to isomorphism, from its category of representations that are free
and of �nite rank over R. Namely, G → Aut⊗(for) is an isomorphism of group
functors on R-algebras, where for : PRepR(G) → ModR is the forgetful functor,
and PRepR(G) is the category of O(G)-comodules whose underlying R-module is
projective and of �nite type over R.

Proof. This is a rephrasing of [Sch13, Thm. 1.3.2], where the condition of the theo-
rem is satis�ed by [Sch13, Corollary 7.5.2]: here, Cauchy comodules are simply the
comodules whose underlying R-module is projective and of �nite type (see [Sch13,
Def. 1.3.1]) and to generate the category of all comodules corresponds to the reso-
lution property (see the beginning of the proof on [Sch13, Corollary 7.5.2]). �

3. The subcategory of pure groups

In this section, we introduce the subcategory of pure group schemes, and give
its basic properties. The notion of purity elucidates the geometric content of the
notion of projectivity of modules. We �rst recall the de�nition and the main facts
we shall use; the reference is [RG71, Première partie, � 3.3].

De�nition 3.1. A morphism of schemes X → S locally of �nite type is called
pure if for each point s ∈ S with henselization (S̃, s̃) → (S, s), and each point
x̃ ∈ X̃ := X ×S S̃ which is an associated point in its �bre, the closure of x̃ in X̃
meets the special �bre X ⊗ k(s̃).

For a scheme S, we let Cp(S) ⊂ C (S) denote the full subcategory whose objects
are the pure group schemes. An example of pure morphism if given in [RG71,
Première partie, Ex. 3.3.4(iii)]. Given its importance for us, we reproduce it here
and provide a proof.

Lemma 3.2. Let f : X → S be a morphism which is �at, of �nite type, universally
open, with geometrically irreducible �bres without embedded components. Then X
is S-pure.

Proof. By de�nition, replacing S by its henselization at an arbitrary point s, we
may assume that S is local Henselian and we have to prove that the closure of a
point x′ ∈ X which is associated in its �bre Xs′ , s′ = f(x′), meets the special
�bre Xs. Let Z be the closure of s′ in S. Since S is local, Z meets s and hence we
may replace S by Z and assume that S is irreducible with generic point s′. Since
X → S is open with irreducible �bres, it follows that X is irreducible, see [SP18,
Tag 004Z]. Now the �bre Xs′ is irreducible without embedded component, hence
the assassin Ass(Xs′) is a single point, that is Ass(Xs′) = {x′}. This means that x′

is the generic point of the generic �bre, hence the generic point of X. It follows
that its closure is equal to X, and meets the special �bre (note that irreducible
implies nonempty by de�nition). �

http://stacks.math.columbia.edu/tag/004Z
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One key fact is the relation between purity and projectivity of modules given
by Raynaud and Gruson's theorem quoted in the introduction. Let Cproj ⊂ C
be the full subcategory composed of the group schemes whose Hopf algebra is a
projective module over the base; the previous theorem implies that Cproj = Cp.
We will hence denote both categories by Cp and we shall think about it in a way
or in the other, depending on whether we wish to emphasize the algebraic aspect
(projectivity) or the geometric one (purity). Also let Cconn resp. Cfin be the full
subcategories of group schemes which have connected �bres, resp. which are �nite.
We shall establish basic properties of these categories. Beforehand, it is helpful to
start with C itself.

Lemma 3.3. The �bred category C satis�es:

(α) C is a stack for the fpqc topology.
(β) C is limit-preserving.
(γ) C is stable under group extensions in the category of fpqc sheaves.

Proof. (α) Follows from fpqc descent of relative a�ne schemes, and the fact that
�atness and �nite presentation are fpqc local on the base.
(β) We need to prove that for all �ltering direct systems of rings (Ri)i∈I , the natural
functor lim−→C (Ri) → C (lim−→Ri) is an equivalence. This follows from the usual
arguments on limits found in [EGA4.3] and the Stacks Project Section on Limits of
Schemes [SP18, Tag 01YT]. We give some detail now and will be more sketchy when
these arguments come again later. References are to [SP18]. Write Si = Spec(Ri).
There exists some index i and an Si-scheme of �nite presentation Gi (Tag 01ZM)
which can be chosen a�ne (Tag 01ZN) and �at (Tag 04AI), and morphisms mi :
Gi ×Si Gi → Gi and ei : Si → Gi (Tag 01ZM). The index i can be chosen so that
the group axioms are satis�ed (Tag 01ZM(3)). The fact that these choices can be
made simultaneously is granted by Tag 05FL.
(γ) This follows from (α) because if 1 → G′ → G → G′′ → 1 is an exact sequence
of sheaves with G′, G′′ ∈ C , then the map G → G′′ is an fpqc torsor under the
group G′, hence G is representable by an object of C . �

We can build on this to study Cp,Cconn,Cfin.

Lemma 3.4. If R is a zero-dimensional ring, we have Cp(R) = C (R).

Proof. Let G ∈ C (R). Since purity is checked at henselizations at the points of
Spec(R), we may assume that R is Henselian. Being zero-dimensional, its spectrum
then is a point, and the condition of De�nition 3.1 is trivially satis�ed. �

Lemma 3.5. The �bred category Cp satis�es (α), (β), (γ).

Proof. (α) Descent of projectivity of modules through faithfully �at morphisms is
proved by Raynaud and Gruson; see [RG71, Seconde partie, (3.1.4).1)] and the
complements in Perry [Per10] and the Stacks Project [SP18, Tag 05A9].
(β) In view of the equivalence between projectivity and ��atness plus purity� [RG71,
Première partie, Th. 3.3.5], descent of projectivity through limits is the combination
of descent of �atness together with [RG71, Première partie, 3.3.10].
(γ) We start with a remark: if A → B is a ring homomorphism which makes B a
projective A-module, and P is a projective B-module, then P is projective as an A-
module. Indeed, we can �nd an A-module C, and index set I, and an isomorphism
of A-modules B⊕C ' A(I). Similarly we can �nd a B-module Q, index set J , and
an isomorphism of B-modules P ⊕Q ' B(J). Then

P ⊕Q⊕ C(J) ' B(J) ⊕ C(J) ' (A(I))(J) ' A(I×J)

is a free A-module, proving that P is projective over A.

http://stacks.math.columbia.edu/tag/01YT
http://stacks.math.columbia.edu/tag/01ZM
http://stacks.math.columbia.edu/tag/01ZN
http://stacks.math.columbia.edu/tag/04AI
http://stacks.math.columbia.edu/tag/01ZM
http://stacks.math.columbia.edu/tag/01ZM
http://stacks.math.columbia.edu/tag/05FL
http://stacks.math.columbia.edu/tag/05A9
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Now we prove (γ). Note that according to 3.3(γ), extensions in the category of
sheaves or in C are the same. We need to prove that if 1→ G′ → G→ G′′ → 1 is an
exact sequence in C (R) for some ring R, then G′, G′′ ∈ Cp(R) implies G ∈ Cp(R).
Given that O(G′′) is projective over R, by the preliminary remark it is enough
to prove that the ring map O(G′′) → O(G) makes O(G) a projective O(G′′)-
module. By faithfully �at descent of projectivity, it is enough to check this after
the faithfully �at extension O(G′′)→ O(G). Since G→ G′′ is a G′-torsor, we have
an isomorphism O(G)⊗O(G′′) O(G)→ O(G)⊗R O(G′). Since O(G′) is projective
over R, this ring is projective as an O(G)-module, as desired. �

Lemma 3.6. The �bred category Cconn satis�es (α), (β), (γ).

Proof. (α) and (γ) are clear. For (β) recall that for group schemes over a �eld,
connectedness and geometric connectedness are the same because of the existence
of the neutral rational point. The condition to have geometrically connected �bres
descends through �lterting directed limits by [SP18, Tag 05FI]. �

Lemma 3.7. We have Cconn ⊂ Cp.

Proof. A connected group scheme over a �eld is geometrically irreducible [SGA3I,
Exp. VIA, Thm. 2.6.5] and any group scheme over a �eld is locally complete inter-
section [SGA3I, Exp. VIIB, Cor. 5.5.1] hence without embedded points. It follows
from Lemma 3.2 that any group G ∈ Cconn is pure. �

Lemma 3.8. The �bred category Cfin satis�es (α), (β), (γ), and Cfin ⊂ Cp.

Proof. These are standard facts. �

4. The resolution property

The main result of this section is that when the base S is a�ne and G ∈ C (S)
is a pure S-group scheme, then its classifying stack BG satis�es the resolution
property; see Corollary 4.3. The key to this is that this holds as soon as the Hopf
algebra of the group scheme is free over the base, as we now prove.

Theorem 4.1. Let R be any ring and G an a�ne group scheme over S = SpecR
such that O(G) is free over R as a module. Let V be an O(G)-comodule, �nitely
generated over R. Then there exists an O(G)-comodule W free and of �nite rank
over R and a surjective O(G)-invariant map ϕ : W → V . Said otherwise, BG
satis�es the resolution property by free objects.

Proof. Let ρ : V → V ⊗ O(G) denote the coaction and x1, . . . , xn a system of
generators for V . We will construct W1, . . . ,Wn free O(G)-comodules of �nite rank
and O(G)-equivariant maps ϕi : Wi → V such that xi is in the image of ϕi. Taking
W = ⊕ni=1Wi and ϕ = ⊕ϕi will yield the desired object.

What we will actually prove is that for every x ∈ V there exists Wx an O(G)-
comodule, free of �nite rank over R and a O(G)-equivariant map φx : Wx → V
such that x is in the image of φx.

Fix hence x ∈ V and a R-basis {gi}i∈I of O(G), then we can write

ρ(x) =
∑
i

vi(x)⊗ gi,

where the vi(x) are in V . It is a classical calculation (see for example the proof of
[Mil17, Prop. 4.7]) that if ∆(gi) =

∑
jk α

i
jkgj ⊗ gk then

(1) ρ(vk(x)) =
∑
ij

αijkvi(x)⊗ gj

http://stacks.math.columbia.edu/tag/05FI
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and in particular 〈vi(x)〉 is a �nitely generated O(G)-submodule of V , containing
x =

∑
i viε(gi).

Let Ix ⊂ I be the set consisting of all i such that vi(x) is nonzero. It is a �nite
set and we de�ne Wx to be the free R-module with basis {wi}i∈Ix . We want to
put a structure of comodule on Wx so that the R-module morphism wi 7→ vi(x) is
actually a morphism of O(G)-comodules. We de�ne

ρx(wk) =
∑
ij

αijkwi ⊗ gj ,

and we need to check the two axioms of comodules: that (id⊗∆)◦ρx = (ρx⊗id)◦ρx
and that (id⊗ ε) ◦ ρx = id.

Let's start with the �rst one: we need to exploit the similar axiom that holds on
O(G) when considered as a comodule over itself. If we write ∆(gi) =

∑
jk α

i
jkhj⊗hk

and we apply ∆⊗ id then we get

(∆⊗ id)(∆(gi)) =
∑
jkmn

αijkα
j
mnhm ⊗ hn ⊗ hk.

On the other hand, if we write ∆(gi) =
∑
uv α

i
uvhu ⊗ hv then we have

(id⊗∆)(∆(gi)) =
∑
uvzw

αiuvα
v
wzhu ⊗ hw ⊗ hz.

Then the two need to be equal by the comultiplication axiom on O(G), hence by
looking at the coe�cient of hm ⊗ hn ⊗ hk we get

(2)
∑
j

αijkα
j
mn =

∑
j

αimjα
j
nk.

Now to prove the axioms for ρx, let us write down the two sides of (id⊗∆) ◦ ρx =
(ρx ⊗ id) ◦ ρx: if ρx(wk) =

∑
ij α

i
jkwi ⊗ gj then

(id⊗∆) ◦ ρf (wk) =
∑
ij

αijkwi ⊗∆(gj) =
∑
ijmn

αijkα
j
mnwi ⊗ gm ⊗ gn

while if we rename the indices and ρf (wk) =
∑
uv α

v
ukwv ⊗ gu then

(ρf ⊗ id) ◦ ρf (vk) =
∑
uvwz

αvukα
w
zvww ⊗ gz ⊗ gu,

hence by looking at the coe�cients of wi ⊗ gm ⊗ gn we get the axiom is ful�lled if
and only if ∑

j

αijkα
j
mn =

∑
j

αjnkα
i
mj ,

but this is exactly (2).
Now the counit axiom. We need to show that (id⊗ ε) ◦ ρf (wk) = wk, but

(id⊗ ε) ◦ ρf (wk) =
∑
ij

αijkwiε(hj)

hence it is equal to wk if and only if
∑
j α

i
jkε(hj) = δik, because the wi form a free

basis.
But ∆(hi) =

∑
jk α

i
jkhj ⊗ hk hence by the counit axiom on O(G) we have

hi =
∑
jk α

i
jkvε(hj)hk and hence

∑
j α

i
jkε(hj) = δik. It is clear from the de�nitions

that wi 7→ vi(x) is a morphism of O(G)-comodules, in particular Wx → 〈vi(x)〉 is
a surjective morphism of O(G)-comodules, with Wx free and of �nite rank. �

To draw consequences of this result for a group G ∈ Cp, we will use a theorem
of Bass which we recall for the convenience of the reader.
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Theorem 4.2. Let R be a Noetherian ring with connected spectrum. Then any
non�nitely generated projective R-module is free.

Proof. See [Bas63, Cor. 4.5]. �

Corollary 4.3. Let G ∈ Cp(R) be an a�ne, �at, �nitely presented R-group scheme
whose Hopf algebra is projective. Then BG satis�es the resolution property.

Proof. First assume that O(G) is a �nite R-module, that is G is �nite locally
free. Let M be a G-R-module of �nite type and x1, . . . , xn a system of R-module
generators. Then M is a G-equivariant quotient of O(G)n where O(G) is the
regular representation. Since O(G) is R-projective, there is an R-module C such
that F := O(G) ⊕ C is �nite free. Endow C with the trivial G-module structure.
Then the projection Fn → O(G)n →M resolves M by an R-�nite free G-module.

Now assume that O(G) is not �nite. Write R as the directed union of its sub-
rings Ri �nitely generated over Z. Using that Cp is limit preserving (Lemma 3.5),
we see that there exists an index i and a group scheme Gi ∈ Cp(Ri) whose base
change to R is G. In this way we reduce to the case where R is Noetherian. Working
on the individual connected components, we reduce to the case where R is Noe-
therian with connected spectrum. Then it follows from Bass's Theorem 4.2 that
O(G) is free over R. Now Theorem 4.1 applies and gives the conclusion. �

Corollary 4.4. Let S be a scheme with a �nite number of irreducible components,
and let G ∈ C (S). Then there exists an a�ne open subscheme U ⊂ S containing
all points of codimension 0 such that GU ∈ Cresol(U).

Proof. By [RG71, Cor. 3.3.8], the locus of points where G → S is pure is an
open subscheme V ⊂ S. It contains all points of codimension 0 by Lemma 3.4.
Let U1, . . . , Un be disjoint a�ne open neighbourhoods of the generic points of S
included in V , and U their union. Then U is a�ne and Corollary 4.3 applies. �

Let us take up the picture from the introduction, illustrating the inclusion re-
lations between our categories of group schemes. We write in black the categories
with representation-theoretic interest, with a priori few geometric properties; and
we write in blue the categories we introduced, because they do have such properties,
to study the preceding ones.

Cconn Clin

Cp Cresol Cmono C .

Cfin Crecons

When S is not a�ne, it is less frequently the case that the sheaf of functions
of G is free. Still if that happens and S has an ample line bundle (in the sense of
[EGA2, Def. 4.5.3]) the same result holds:

Corollary 4.5. Let S be a quasi-compact scheme having an ample line bundle and
let h : G → S be a group scheme, a�ne over S and such that h∗OG is globally
free over S. Let V be a O(G)-module, coherent over S. Then there exists a locally
free coherent G-comodule W and a surjective G-invariant map ϕ : W → V . Said
otherwise, BG satis�es the resolution property.
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Proof. Recall that the direct image of the structure sheaf gives an equivalence
between a�ne morphisms over S and sheaves of OS-algebras on S. In particular,
once �xed an isomorphism h∗OG ' ⊕iOSgi, then the multiplication m : G ×S
G → G is uniquely determined by the corresponding map of OS-algebra sheaves
∆ : h∗OG → h∗OG ⊗OS

h∗OG. On the global sections ∆ induces

H0(∆) : H0(S, h∗OG)→ H0(S, h∗OG ⊗OS
h∗OG).

Now, as h∗OG ' ⊕iOSgi, we have that

H0(S, h∗OG ⊗OS
h∗OG) =H0(S,

⊕
i,j

OS · gi ⊗ gj) =
⊕
i,j

H0(S,OS) · gi ⊗ gj

=(⊕iH0(S,OS) · gi)⊗H0(S,OS) (⊕jH0(S,OS) · gj)
=H0(S, h∗OG)⊗H0(S,OS) H

0(S, h∗OG)

where the equalities follow by the fact that global sections commute with direct
sums. Writing H0(S, h∗OG) = ⊕iH0(S,OS)gi we have that

H0(∆)(gi) =
∑
jk

αijkgj ⊗ gk,

with αijk ∈ H0(S,OS). As the gi generates h∗G, the αijk uniquely determine the
group structure of G. Similarly, the unit map e : S → G is uniquely determined
by the counit map ε : h∗OG → OS on the global sections, that is by H0(ε)(gi) ∈
H0(S,OS). Now let M ∈ Coh(OS) be a G-module. Similarly as before, giving an
action G×SM →M , where M is the functor M(f : T → S) = (f∗M), is the same
as giving a coaction ρ : M →M ⊗OS

h∗OG. Let x ∈ H0(M,OS), then as

H0(ρ) : H0(S,M)→ H0(S,M ⊗OS
h∗OG) = ⊕iH0(S,M)gi,

we can write H0(ρ)(x) =
∑
si(x)gi, with si(x) ∈ H0(S,M). Let Ix be the �nite

set of i such that si(x) is not zero. Then we de�ne Wx =
∑
i∈Ix wi with comodule

structure ρx(wk) =
∑
ij α

i
jkwi ⊗ gj ∈ Wx ⊗OS

h∗OG and Wx → M given by
wi → si(x). To check that ρx is a coaction it su�ces to do so on an open covering
of S, hence it follows from Theorem 4.1.

If M is generated by its global sections we are done. If not, let L be an ample
line bundle on S, then for some n ∈ N we have that M ⊗ Ln is generated by
its global sections. Endowing L with the structure of trivial G-module, M ⊗ Ln
has a natural structure of G-module and as it is generated by its global sections,
there exists a free G-module W of �nite rank and a G-equivariant epimorphism
W → M ⊗ Ln. Tensoring the latter with L−n, again endowed witht the structure
of trivial G-module, produces a G-equivariant epimorphism W ⊗ L−n →M . �

5. Quotients and homogeneous spaces

In this section, we give some results of representability and quasi-projectivity
for homogeneous spaces. We brie�y recall some de�nitions; a general reference is
Raynaud's book [Ray70]. Let S be a scheme, G an fppf sheaf in groups over S,
and X an fppf sheaf with an action of G. We say that X is a homogeneous sheaf
(under G) if the morphisms X → S and G ×S X → X ×S X, (g, x) 7→ (gx, x) are
covering for the fppf topology (that is, have sections fppf locally). We say that X
is trivial if it has a section x0 ∈ X(S); in this case the morphism G→ X, g 7→ gx0

induces a G-isomorphism of sheaves G/H ∼−→ X where H is the stabilizer of x0.
We say that X is a homogeneous space if it is representable by an algebraic space
or a scheme.

Let us start with trivial homogeneous spaces. Recall that over a �eld, Cheval-
ley's theorem ([Mil17, Thm. 4.27]) says that every closed subgroup H ⊂ G is the
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stabilizer of a line V in some representation W of G. When trying to extend this to
a general base ring, one encounters similar problems as for proving linearity, namely
the lack of enough projective (or free) representations. We prove that the construc-
tion that in Theorem 4.1 produces a projective cover for any O(G)-comodule can
be re�ned to give a version of Chevalley's theorem in the category Cp.

Theorem 5.1. Let R be a ring and H,G ∈ Cp(R) such that H is a closed subgroup
scheme of G. Then there exists a faithful free G-representation of �nite rank W =
V ⊕ V ′ for some free R-submodules V, V ′ ⊂W where V has rank 1, such that H is
the stabilizer of V in G.

Proof. As in Corollary 4.3, we can without loss of generality assume that R is
Noetherian and connected. Also, by taking exterior powers as in the classical case,
it is enough to �nd a faithful �nite free G-representation W = V ⊕V ′ for some free
R-submodules V, V ′ ⊂W of arbitrary rank; see for example [Mil17, Lemma 4.28].

Let I be the ideal associated with H, that is the kernel of O(G)→ O(H). Recall
that as I is a Hopf ideal, it satis�es the following two axioms (see [Mil17, Def. 3.10]):

(3) ∆(I) ⊂ I ⊗O(G) +O(G)⊗ I

(4) ε(I) = 0.

Moreover, as H ∈ Cp the exact sequence of R-modules I → O(G) → O(H) splits,
hence I is projective as well.

Let us assume �rst that I and O(H) are projective R-modules of in�nite rank.
Then by Bass's Theorem 4.2 they are free and, as R-modules, O(G) = I ⊕ C for
some free complement C. Fix a basis {hi} of I and complete it with a basis {gj}
of C to a basis of O(G).

Consider a �nite set of generators a1, . . . , an of the ideal I. As in the proof of
Theorem 4.1, for every a = am we can consider

(5) ∆(a) =
∑
i

si(a)⊗ hi +
∑
j

tj(a)⊗ gj

and construct a free module Wa with basis σai and τaj for all i, respectively j,
such that si(a), respectively tj(a), are nonzero. Moreover we can put on Wa a
structure of comodule such that the map φa : Wa → O(G) given by σai 7→ si(a) and
τaj 7→ tj(a) is G-equivariant. Now remark the following two things: �rstly, by (3),
in the expression (5) the tj(a) are actually in I. Secondly, while it is clear that a is
in the span of the tj(a) and si(a), thanks to (4) we have

a = (id⊗ ε)(∆(a)) =
∑
i

si(a)⊗ ε(hi) +
∑
j

tj(a)⊗ ε(gj) =
∑
j

tj(a)⊗ ε(gj).

Hence a is in actually in the span of the tj(a).
ConsiderWτ = ⊕mW τ

am , then it is a free direct summand of the G-representation
W = ⊕mWam and we claim that H is the stabilizer of V in Wτ (which is repre-
sentable by [SGA3II, Exp. VIII, 6.5.e)]). In order to prove this claim, write:

∆(hi) =
∑
jk

αijkhj ⊗ gk +
∑
jk

βijkgj ⊗ hk +
∑
jk

γijkhi ⊗ hk

where there is no gj ⊗ gk component by (3). Then for a = am, we have, similarly
as in (1):

∆(tk(a)) =
∑
i

si(a)⊗
(∑

j

hjα
i
jk

)
+
∑
j

tj(a)⊗ µajk
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with some µajk ∈ O(G) whose explicit expression can be given but is not needed.
Hence, by de�nition of the G-action on Wa, we have:

∆(τak ) =
∑
i

σai ⊗
(∑

j

hjα
i
jk

)
+
∑
j

τaj ⊗ µajk.

The stabilizer of Wτ in G is represented by the quotient of O(G) by the Hopf
ideal generated by the

∑
j hjα

i
jk that is by the σami -coe�cients in the expression

of ∆(τamk ), for m = 1, . . . , n and i, j, k accordingly (generalize for example [Mil17,
Prop. 4.3], using that everything is free and Wτ is a free direct summand of W ).

Let hence I ′ be the ideal generated by the elements
∑
j hjα

i
jk; we want to show

that I = I ′. As the elements
∑
j hjα

i
jk are linear combinations of elements in I, it

is clear that I ′ ⊂ I. On the other hand we saw that a is a linear combination of
tk(a) and:

tk(a) = (ε⊗ id)(∆(tk(a)))

=
∑
i

ε(si(a))⊗
(∑

j

hjα
i
jk

)
+
∑
j

ε(tj(a))⊗ βajk

=
∑
i

ε(si(a))⊗
(∑

j

hjα
i
jk

)
because tj(a) ∈ I implies ε(tj(a)) = 0 by (4). So we proved that for every m if
a = am then tk(a) is in the span of the

∑
j hjα

i
jk therefore the same holds for the

am, which are generators of I, hence I = I ′. We obtain a faithful representation
by replacing W with W ⊕W ′, where W ′ is any faithful representation of G (which
exists by Proposition 2.1 and Corollary 4.3).

We are left to prove that the same holds when O(H) or I has �nite rank; the
�rst case means that H is �nite while the second case means that G/H is �nite,
because O(G/H) = R ⊕ IH . In the �rst case consider H × Gm ⊂ G × Gm. Then
the theorem holds for this closed embedding by what we have proven so far, hence
there is a faithful �nite free (G×Gm)-representation W = V ⊕V ′ with the desired
properties, such that H × Gm is the stabilizer of V . But then we can consider
the restriction of W to G ⊂ G × Gm and H will be the stabilizer of V . In the
second case, consider G × Gm. Then there exists W = V ⊕ V ′ as before with H
the stabilizer of V in the (G × Gm)-module W . But then H is the stabilizer also
once we restrict the representation W to G and we are done. �

We obtain the sought-for extension of Raynaud's and Pappas�Zhu's results.

Theorem 5.2. Let S be a scheme and G,H ∈ Cp(S) such that H ⊂ G is a closed
subgroup. Then the fppf quotient G/H is representable and Zariski-locally quasi-
projective over S. More precisely, for every a�ne open U ⊂ S the restriction
(G/H)U → U is quasi-projective.

Proof. It is enough to assume S a�ne and prove that G/H is quasi-projective. We
follow the ideas of the proof of [Con14, Thm. 2.3.1]. By Theorem 5.1, there exists a
faithful free G-representation of �nite rankW = V ⊕V ′ with V, V ′ free sub-modules
and V of rank 1, such that H is the stabilizer of V in W . The group G acts on
the projectivization P(W ), and H is the stabilizer of the point P = [V ]. Now,
H ×S G → G ×S G given by (h, g) 7→ (hg, g) is a closed embedding and de�nes
an equivalence relation on G. As H is �nitely presented and faithfully �at over S,
it follows from Artin's theorem [Art74, Cor. 6.3] that the fppf quotient G/H is an
algebraic space. But then the map f : G/H → P(W ) induced by g 7→ g(P ) is well-
de�ned and a monomorphism, as H is the stabilizer of P . Like any monomorphism
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the map f is separated ([SP18, Tag 042N]); being moreover quasi-�nite it is quasi-
a�ne ([SP18, Tag 05W4]). In particular G/H is a scheme. By Zariski's main
theorem ([EGA4.4, Cor. 18.12.13]), f factors then into a quasi-compact immersion
followed by a �nite map. But anything �nite over P(W ) is projective over S, hence
G/H is quasi-projective over S. �

We now deduce a result of representability for those homogeneous spaces that
have a section after a �nite locally free base change (we might call such X weakly
isotrivial), in the spirit of [Ray70, XI, Th. 3.1].

Proposition 5.3. Let S be a scheme and G ∈ Cp(S). Let X be a separated
homogeneous G-sheaf such that the morphism j : G ×S X → X ×S X, (g, x) 7→
(gx, x) is faithfully �at, �nitely presented and pure (the latter happens for example
if the stabilizers of points are connected). Assume that X acquires a section after
a �nite locally free surjective base change S′ → S. Then X is representable and
locally quasi-projective over S.

Proof. Restricting to an open a�ne subscheme of S, it is enough to assume that S
is a�ne and prove that X is representable and quasi-projective. After a �nite
locally free surjective extension S′ → S, the sheaf XS′ has a section and there is
an isomorphism GS′/H ′ ∼−→ XS′ . Here H ′ → S′ is the stabilizer, de�ned as the
pullback of the universal stabilizer Stab→ X so we have �bred products:

H ′ //

��

S′

��

Stab //

��

X

∆

��

G×S X
j
// X ×S X.

Since X is separated, the diagonal ∆ is a closed immersion and so is H ′ → GS′ .
Given the assumptions on j, the morphism H ′ → S′ makes H ′ an object of Cp(S′).
It follows from Proposition 5.2 that XS′ = GS′/H ′ is representable and quasi-
projective over S′. By descent of quasi-projective schemes along �nite locally free
morphisms ([SGA1, Exp. VIII, Cor. 7.7] or [SP18, Tag 0CCH]), we obtain the
desired result. �

6. Applications

In this section, we indicate various other applications.

6.1. Local isotriviality for groups of multiplicative type. We will follow here
the exposition of [SGA3II, Exp. IX]. Let S be a scheme and G an a�ne group over S
of multiplicative type, which by de�nition means that it is diagonalizable locally in
the fpqc topology (we recall that a group over S is diagonalizable if it is of the form
DS(M) := HomS-gr(MS ,Gm) for some commutative abstract group M). Then G
is said to be isotrivial if there exists S′ → S �nite étale surjective such that GS′ is
diagonalizable and locally isotrivial if there exists a Zariski covering ∪Ui of S such
that each GUi

is isotrivial.

Remark 6.1. Note that being locally isotrivial is stronger than being trivial in the
étale topology: by [SGA3II, Exp. X, Cor. 4.5] every group scheme of multiplicative
type and of �nite type is automatically locally trivial in the étale topology. In
particular we can always work in the étale topology rather than in the fpqc topology
when we want to trivialize such a group.

http://stacks.math.columbia.edu/tag/042N
http://stacks.math.columbia.edu/tag/05W4
http://stacks.math.columbia.edu/tag/0CCH
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We recall that a group scheme G is of multiplicative type if and only if it is of
the form HomS-gr(M,Gm) where M is a commutative group scheme over S which
is locally constant in the fpqc topology; see [SGA3II, Exp. X, Th. 5.6, Cor. 5.7].
By [SGA3II, Exp. X, Prop. 5.3] we can again trivialize M with an étale covering,
hence work in the étale topology rather than in the fpqc topology.

Proposition 6.2 ([SGA3II, Exp. XI, Rem. 4.6]). Let S be a scheme and G a �nitely
presented group of multiplicative type over S. Then G is linear if and only if it is
isotrivial.

Proof. All references in this proof are to [SGA3II]. We are following verbatim
Exp. XI, Rem. 4.6, simply giving a few more references for what is there claimed.

Assume that G is isotrivial, then there exists a �nite étale cover S′ → S such
that GS′ ' DS′(M) for some abstract abelian group M , which is �nitely generated
as G is of �nite type over S. The group DS′(M) obviously belongs to Cp(S′), hence
by descent G ∈ Cp(S). It follows that G is linear.

For the other direction, we start with some preliminary remarks. Let M =
HomS-gr(G,Gm) be the group scheme over S locally constant in the fppf topology
such that G = HomS-gr(M,Gm). By Exp. X, Prop. 5.11 the group G is isotrivial
if and only if M is. Moreover M is isotrivial if and only if M∨ = HomS-gr(M,ZS)
is isotrivial: of course if S′ → S is �nite étale trivializing M then it trivializes
M∨ as well. For the other direction, assume that M∨S′ is trivial. As the objects
under consideration are of �nite type, M is fppf-locally isomorphic to a constant
group scheme associated to an abstract group of �nite type N . In particular N =
Ntors ⊕Zm for some m, where the torsion subgroup Ntors is �nite. By fppf descent
(see Exp. X, Cor. 5.5), there exist a maximal torsion subgroup Mtors of M as well
as the fppf quotientM/Mtors. AsM is commutative, we can write it as the product
of its torsion and free parts. The torsion part is �nite and étale hence isotrivial,
and the free part is isomorphic to (M∨)∨, which is isotrivial as M∨ is.

By Exp. X, Cor. 5.7, if M = HomS-gr(G,Gm), then M∨ = HomS-gr(Gm, G).
By Exp. X, Prop. 5.11, the group G is isotrivial if and only if every connected
component of M is �nite over S, but as M is locally constant, it is the same to ask
that M be a�ne over S. Putting together everything we have proven so far, we
have that G is isotrivial if and only if M is isotrivial if and only if M∨ is isotrivial,
which is equivalent to ask that every connected component of M∨ is a�ne over S.

Now assume that G is linear, that is G ⊂ GL(P ) for some P locally free of �nite
rank over S. As the property of being a�ne is local on S, we can without loss of
generality assume that S = SpecR is a�ne and that P is free, that is G ⊂ GLn,S
for some n. But then by Exp. VIII, Th. 6.4, the scheme HomS-gr(Gm, G) is a
closed subscheme of HomS-gr(Gm,GLn,S) hence it su�ces to show that every con-
nected component of the latter is a�ne (its representability is ensured by Exp. XI,
Cor. 4.2). To conclude, it su�ces to note that all cocharacters of GLn are diagonal-
izable. Hence, writing n = (n1, . . . , nk) for the list of sizes of blocks in a diagonal-
ization, we see that the scheme of cocharacters X∗(GLn) = HomS-gr(Gm,GLn,S)
is the disjoint sum over all n of the schemes:

X∗(GLn)n = GLn /(GLn1 × · · · ×GLnk
).

This homogeneous space is a�ne as GLn1
× · · · ×GLnk

is reductive. �

Then the results of the previous sections imply:

Corollary 6.3. If S is a�ne, every �nitely presented group of multiplicative group
is isotrivial. Hence on any scheme, every group of multiplicative type is locally
isotrivial. In particular, if S is a scheme and T → S is a torus, there exists an
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open (a�ne) covering ∪iUi of S and �nite étale covers Vi → Ui such that T ×S Vi
is trivial.

Remark 6.4. In particular, in the example [SGA3II, Exp. X, Sec. 1.6] the con-
structed torus is not isotrivial as is proven in [SGA3II, Exp. XI, Rem. 4.6], but it
is locally isotrivial, contrarily to what is claimed there.

6.2. A�neness for the functor of subgroups of multiplicative type. Let S
be a scheme and G ∈ Cp(S) a pure S-group scheme. Then the functor F of
subgroups of multiplicative type of G is representable by a disjoint sum of a�ne
S-schemes, and it is smooth if G is. The proof of this is sketched in [SGA3II,
Exp. XI, Rems. 4.3 and 4.6]; it proceeds by embedding G into GLn and reducing
to analogous statements for the functor FGLn . We do not repeat the details here,
but note that a special case appeared in the proof of Prop. 6.2 above.

6.3. Existence of versal torsors over general rings. We refer to [Ser03, Def. 5.1]
for the de�nition of a versal torsor.

Proposition 6.5. Let S = Spec(R) be an a�ne scheme and G ∈ Cp(S). Then
there exists a closed group embedding G ↪→ GLn,S such that B := GLn,S /G is
quasi-a�ne over S and GLn,S → B is a versal torsor.

Proof. By Corollary 4.3 andProposition 2.1 there is a closed embedding ρ : G ↪→
GLm,S for somem > 0. By Theorem 5.1 there exists a faithful GLm,S-representation
W = V ⊕ V ′ with V, V ′ free and V of rank 1, such that G is the stabilizer of V .
Let χ : G → Aut(V ) = Gm be the character of G giving the action on the line V .
Let n = m+ 1 and consider the composition

G→ GLm,S ×Gm ↪→ GLm+1,S = GLn,S

where the �rst map is g 7→ (ρ(g), χ−1(g)) and the second map is the standard
diagonal block embedding. Then proceeding as in the proof of [PZ13, Cor. 11.7],
we see that GLn,S /G is quasi-a�ne. The fact that this is a versal torsor follows
from the exact sequence of pointed sets ([DG70, III, � 4, 4.6] or even better [Gir71,
Chap. III, Prop. 3.2.1]):

{1} → H0(S,G)→ H0(S,GLn,S)→ H0(S,B)→ H1(S,G)→ H1(S,GLn,S).

and the vanishing H1(S,GLn,S) = {1} when R is a �eld, which is Hilbert's Theo-
rem 90. �

7. Questions

Finally we want to add some comments and ask a few questions.
(1) The �rst comment is that Cp 6= Clin in general. Let R be a discrete valua-

tion ring with fraction �eld K. Let G be the a�ne étale R-group scheme
obtained by removing the nontrivial closed point of the special �bre of the
�nite constant group (Z/2Z)R. Then G is not pure, however it is linear:
given a uniformizer π ∈ R, the map taking the nontrivial element of GK to

the matrix
(

1/π 1/π2

π2 − 1 −1/π

)
extends to a closed immersion G ↪→ GL2,R.

(2) Let Cqf ⊂ C be the subcategory of quasi-�nite group schemes, so we have
Cqf ∩Cp = Cfin. Does Cqf ⊂ Cresol? Do at least a�ne, étale group schemes
over a regular ring of dimension 3 have a classifying space enjoying the
resolution property?

(3) Are there other inclusions among Clin, Cmono and Crecons? Assume that R
is regular of dimension 2. Do we have Clin(R) ⊂ Cresol(R)? Since in this
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case we have Cp(R) = Cresol(R) and Clin(R) = C (R), it would follow that
also Cmono(R) = Crecons(R) = C (R).

(4) Does any of the categories Cresol, Clin, Cmono, Crecons satisfy (weak versions
of) the properties (α), (β) or (γ)? It should be noted that apart from Clin

these categories are not obviously �bred. Also, already the stack property
for the Zariski topology may fail. For example, one can construct a 2-
dimensional torus T of �nite type over a singular proper curve S which is
not linear (see [SGA3II, Exp. XI, Rem. 4.6] together with [SGA3II, Exp. X,
Sec. 1.6]). This shows that Clin(S) does not satisfy fpqc descent as we have
TS′ ' G2

m,S′ on some fpqc cover S′ → S.

(5) Let G ∈ Cp(R) and let X be an a�ne, �at, �nitely presented, pure R-
scheme with an action of G. Does (G,S,X) satisfy the resolution property
as in [Tho87, Def. 2.1]?

(6) What can be said about the same questions for pure, �at, �nitely presented,
possibly non-a�ne group schemes?

(7) The connectedness problem studies which groups are extensions of an étale
group by a �brewise connected group, see [Jaf93], [Rom11]. In this article,
we saw that for our purposes the extensions of a �nite locally free group
by a �brewise connected one behave very nicely; for them, the variation of
the number of connected components of the �bres is controlled by a �nite
scheme. We can enlarge the problem to the search of �at subgroups of G
with �bres supported on the neutral component, and ask: which are the
group schemes that can be written as extensions of a �at, quasi-�nite group
scheme Q by a �at, �brewise connected group scheme C?

We �nish with two remarks about Question (7). The �rst remark is that a group
G ∈ C (S) does not have an extension structure 1→ C → G→ Q→ 1 as above, in
general.

Example 7.1. Let R be a discrete valuation ring with fraction �eld K, and residue
characteristic 0. Let π be a uniformizer. We consider a model of the K-group
Gm,K = Spec(K[t, t−1]), any such being of the form

G = Spec(R[t, t−1, y]/(πdy − tn + 1))

for some integers d, n > 1 (here t is the multiplicative coordinate), by Waterhouse
and Weisfeiler [WW80, Th. 4.2]. Assume that there is an extension 1→ C → G→
Q → 1 with C ∈ Cconn and Q ∈ Cqf . Then set-theoretically C is the union of the
neutral connected components of the �bres. Since G is smooth, then C is open
in G by [EGA4.3, Cor. 15.6.5]. In particular C is uniquely determined, being the
unique open subscheme with said support, and Q = G/C is étale. Moreover, the
special �bre is isomorphic to µn × Ga. Since Q separated (we do not even need
to assume Q a�ne) and étale, the cardinality of the geometric �bres of Q → S
is lower-semicontinuous, see [EGA4.3, Cor. 15.5.1]. In our example the cardinality
takes the value 1 at the generic point and n at the special point. If we choose n > 1,
this is a contradiction.

The second remark is the statement that if G can be written as an extension
1 → C → G → Q → 1 with C ∈ Cconn and Q ∈ Cqf , then the �niteness of Q is
an intrinsic property, that is, it does not depend on the way G is written as an
extension.

Proposition 7.2. Let S be a scheme and G ∈ C (S). Assume that G can be written
as an extension 1 → C → G → Q → 1 with C ∈ Cconn and Q ∈ Cqf . Then the
following conditions are equivalent:
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(i) G is pure;
(ii) Q is �nite.

Proof. (i) ⇒ (ii). It is enough to prove that Q×S S̃ is �nite, for all Henselizations
(S̃, s̃) → (S, s). Thus we may assume that S is local Henselian. In this case, we
can write canonically Q = Qf q Q′ with Qf → S �nite locally free and Q′ → S
with empty special �bre, see [EGA4.4, Th. 18.5.11]. We obtain G = Gf qG′ where
Gf = G ×Q Qf and G′ = G ×Q Q′. Since G is pure, then the clopen subscheme
G′ also. Hence O(G′) is projective over the base, and since its rank at the special
point is 0, we have G′ = ∅. It follows that Q′ = ∅ and Q = Qf is �nite over S.
(ii) ⇒ (i). This was seen already. �
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