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Abstract. The data attachment formula is a key component of shape
registration pipelines: computed at every step, its gradient is the vector
field that drives a deformed model towards its target. Unfortunately,
most classical formulas are at most semi-local: their gradients saturate
and stop being informative above some given distance, with appalling
consequences on the robustness of shape analysis pipelines.
In this paper, we provide a unified view of three fidelities between mea-
sures that alleviate this problem: the Energy Distance from statistics; the
(weighted) Hausdorff distance from computer graphics; the Wasserstein
distance from Optimal Transport theory. Provided with efficient GPU
routines and theoretical guarantees, these tools should allow the shape
analyst to handle large deformations without hassle.

Keywords: shape registration · kernel · energy distance · hausdorff dis-
tance · optimal transport · GPU

1 Introduction

Shape registration as a variational problem. Given a source shape A and
a target B, a key problem in medical image analysis is to registrate the former
onto the latter. That is, to estimate a mapping ϕ (a change of coordinates) that
turns the source A into a model ϕ(A) which is “close enough” to the target.

Most classical registration algorithms strive to minimize an energy

E(ϕ) = Reg(ϕ)︸ ︷︷ ︸
regularizer

+ d(ϕ(A), B)︸ ︷︷ ︸
fidelity

(1)

which is the sum of a regularization term – encoding a prior on acceptable
mappings – and a data attachment term – or fidelity – that measures how far
the model ϕ(A) is from the target B.

The need for robust fidelities and gradients. Unfortunately, as of today,
most fidelities can at best be described as semi-local. Relying on small convolu-
tion filters or kernel functions that saturate at long range [8], they stop being
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informative when parts of the shapes are far away from each other. In recent
years, finely crafted formulas have been proposed to alleviate this problem [9]
but were probably too sophisticated to meet widespread adoption. As a result,
most users today still rely on finely tuned coarse-to-fine schemes to registrate
shape populations.

Contribution. At MICCAI 2017, we introduced the theory of Optimal Trans-
port to the medical imaging community [5]. Leveraging the ideas and algorithms
presented in [11], we showed that using globally optimal spring systems to drive a
registration routine could be tractable, and improved the robustness of pipelines
to large deformations. The present paper is about introducing these ideas with
tools and concepts that the shape analysis community is familiar with.

In section 1, we review the standard theory of measures and kernel distances
(also known as blurred SSD). We stress the relevance of the scale-invariant kernel
k(x) = −‖x‖, which gives rise to the global Energy Distance between shapes.
We also notice that kernel distances rely on linear potentials (influence fields)
generated by the shapes.

In section 2, we show how to use and compute non-linear potentials. We
introduce a family of cheap fidelities between measures, the ε-SoftMin costs, that
interpolate between the Energy Distance (ε = +∞) and the weighted Hausdorff
distance (ε = 0) borrowed from computer graphics.

Finally, in section 3, we come back to the optimal transport cost and show
that it is nothing but a “Hausdorff” distance under a mass repartition constraint.
We interpret the celebrated Sinkhorn algorithm as a balancing scheme on dis-
tance fields and put an emphasis on two fidelities: the cheap ε-Hausdorff and the
high-quality ε-Sinkhorn divergence, with a guarantee of positivity for both.

In practice. Most importantly, we provide efficient CUDA routines – with
Matlab, numpy and pytorch bindings – that can be used to implement these

(a) data (b) segmentations (c) energy distance (d) optimal transport

Fig. 1: We focus this paper on the registration of thin segmented volumes (a,
from the OsteoArthritis Initiative) encoded as measures on the ambient space
(b). We provide efficient GPU routines to compute long-range gradients, from
cheap kernel distances (c) to high-quality optimal transport plans (d).
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new data attachment terms. As shown in section 4, our KeOps library [2] allows
users to process curves, surfaces and segmentation maps with up to 100,000
actives vertices on a cheap laptop’s GPU.

These new tools will fit seamlessly into the standard shape analyst’s toolset,
and help the reader to improve with little to no overhead the robustness to large
deformations of its shape analysis pipeline.

1.1 Representing shapes as measures on a space of features

In this paper. We choose to focus this paper on a setting that is understood
well by all researchers in medical image analysis: the registration of normalized
density maps. Our source bitmap A (in red) and target B (in blue) will be
encoded as measures

α =

N∑
i=1

αiδxi
and β =

M∑
j=1

βjδyj , with

N∑
i=1

αi = 1 =

M∑
j=1

βj , (2)

where the xi’s (respectively yj ’s) are the coordinates of the N (resp. M) nonzero
pixels of A (resp. B), with positive weights αi (resp. βj) summing up to the unit
mass.

In most figures, we will display the gradient ∇xi
d(α, β) of a fidelity “d” as

a green vector field supported by the xi’s. This descent direction is meant to be
used by registration algorithms and is thus the primary information to look at
in our pictures. In the background, depending on the section, we also display
the level lines of the linear potential “k ? (α − β)” (in blue) or of the influence
fields “a” (in red) and “b” (in blue) – more about that later.

Extensions. The results presented in this paper can be extended to other use
cases fairly easily. First, if one wishes to use an image-based registration of
segmentation maps instead of the mass preserving “Jacobian-free” action, one
should simply compute the gradient ∇αi

d(α, β) of fidelities with respect to the
weights of the atomic dirac masses; the presence of long-range interactions is
equally important to the robustness of the registration algorithm, with mass
contraction (i.e. deletion) replacing the spreading out phenomenon observed in
Figure 3.(a-b).

Most of our results still hold when the source and the target don’t have the
same mass – the only noticeable changes would be located in section 3, and we
recommend [11] as an introduction to the theory of unbalanced optimal trans-
port. Going further, these new tools and GPU routines can also be used to handle
fiber tracks, curves and surfaces through the varifold framework presented in [8].

Notations. In order to let our results be useful to researchers working with
curves and surfaces – which are best represented as measures on a product space
(position,orientation,curvature) – we will refer to the ambient space R2 or R3 as
being an abstract feature space X. The letters x, y and z will denote points in
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the feature space, while α, β or µ stand for finitely supported positive measures,
and a, b and m for real-valued functions on X understood as being influence
fields generated by their respective measures.

If (zi)i∈[[1,N ]] is a collection of N points in X and if m : X → R is a function
on the feature space, we will also write “mzi” to denote the length-N vector
(m(zi))i∈[[1,N ]] of values of m sampled on the point cloud zi.

Finally, if µ =
∑N
i=1 µiδzi is a finitely supported measure and if m : X → R

is a function on the feature space, we will write

〈µ , m 〉 = (µi | mzi ) =

N∑
i=1

µi m(zi). (3)

Here, (µi)i∈[[1,N ]] and (mzi)i∈[[1,N ]] are two vectors of RN : the measure-function
duality bracket 〈 · , · 〉 is thus understood as a simple scalar product ( · | · ) in RN .

1.2 Kernel distances

If α and β represent two shapes in the feature spaceX, using standard information-
theoretic fidelities such as the symmetrised Kullback-Leibler divergence

KLsym(α, β) = KL(α, β) + KL(β, α) =
〈
α− β , log

(
dα
dβ

)〉
> 0 (4)

is not recommended: shape analysis routines should take into account the geom-
etry of the feature space.

Kernel norms. A common way of doing so is to endow the feature space X
with a symmetric kernel function k : X ×X → R and to use

dk(α, β) = 〈α− β , k ? (α− β) 〉 =
〈
α− β , bk − ak

〉
, (5)

where ak(z) = − (k ? α)(z) = −
∑N

i=1
αi k(xi, z) (6)

and bk(z) = − (k ? β)(z) = −
∑M

j=1
βj k(yj , z). (7)

In practice, these summations can be implemented as matrix-vector products or,
as advocated in Figure 11, by using the online map-reduce routines of the KeOps
library [2]. If k(x, y) = k(x−y) is a translation invariant kernel, the positivity of

dk is equivalent to the positivity of the Fourier transform k̂ of the convolution
kernel. Popular choices include the gaussian and laplacian kernels:

Gaussianσ(x− y) = exp(−‖x− y‖2/σ2) (8)

and Laplacianσ(x− y) = exp(−‖x− y‖/σ). (9)

However, as∇xi
dk(α, β) is given by the gradient of the linear potential 2 (bk−ak)

sampled on the xi’s, we argue in Figures 2-3 that a more robust baseline could
be given by the Energy Distance kernel from statistics [12], which has better
properties of monotony:

Energy(x− y) = − ‖x− y‖. (10)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

α β

k ? (α− β) on the ambient space, the line of real numbers

Gaussian kernel, σ = .1

Laplacian kernel, σ = .1

Energy Distance

Fig. 2: The linear potential k ? (α − β), for standard kernel functions.
Here, α and β are the standard Lebesgue measures on the segments [.2, .35] and
[.65, .8], respectively. Out of these three curves, the third is the only one whose
(minus) gradient always points from α towards β.

(a) Gaussian, σ = .1 (b) Laplacian, σ = .1 (c) Energy Distance

Fig. 3: The Energy Distance is scale-invariant and robust to large de-
formations. This is the 2D equivalent of Figure 2, with level lines of k ? (α−β)
displayed in the background. Notice the spreading out effect in (a-b).

(a) Energy Distance (b) SoftMin, ε = .05 (c) SoftMin, ε = .05

Fig. 4: Linear potentials can only take you so far. (a) As it faces a mass
imbalance, the global gradient of the Energy Distance tries to split up the largest
red mass into pieces. (b-c) The SoftMin fidelity, introduced in section 2, allows
us to induce a more “focused” behavior into our algorithms.
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2 Computing non-linear potentials

The log-sum-exp trick. In order to build tractable algorithms, restricting
ourselves to potentials a and b that depend linearly on the measures α and β
seems to be a necessary evil... But we can go further. Indeed, on top of the
“summation” operation of Eqs. (6-7), we can implement on the GPU another
differentiable reduction operator: the log-sum-exp or SoftMax, defined through

log
∑N
i=1 exp(mi) = M + log

∑N
i=1 exp(mi −M), (11)

with M = maximi taken out of the expression for numerical stability. The
KeOps library implements an online variant of this “max-factorization” trick,
and let us scale this operation to large values of N – see Figure 11.

Definition. Then, we propose to endow the ambient space X with a symmetric,
positive cost function C : X × X 7→ C(x, y) – say, ‖x − y‖ – a regularization
strength ε > 0 and a kernel function kε = exp(− 1

εC( · , · )) to define

Sminε,x∼αC(x, z) = − ε log(kε ? α)(z) (12)

= − ε log
∑N
i=1 exp

(
log(αi)− 1

εC(xi, z)
)
. (13)

Mimicking Eq. (5), we propose to see the SoftMin functions as non-linear influ-
ence fields, analogous to the linear potentials ak and bk. Hence, we introduce the
ε-SoftMin cost through

dε-SoftMin(α, β) = 〈α− β , bε − aε 〉 (14)

=
(
αi | bεxi

− aεxi

)
+
(
βj | aεyj − b

ε
yj

)
, (15)

where aε(z) = Sminε,x∼αC(x, z) and bε(z) = Sminε,y∼βC(y, z). (16)

Interpretation. Simple calculations show that if C(x, y) = ‖x − y‖, the ε-
SoftMin cost converges towards the Energy distance as ε goes to infinity. At the
other end of the spectrum,

dε-SoftMin(α, β)
ε→0−−−−→

N∑
i=1

αi min
j
C(xi, yj) +

M∑
j=1

βj min
i
C(xi, yj) (17)

As shown in Figure 6, the SoftMin operators is thus allowing us to interpolate
between statistics and computer graphics.

Positivity. Unfortunately, one cannot guarantee the positivity of the ε-SoftMin
fidelity: linearizing the cost, we find pairs of measures such that dε-SoftMin(α +
δα, α) < 0. However, if λ is a reference measure on the feature space X (say, the
Lebesgue measure on Rd), then

εKLsym((kε ? α) · λ, (kε ? β) · λ) =

〈
λ · kε ? (α− β) , ε log

kε ? α

kε ? β

〉
(18)

= 〈λ · kε ? (α− β) , bε − aε 〉 > 0. (19)

In practice, if (α − β) is close enough to its ε-blurred image λ · kε ? (α − β),
dε-SoftMin(α, β) is thus positive too.
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Fig. 5: The SoftMin operator. The log-sum-exp trick allows us to interpolate
between the “Energy potential” | · | ? α – for ε = +∞ – and the distance field
to the support {.25, .75} of α – for ε = 0.

(a) SoftMin, ε = +∞ (b) SoftMin, ε = .05 (c) SoftMin, ε = .01

Fig. 6: The log-kernel fidelity interpolates between the Energy Distance
and a weighted Hausdorff distance between the supports [1]. Here, we
use the simple Euclidean cost C(x, y) = ‖x− y‖.

(a) SoftMin, ε = +∞ (b) SoftMin, ε = .05 (c) SoftMin, ε = .01

Fig. 7: Naive projection isn’t the panacea. Shape registration isn’t always
about projecting source points onto their nearest target neighbors... Presented
in section 3, the Sinkhorn loop will let us introduce a mass repartition con-
straint into our algorithms.
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3 Balancing distance fields: the Sinkhorn algorithm

As seen in Figure 7, adding a mass repartition constraint to SoftMin dis-
tances could improve the quality of our descent directions. Thankfully, this is
now possible thanks to the Optimal Transport theory of which we now recall the
fundamentals; we recommend the recent handbook [11] for further reference.

Primal “Monge” problem. At heart, Optimal Transport is about solving a
convex registration problem: for ε > 0, we define the primal cost OTε through

OTε(α, β) = min
Γxi,yj

∈RN×M
>0

∑
i,j

Γxi,yj C(xi, yj)︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

Γxi,yj

(
log

Γxi,yj

αi βj
− 1
)

︸ ︷︷ ︸
entropic regularization

, (20)

under a linear mass repartition constraint:

∀ i ∈ [[1, N ]] , αi =
∑M
j=1 Γxi,yj and ∀ j ∈ [[1,M ]] , βj =

∑N
i=1 Γxi,yj . (21)

Dual “Kantorovitch” formulation. Thanks to the Fenchel-Rockafellar the-
orem, we can write the dual problem of OTε as

Wε(α, β) = max
bxi
∈RN ,ayj∈RM

(αi | bxi
) +

(
βj | ayj

)
(22)

− ε
(
αi · βj | exp

(
1
ε

(
bxi

+ ayj − C(xi, yj)
)) )

.

The Sinkhorn algorithm. The major result of [3] is to show that these prob-
lems are equivalent, and can be solved numerically by using the algorithm below.
At convergence, since α and β have the same total mass, we get

OTε(α, β) = Wε(α, β) =
〈
α , bβ→α

〉
+
〈
β , aα→β

〉
− ε 〈α , 1 〉 (23)

=
(
αi | bβ→αxi

)
+
(
βj | aα→βyj

)
− ε

N∑
i=1

αi, (24)

with (aα→βyj , bβ→αxi
) = Sink(αi, xi, βj , yj).

Algorithm 1 Sinkhorn Iterative Algorithm: Sink(αi, xi, βj, yj)

Parameters : symmetric cost C : (x, y) 7→ C(x, y), regularization ε > 0

Input : source α =
∑N
i=1 αiδxi , target β =

∑M
j=1 βjδyj

Output : influence fields aα→β and bβ→α, sampled on the yj ’s and xi’s respectively

1: ayj ← zeros(M) ; bxi ← zeros(N) . Vectors of size M and N , respectively
2: for it = 1 to nits do
3: bxi ← Sminε,y∼β(C(xi, y)− a(y)) = −ε log

∑M
j=1 exp

(
log(βj)− 1

ε
(C(xi, yj)− ayj )

)
4: ayj ← Sminε,x∼α(C(x, yj)− b(x)) = −ε log

∑N
i=1 exp

(
log(αi)− 1

ε
(C(xi, yj)− bxi)

)
5: return ayj = aα→βyj , bxi = bβ→αxi . Vectors of size M and N , respectively
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(a) it. 1 (b) it. 2 (c) it. 3 (d) it. 5

Fig. 8: The symmetric Sinkhorn algorithm converges fast. As we display
the distance field aα↔α – sampled on a uniform grid yj – across the iterations
of the symmetric Sinkhorn algorithm, we see that running it with nits = 3 is
enough for practical purposes.

(a) it. 1 1/2 (b) it. 4 1/2 (c) it. 9 1/2 (d) it. 29 1/2

(e) it. 2 (f) it. 5 (g) it. 10 (h) it. 30

Fig. 9: The (standard) Sinkhorn algorithm brings balance to the force.
On top of α, β, aα→β (in red) and bβ→α (in blue), we display the mean “springs”
linking the xi’s to β (in red) and the yj ’s to α (in blue). Algorithm 1 is all about
normalizing the blue (line 3) and red (line 4) springs until reaching equilibrium.

(a) ε-Hausdorff,
√
ε = .1 (b) ε-Sinkhorn,

√
ε = .1

Fig. 10: Computing ε-Hausdorff and ε-Sinkhorn divergences. On this
page, we use a quadratic cost C(x, y) = ‖x − y‖2 so that ε is homogeneous
to a squared distance.
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A positive soft-Hausdorff divergence. In [5], we advocated the use of
Wε(α, β) as a data attachment term for diffeomorphic registration. Unfortu-
nately though, just like the ε-SoftMin fidelity, this regularized OT cost cannot
be guaranteed to be positive and the minimum of α 7→Wε(α, β) is not reached
when α is exactly equal to β.

In ongoing collaboration with François-Xavier Vialard and Gabriel Peyré, we
thus decided to shift our attention towards the potential

Fε(α) = − 1
2Wε(α, α) = ε min

µi∈RN
>0

〈
α , log dα

dµ

〉
+ 1

2 〈µ , kε ? µ 〉 , (25)

with µ =
∑N
i=1 µiδxi

– this identity stands thanks to a change of variable “µi =
exp(axi/ε)αi”. As we study the associated symmetrized Bregman divergence on
the space of positive measures on X, we see that it is very close to an ε-SoftMin
cost. Most importantly, this ε-Hausdorff divergence can be computed through a
handful of iterations of the symmetrized Sinkhorn algorithm, as detailed below:

dε-Hausdorff(α, β) = 1
2

〈
α− β , bβ↔β − aα↔α

〉
(26)

= 1
2

(
αi | bβ↔βxi

− aα↔αxi

)
+ 1

2

(
βj | aα↔αyj − bβ↔βyj

)
, (27)

with (aα↔αyj , aα↔αxi
) = SymSink(αi, xi, yj) , (bβ↔βxi

, bβ↔βyj ) = SymSink(βj , yj , xi).

Algorithm 2 Symmetric Sinkhorn Algorithm: SymSink(αi, xi, yj)

Parameters : symmetric cost C : (x, y) 7→ C(x, y), regularization ε > 0

Input : source α =
∑N
i=1 αiδxi , target point cloud (yj)j∈[[1,M ]]

Output : influence field aα↔α sampled on the xi’s and the yj ’s

1: axi ← zeros(N) . Vector of size N
2: for it = 1 to nits − 1 do
3: axi ← 1

2
(axi + Sminε,x∼α(C(xi, x)− a(x)))

= 1
2

(
axi − ε log

∑N
k=1 exp

(
log(αk)− 1

ε
(C(xi, xk)− axk )

))
4: axi ← Sminε,x∼α(C(xi, x)− a(x)) = −ε log

∑N
k=1 exp

(
log(αk)− 1

ε
(C(xi, xk)− axk )

)
5: ayj ← Sminε,x∼α(C(yj , x)− a(x)) = −ε log

∑N
k=1 exp

(
log(αk)− 1

ε
(C(yj , xk)− axk )

)
6: return ayj = aα↔αyj , axi = aα↔αxi . Vectors of size M and N , respectively

The ε-Sinkhorn divergence. Coming back to the standard Sinkhorn algo-
rithm and optimal transport plans, this new ε-Hausdorff point of view allows us
to prove the positivity conjecture of [7]: if we define the “unbiased” Sinkhorn
divergence as

dε-Sinkhorn(α, β) = Wε(α, β)− 1
2Wε(α, α)− 1

2Wε(β, β) (28)

=
(
αi | bβ→αxi

− aα↔αxi

)
+
(
βj | aα→βyj − bβ↔βyj

)
, (29)

with (aα↔αyj , aα↔αxi
) = SymSink(αi, xi, yj), (bβ↔βxi

, bβ↔βyj ) = SymSink(βj , yj , xi)

and (aα→βyj , bβ→αxi
) = Sink(αi, xi, βj , yj), we can state our main result:
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Fig. 11: The KeOps library lets shape analysis routines scale up to real
data. Performances on a cheap laptop’s GPU (GTX 960M). (a) As it provides
CUDA routines for online map-reduce operations, our “KErnelOPerationS” li-
brary – developed with Benjamin Charlier and Joan A. Glaunès – allows Matlab,
numpy and pytorch users to compute huge N-by-N convolutions without having
to store large kernel matrices in the GPU memory. (b) Experiments performed
on point clouds in R3, endowed with a Euclidean cost C(x, y) = ‖x− y‖.

(a) sagittal (b) coronal (c) 3D Slicer view [4]

Fig. 12: On real data. Our routines could be used to registrate thin structures
such as these knee caps from the OsteoArthritis Initiative – special thanks to
Zhenlin Xu and Marc Niethammer for letting us know about this dataset. Here,
the source and target volumes are respectively made up of 52,319 and 34,966
voxels – out of a 192-192-160 volume. As advertised in Figure 11, this Energy
Distance’s gradient was computed in half a second on the author’s laptop.

Theorem 1 (Positivity). Let α and β be two positive measures with finite
support and same total mass on a feature space X. Let us choose a smoothing
scale ε > 0 and a cost function C on X ×X such that

kε(x, y) = exp(−C(x, y)/ε) (30)

defines a positive kernel function on X. Then, one can show that

0 6 dε-Hausdorff(α, β) 6 dε-Sinkhorn(α, β). (31)

Proof. A detailed proof of this result will soon be published in [6].
In a nutshell: the first inequality relies on the positivity of the kernel kε, as it
ensures the convexity of the potential Fε – Eq. (25) – and the positivity of the
associated Bregman divergence. The second inequality derives from the convexity
of Wε(α, β) with respect to α and β varying independently – see Eq. (22).
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4 Conclusion

Overview. All things considered, we introduced three positive divergences to
the shape analysis community: the cheap and global Energy Distance; the high-
quality ε-Sinkhkorn cost; and, sitting in-between, a brand new ε-Hausdorff di-
vergence inspired by computer graphics.

As we linked all these theories with each other in sections 2 and 3, we were
able to provide important theoretical guarantees and efficient GPU routines – in
practice, we advocate the use of the PyTorch + KeOps combination [10,2] that
provides automatic differentiation and scalability to shapes with up to 100,000
active vertices.
Going further. Now, which one of these formulas should we use in practice?
As seen in Figure 10, using an ε-Sinkhorn divergence is equivalent to performing
a full convex registration – with no guarantee of topology preservation – every
time we need a descent direction... Do we really need to go that far?

The answer to this question is highly dependent on the remainder of the
registration pipeline. In months to come, we thus plan to test our new fidelities
in a wide range of settings – from standard LDDMM to Deep Learning based
methods – as we strive to provide our colleagues with reliable tools.
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12. Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances.
Journal of statistical planning and inference 143(8), 1249–1272 (2013)

http://plmlab.math.cnrs.fr/benjamin.charlier/libkeops
http://plmlab.math.cnrs.fr/benjamin.charlier/libkeops

	Global divergences between measures: from Hausdorff distance to Optimal Transport

