Global divergences between measures: from Hausdorff distance to Optimal Transport

Jean Feydy, Alain Trouvé

To cite this version:

Jean Feydy, Alain Trouvé. Global divergences between measures: from Hausdorff distance to Optimal Transport. 2018. hal-01827184v1

HAL Id: hal-01827184
https://hal.science/hal-01827184v1
Preprint submitted on 1 Jul 2018 (v1), last revised 20 Aug 2018 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Global divergences between measures: from Hausdorff distance to Optimal Transport

Jean Feydy ${ }^{1,2}$ and Alain Trouvé ${ }^{2}$
${ }^{1}$ DMA, École Normale Supérieure, Paris, France
jean.feydy@ens.fr
${ }^{2}$ CMLA, ENS Paris-Saclay, Cachan, France
trouve@cmla.ens-cachan.fr

Abstract

The data attachment formula is a key component of shape registration pipelines: computed at every step, its gradient is the vector field that drives a deformed model towards its target. Unfortunately, most classical formulas are at most semi-local: their gradients saturate and stop being informative above some given distance, with appalling consequences on the robustness of shape analysis pipelines. In this paper, we provide a unified view of three fidelities between measures that alleviate this problem: the Energy Distance from statistics; the (weighted) Hausdorff distance from computer graphics; the Wasserstein distance from Optimal Transport theory. Provided with efficient GPU routines and theoretical guarantees, these tools should allow the shape analyst to handle large deformations without hassle.

Keywords: shape registration • kernel • energy distance • hausdorff distance • optimal transport • GPU

1 Introduction

Shape registration as a variational problem. Given a source shape A and a target B, a key problem in medical image analysis is to registrate the former onto the latter. That is, to estimate a mapping φ (a change of coordinates) that turns the source A into a model $\varphi(A)$ which is "close enough" to the target.

Most classical registration algorithms strive to minimize an energy

$$
\begin{equation*}
E(\varphi)=\underbrace{\operatorname{Reg}(\varphi)}_{\text {regularizer }}+\underbrace{\mathrm{d}(\varphi(A), B)}_{\text {fidelity }} \tag{1}
\end{equation*}
$$

which is the sum of a regularization term - encoding a prior on acceptable mappings - and a data attachment term - or fidelity - that measures how far the model $\varphi(A)$ is from the target B.

The need for robust fidelities and gradients. Unfortunately, as of today, most fidelities can at best be described as semi-local. Relying on small convolution filters or kernel functions that saturate at long range [8], they stop being
informative when parts of the shapes are far away from each other. In recent years, finely crafted formulas have been proposed to alleviate this problem [9] but were probably too sophisticated to meet widespread adoption. As a result, most users today still rely on finely tuned coarse-to-fine schemes to registrate shape populations.

Contribution. At MICCAI 2017, we introduced the theory of Optimal Transport to the medical imaging community 5. Leveraging the ideas and algorithms presented in [11, we showed that using globally optimal spring systems to drive a registration routine could be tractable, and improved the robustness of pipelines to large deformations. The present paper is about introducing these ideas with tools and concepts that the shape analysis community is familiar with.

In section 1, we review the standard theory of measures and kernel distances (also known as blurred SSD). We stress the relevance of the scale-invariant kernel $k(x)=-\|x\|$, which gives rise to the global Energy Distance between shapes. We also notice that kernel distances rely on linear potentials (influence fields) generated by the shapes.

In section 2, we show how to use and compute non-linear potentials. We introduce a family of cheap fidelities between measures, the ε-SoftMin costs, that interpolate between the Energy Distance $(\varepsilon=+\infty)$ and the weighted Hausdorff distance $(\varepsilon=0)$ borrowed from computer graphics.

Finally, in section 3, we come back to the optimal transport cost and show that it is nothing but a "Hausdorff" distance under a mass repartition constraint. We interpret the celebrated Sinkhorn algorithm as a balancing scheme on distance fields and put an emphasis on two fidelities: the cheap ε-Hausdorff and the high-quality ε-Sinkhorn divergence, with a guarantee of positivity for both.

In practice. Most importantly, we provide efficient CUDA routines - with Matlab, numpy and pytorch bindings - that can be used to implement these

Fig. 1: We focus this paper on the registration of thin segmented volumes (a, from the OsteoArthritis Initiative) encoded as measures on the ambient space (b). We provide efficient GPU routines to compute long-range gradients, from cheap kernel distances (c) to high-quality optimal transport plans (d).
new data attachment terms. As shown in section 4, our KeOps library [2] allows users to process curves, surfaces and segmentation maps with up to 100,000 actives vertices on a cheap laptop's GPU.

These new tools will fit seamlessly into the standard shape analyst's toolset, and help the reader to improve with little to no overhead the robustness to large deformations of its shape analysis pipeline.

1.1 Representing shapes as measures on a space of features

In this paper. We choose to focus this paper on a setting that is understood well by all researchers in medical image analysis: the registration of normalized density maps. Our source bitmap A (in red) and target B (in blue) will be encoded as measures

$$
\begin{equation*}
\alpha=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}} \quad \text { and } \quad \beta=\sum_{j=1}^{M} \beta_{j} \delta_{y_{j}}, \quad \text { with } \quad \sum_{i=1}^{N} \alpha_{i}=1=\sum_{j=1}^{M} \beta_{j} \tag{2}
\end{equation*}
$$

where the x_{i} 's (respectively y_{j} 's) are the coordinates of the N (resp. M) nonzero pixels of A (resp. B), with positive weights α_{i} (resp. β_{j}) summing up to the unit mass.

In most figures, we will display the gradient $\nabla_{x_{i}} \mathrm{~d}(\alpha, \beta)$ of a fidelity " d " as a green vector field supported by the x_{i} 's. This descent direction is meant to be used by registration algorithms and is thus the primary information to look at in our pictures. In the background, depending on the section, we also display the level lines of the linear potential " $k \star(\alpha-\beta)$ " (in blue) or of the influence fields " a " (in red) and " b " (in blue) - more about that later.

Extensions. The results presented in this paper can be extended to other use cases fairly easily. First, if one wishes to use an image-based registration of segmentation maps instead of the mass preserving "Jacobian-free" action, one should simply compute the gradient $\nabla_{\alpha_{i}} \mathrm{~d}(\alpha, \beta)$ of fidelities with respect to the weights of the atomic dirac masses; the presence of long-range interactions is equally important to the robustness of the registration algorithm, with mass contraction (i.e. deletion) replacing the spreading out phenomenon observed in Figure 3 (a-b).

Most of our results still hold when the source and the target don't have the same mass - the only noticeable changes would be located in section 3, and we recommend [11] as an introduction to the theory of unbalanced optimal transport. Going further, these new tools and GPU routines can also be used to handle fiber tracks, curves and surfaces through the varifold framework presented in 8.

Notations. In order to let our results be useful to researchers working with curves and surfaces - which are best represented as measures on a product space (position,orientation,curvature) - we will refer to the ambient space \mathbb{R}^{2} or \mathbb{R}^{3} as being an abstract feature space X. The letters x, y and z will denote points in
the feature space, while α, β or μ stand for finitely supported positive measures, and a, b and m for real-valued functions on X understood as being influence fields generated by their respective measures.

If $\left(z_{i}\right)_{i \in \llbracket 1, N \rrbracket}$ is a collection of N points in X and if $m: X \rightarrow \mathbb{R}$ is a function on the feature space, we will also write " $m_{z_{i}}$ " to denote the length- N vector $\left(m\left(z_{i}\right)\right)_{i \in \llbracket 1, N \rrbracket}$ of values of m sampled on the point cloud z_{i}.

Finally, if $\mu=\sum_{i=1}^{N} \mu_{i} \delta_{z_{i}}$ is a finitely supported measure and if $m: X \rightarrow \mathbb{R}$ is a function on the feature space, we will write

$$
\begin{equation*}
\langle\mu, m\rangle=\left(\mu_{i} \mid m_{z_{i}}\right)=\sum_{i=1}^{N} \mu_{i} m\left(z_{i}\right) \tag{3}
\end{equation*}
$$

Here, $\left(\mu_{i}\right)_{i \in \llbracket 1, N \rrbracket}$ and $\left(m_{z_{i}}\right)_{i \in \llbracket 1, N \rrbracket}$ are two vectors of \mathbb{R}^{N} : the measure-function duality bracket $\langle\cdot, \cdot\rangle$ is thus understood as a simple scalar product $(\cdot \mid \cdot)$ in \mathbb{R}^{N}.

1.2 Kernel distances

If α and β represent two shapes in the feature space X, using standard informationtheoretic fidelities such as the symmetrised Kullback-Leibler divergence

$$
\begin{equation*}
\mathrm{KL}_{\mathrm{sym}}(\alpha, \beta)=\mathrm{KL}(\alpha, \beta)+\mathrm{KL}(\beta, \alpha)=\left\langle\alpha-\beta, \log \left(\frac{\mathrm{d} \alpha}{\mathrm{~d} \beta}\right)\right\rangle \geqslant 0 \tag{4}
\end{equation*}
$$

is not recommended: shape analysis routines should take into account the geometry of the feature space.

Kernel norms. A common way of doing so is to endow the feature space X with a symmetric kernel function $k: X \times X \rightarrow \mathbb{R}$ and to use

$$
\begin{gather*}
\mathrm{d}_{k}(\alpha, \beta)=\langle\alpha-\beta, k \star(\alpha-\beta)\rangle=\left\langle\alpha-\beta, b^{k}-a^{k}\right\rangle \tag{5}\\
\text { where } \quad a^{k}(z)=-(k \star \alpha)(z)=-\sum_{i=1}^{N} \alpha_{i} k\left(x_{i}, z\right) \tag{6}\\
\text { and } \quad b^{k}(z)=-(k \star \beta)(z)=-\sum_{j=1}^{M} \beta_{j} k\left(y_{j}, z\right) \tag{7}
\end{gather*}
$$

In practice, these summations can be implemented as matrix-vector products or, as advocated in Figure 11, by using the online map-reduce routines of the KeOps library [2]. If $k(x, y)=k(x-y)$ is a translation invariant kernel, the positivity of d_{k} is equivalent to the positivity of the Fourier transform \widehat{k} of the convolution kernel. Popular choices include the gaussian and laplacian kernels:

$$
\begin{align*}
\operatorname{Gaussian}_{\sigma}(x-y) & =\exp \left(-\|x-y\|^{2} / \sigma^{2}\right) \tag{8}\\
\text { and } \quad \operatorname{Laplacian}_{\sigma}(x-y) & =\exp (-\|x-y\| / \sigma) \tag{9}
\end{align*}
$$

However, as $\nabla_{x_{i}} \mathrm{~d}_{k}(\alpha, \beta)$ is given by the gradient of the linear potential $2\left(b^{k}-a^{k}\right)$ sampled on the x_{i} 's, we argue in Figures 23 that a more robust baseline could be given by the Energy Distance kernel from statistics [12], which has better properties of monotony:

$$
\begin{equation*}
\operatorname{Energy}(x-y)=-\|x-y\| \tag{10}
\end{equation*}
$$

Fig. 2: The linear potential $k \star(\alpha-\beta)$, for standard kernel functions. Here, α and β are the standard Lebesgue measures on the segments [.2,.35] and $[.65, .8]$, respectively. Out of these three curves, the third is the only one whose (minus) gradient always points from α towards β.

Fig. 3: The Energy Distance is scale-invariant and robust to large deformations. This is the 2D equivalent of Figure 2, with level lines of $k \star(\alpha-\beta)$ displayed in the background. Notice the spreading out effect in (a-b).

Fig. 4: Linear potentials can only take you so far. (a) As it faces a mass imbalance, the global gradient of the Energy Distance tries to split up the largest red mass into pieces. (b-c) The SoftMin fidelity, introduced in section 2, allows us to induce a more "focused" behavior into our algorithms.

2 Computing non-linear potentials

The log-sum-exp trick. In order to build tractable algorithms, restricting ourselves to potentials a and b that depend linearly on the measures α and β seems to be a necessary evil... But we can go further. Indeed, on top of the "summation" operation of Eqs. (6|7), we can implement on the GPU another differentiable reduction operator: the log-sum-exp or SoftMax, defined through

$$
\begin{equation*}
\log \sum_{i=1}^{N} \exp \left(m_{i}\right)=M+\log \sum_{i=1}^{N} \exp \left(m_{i}-M\right) \tag{11}
\end{equation*}
$$

with $M=\max _{i} m_{i}$ taken out of the expression for numerical stability. The KeOps library implements an online variant of this "max-factorization" trick, and let us scale this operation to large values of N - see Figure 11

Definition. Then, we propose to endow the ambient space X with a symmetric, positive cost function $C: X \times X \mapsto C(x, y)$ - say, $\|x-y\|$ - a regularization strength $\varepsilon>0$ and a kernel function $k_{\varepsilon}=\exp \left(-\frac{1}{\varepsilon} C(\cdot, \cdot)\right)$ to define

$$
\begin{align*}
\operatorname{Smin}_{\varepsilon, x \sim \alpha} C(x, z) & =-\varepsilon \log \left(k_{\varepsilon} \star \alpha\right)(z) \tag{12}\\
& =-\varepsilon \log \sum_{i=1}^{N} \exp \left(\log \left(\alpha_{i}\right)-\frac{1}{\varepsilon} C\left(x_{i}, z\right)\right) . \tag{13}
\end{align*}
$$

Mimicking Eq. (5), we propose to see the SoftMin functions as non-linear influence fields, analogous to the linear potentials a^{k} and b^{k}. Hence, we introduce the ε-SoftMin cost through

$$
\begin{align*}
\mathrm{d}_{\varepsilon-\operatorname{SoftMin}}(\alpha, \beta) & =\left\langle\alpha-\beta, b^{\varepsilon}-a^{\varepsilon}\right\rangle \tag{14}\\
& =\left(\alpha_{i} \mid b_{x_{i}}^{\varepsilon}-a_{x_{i}}^{\varepsilon}\right)+\left(\beta_{j} \mid a_{y_{j}}^{\varepsilon}-b_{y_{j}}^{\varepsilon}\right) \tag{15}
\end{align*}
$$

where $\quad a^{\varepsilon}(z)=\operatorname{Smin}_{\varepsilon, x \sim \alpha} C(x, z)$ and $b^{\varepsilon}(z)=\operatorname{Smin}_{\varepsilon, y \sim \beta} C(y, z)$.

Interpretation. Simple calculations show that if $C(x, y)=\|x-y\|$, the ε SoftMin cost converges towards the Energy distance as ε goes to infinity. At the other end of the spectrum,

$$
\begin{equation*}
\mathrm{d}_{\varepsilon-\operatorname{SoftMin}}(\alpha, \beta) \xrightarrow{\varepsilon \rightarrow 0} \sum_{i=1}^{N} \alpha_{i} \min _{j} C\left(x_{i}, y_{j}\right)+\sum_{j=1}^{M} \beta_{j} \min _{i} C\left(x_{i}, y_{j}\right) \tag{17}
\end{equation*}
$$

As shown in Figure 6, the SoftMin operators is thus allowing us to interpolate between statistics and computer graphics.

Positivity. Unfortunately, one cannot guarantee the positivity of the ε-SoftMin fidelity: linearizing the cost, we find pairs of measures such that $\mathrm{d}_{\varepsilon \text {-SoftMin }}(\alpha+$ $\delta \alpha, \alpha)<0$. However, if λ is a reference measure on the feature space X (say, the Lebesgue measure on \mathbb{R}^{d}), then

$$
\begin{align*}
\varepsilon \mathrm{KL}_{\mathrm{sym}}\left(\left(k_{\varepsilon} \star \alpha\right) \cdot \lambda,\left(k_{\varepsilon} \star \beta\right) \cdot \lambda\right) & =\left\langle\lambda \cdot k_{\varepsilon} \star(\alpha-\beta), \varepsilon \log \frac{k_{\varepsilon} \star \alpha}{k_{\varepsilon} \star \beta}\right\rangle \tag{18}\\
& =\left\langle\lambda \cdot k_{\varepsilon} \star(\alpha-\beta), b^{\varepsilon}-a^{\varepsilon}\right\rangle \geqslant 0 \tag{19}
\end{align*}
$$

In practice, if $(\alpha-\beta)$ is close enough to its ε-blurred image $\lambda \cdot k_{\varepsilon} \star(\alpha-\beta)$, $\mathrm{d}_{\varepsilon \text {-SoftMin }}(\alpha, \beta)$ is thus positive too.

Fig. 5: The SoftMin operator. The log-sum-exp trick allows us to interpolate between the "Energy potential" $|\cdot| \star \alpha$ - for $\varepsilon=+\infty$ - and the distance field to the support $\{.25, .75\}$ of $\alpha-$ for $\varepsilon=0$.

Fig. 6: The log-kernel fidelity interpolates between the Energy Distance and a weighted Hausdorff distance between the supports [1]. Here, we use the simple Euclidean cost $C(x, y)=\|x-y\|$.

Fig. 7: Naive projection isn't the panacea. Shape registration isn't always about projecting source points onto their nearest target neighbors... Presented in section 3, the Sinkhorn loop will let us introduce a mass repartition constraint into our algorithms.

3 Balancing distance fields: the Sinkhorn algorithm

As seen in Figure 7, adding a mass repartition constraint to SoftMin distances could improve the quality of our descent directions. Thankfully, this is now possible thanks to the Optimal Transport theory of which we now recall the fundamentals; we recommend the recent handbook [11] for further reference.

Primal "Monge" problem. At heart, Optimal Transport is about solving a convex registration problem: for $\varepsilon>0$, we define the primal cost $\mathrm{OT}_{\varepsilon}$ through
$\mathrm{OT}_{\varepsilon}(\alpha, \beta)=\min _{\Gamma_{x_{i}, y_{j}} \in \mathbb{R}_{\geqslant 0}^{N \times M}} \underbrace{\sum_{i, j} \Gamma_{x_{i}, y_{j}} C\left(x_{i}, y_{j}\right)}_{\text {transport cost }}+\underbrace{\varepsilon \sum_{i, j} \Gamma_{x_{i}, y_{j}}\left(\log \frac{\Gamma_{x_{i}, y_{j}}}{\alpha_{i} \beta_{j}}-1\right),}_{\text {entropic regularization }}$
under a linear mass repartition constraint:
$\forall i \in \llbracket 1, N \rrbracket, \alpha_{i}=\sum_{j=1}^{M} \Gamma_{x_{i}, y_{j}} \quad$ and $\quad \forall j \in \llbracket 1, M \rrbracket, \beta_{j}=\sum_{i=1}^{N} \Gamma_{x_{i}, y_{j}}$.
Dual "Kantorovitch" formulation. Thanks to the Fenchel-Rockafellar theorem, we can write the dual problem of $\mathrm{OT}_{\varepsilon}$ as

$$
\begin{align*}
\mathrm{W}_{\varepsilon}(\alpha, \beta)=\max _{b_{x_{i}} \in \mathbb{R}^{N}, a_{y_{j}} \in \mathbb{R}^{M}} & \left(\alpha_{i} \mid b_{x_{i}}\right)+\left(\beta_{j} \mid a_{y_{j}}\right) \tag{22}\\
& -\varepsilon\left(\alpha_{i} \cdot \beta_{j} \left\lvert\, \exp \left(\frac{1}{\varepsilon}\left(b_{x_{i}}+a_{y_{j}}-C\left(x_{i}, y_{j}\right)\right)\right)\right.\right) .
\end{align*}
$$

The Sinkhorn algorithm. The major result of [3] is to show that these problems are equivalent, and can be solved numerically by using the algorithm below. At convergence, since α and β have the same total mass, we get

$$
\begin{align*}
\mathrm{OT}_{\varepsilon}(\alpha, \beta)=\mathrm{W}_{\varepsilon}(\alpha, \beta) & =\left\langle\alpha, b^{\beta \rightarrow \alpha}\right\rangle+\left\langle\beta, a^{\alpha \rightarrow \beta}\right\rangle-\varepsilon\langle\alpha, 1\rangle \tag{23}\\
& =\left(\alpha_{i} \mid b_{x_{i}}^{\beta \rightarrow \alpha}\right)+\left(\beta_{j} \mid a_{y_{j}}^{\alpha \rightarrow \beta}\right)-\varepsilon \sum_{i=1}^{N} \alpha_{i} \tag{24}
\end{align*}
$$

with $\left(a_{y_{j}}^{\alpha \rightarrow \beta}, b_{x_{i}}^{\beta \rightarrow \alpha}\right)=\operatorname{Sink}\left(\alpha_{i}, x_{i}, \beta_{j}, y_{j}\right)$.

```
Algorithm \(1 \quad\) Sinkhorn Iterative Algorithm: \(\operatorname{Sink}\left(\alpha_{i}, x_{i}, \beta_{j}, y_{j}\right)\)
Parameters : symmetric cost \(C:(x, y) \mapsto C(x, y)\), regularization \(\varepsilon>0\)
Input : source \(\alpha=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}\), target \(\beta=\sum_{j=1}^{M} \beta_{j} \delta_{y_{j}}\)
Output : influence fields \(a^{\alpha \rightarrow \beta}\) and \(b^{\beta \rightarrow \alpha}\), sampled on the \(y_{j}\) 's and \(x_{i}\) 's respectively
    \(a_{y_{j}} \leftarrow \operatorname{zeros}(M) ; b_{x_{i}} \leftarrow \operatorname{zeros}(N) \quad \triangleright\) Vectors of size \(M\) and \(N\), respectively
    for it \(=1\) to \(n_{\text {its }}\) do
        \(b_{x_{i}} \leftarrow \operatorname{Smin}_{\varepsilon, y \sim \beta}\left(C\left(x_{i}, y\right)-a(y)\right)=-\varepsilon \log \sum_{j=1}^{M} \exp \left(\log \left(\beta_{j}\right)-\frac{1}{\varepsilon}\left(C\left(x_{i}, y_{j}\right)-a_{y_{j}}\right)\right)\)
        \(a_{y_{j}} \leftarrow \operatorname{Smin}_{\varepsilon, x \sim \alpha}\left(C\left(x, y_{j}\right)-b(x)\right)=-\varepsilon \log \sum_{i=1}^{N} \exp \left(\log \left(\alpha_{i}\right)-\frac{1}{\varepsilon}\left(C\left(x_{i}, y_{j}\right)-b_{x_{i}}\right)\right)\)
    return \(a_{y_{j}}=a_{y_{j}}^{\alpha \rightarrow \beta}, \quad b_{x_{i}}=b_{x_{i}}^{\beta \rightarrow \alpha} \quad \triangleright\) Vectors of size \(M\) and \(N\), respectively
```


Fig. 8: The symmetric Sinkhorn algorithm converges fast. As we display the distance field $a^{\alpha \leftrightarrow \alpha}$ - sampled on a uniform grid y_{j} - across the iterations of the symmetric Sinkhorn algorithm, we see that running it with $n_{\text {its }}=3$ is enough for practical purposes.

Fig. 9: The (standard) Sinkhorn algorithm brings balance to the force. On top of $\alpha, \beta, a^{\alpha \rightarrow \beta}$ (in red) and $b^{\beta \rightarrow \alpha}$ (in blue), we display the mean "springs" linking the x_{i} 's to β (in red) and the y_{j} 's to α (in blue). Algorithm 1 is all about normalizing the blue (line 3) and red (line 4) springs until reaching equilibrium.

Fig. 10: Computing ε-Hausdorff and ε-Sinkhorn divergences. On this page, we use a quadratic cost $C(x, y)=\|x-y\|^{2}$ so that ε is homogeneous to a squared distance.

A positive soft-Hausdorff divergence. In [5], we advocated the use of $\mathrm{W}_{\varepsilon}(\alpha, \beta)$ as a data attachment term for diffeomorphic registration. Unfortunately though, just like the ε-SoftMin fidelity, this regularized OT cost cannot be guaranteed to be positive and the minimum of $\alpha \mapsto \mathrm{W}_{\varepsilon}(\alpha, \beta)$ is not reached when α is exactly equal to β.

In ongoing collaboration with François-Xavier Vialard and Gabriel Peyré, we thus decided to shift our attention towards the potential

$$
\begin{equation*}
F_{\varepsilon}(\alpha)=-\frac{1}{2} W_{\varepsilon}(\alpha, \alpha)=\varepsilon \min _{\mu_{i} \in \mathbb{R}_{\geqslant 0}^{N}}\left\langle\alpha, \log \frac{\mathrm{~d} \alpha}{\mathrm{~d} \mu}\right\rangle+\frac{1}{2}\left\langle\mu, k_{\varepsilon} \star \mu\right\rangle \tag{25}
\end{equation*}
$$

with $\mu=\sum_{i=1}^{N} \mu_{i} \delta_{x_{i}}$ - this identity stands thanks to a change of variable " $\mu_{i}=$ $\exp \left(a_{x_{i}} / \varepsilon\right) \alpha_{i} "$. As we study the associated symmetrized Bregman divergence on the space of positive measures on X, we see that it is very close to an ε-SoftMin cost. Most importantly, this ε-Hausdorff divergence can be computed through a handful of iterations of the symmetrized Sinkhorn algorithm, as detailed below:

$$
\begin{align*}
\mathrm{d}_{\varepsilon \text {-Hausdorff }}(\alpha, \beta) & =\frac{1}{2}\left\langle\alpha-\beta, b^{\beta \leftrightarrow \beta}-a^{\alpha \leftrightarrow \alpha}\right\rangle \tag{26}\\
& =\frac{1}{2}\left(\alpha_{i} \mid b_{x_{i}}^{\beta \leftrightarrow \beta}-a_{x_{i}}^{\alpha \leftrightarrow \alpha}\right)+\frac{1}{2}\left(\beta_{j} \mid a_{y_{j}}^{\alpha \leftrightarrow \alpha}-b_{y_{j}}^{\beta \leftrightarrow \beta}\right), \tag{27}
\end{align*}
$$

$\operatorname{with}\left(a_{y_{j}}^{\alpha \leftrightarrow \alpha}, a_{x_{i}}^{\alpha \leftrightarrow \alpha}\right)=\operatorname{SymSink}\left(\alpha_{i}, x_{i}, y_{j}\right),\left(b_{x_{i}}^{\beta \leftrightarrow \beta}, b_{y_{j}}^{\beta \leftrightarrow \beta}\right)=\operatorname{SymSink}\left(\beta_{j}, y_{j}, x_{i}\right)$.

```
Algorithm \(2 \quad\) Symmetric Sinkhorn Algorithm: \(\operatorname{SymSink}\left(\alpha_{i}, x_{i}, y_{j}\right)\)
Parameters : symmetric cost \(C:(x, y) \mapsto C(x, y)\), regularization \(\varepsilon>0\)
Input : source \(\alpha=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}\), target point cloud \(\left(y_{j}\right)_{j \in \llbracket 1, M \rrbracket}\)
Output : influence field \(a^{\alpha \leftrightarrow \alpha}\) sampled on the \(x_{i}\) 's and the \(y_{j}\) 's
    \(a_{x_{i}} \leftarrow \operatorname{zeros}(N) \quad \triangleright\) Vector of size \(N\)
    for it \(=1\) to \(n_{\text {its }}-1\) do
        \(a_{x_{i}} \leftarrow \frac{1}{2}\left(a_{x_{i}}+\operatorname{Smin}_{\varepsilon, x \sim \alpha}\left(C\left(x_{i}, x\right)-a(x)\right)\right)\)
            \(=\frac{1}{2}\left(a_{x_{i}}-\varepsilon \log \sum_{k=1}^{N} \exp \left(\log \left(\alpha_{k}\right)-\frac{1}{\varepsilon}\left(C\left(x_{i}, x_{k}\right)-a_{x_{k}}\right)\right)\right)\)
    \(a_{x_{i}} \leftarrow \operatorname{Smin}_{\varepsilon, x \sim \alpha}\left(C\left(x_{i}, x\right)-a(x)\right)=-\varepsilon \log \sum_{k=1}^{N} \exp \left(\log \left(\alpha_{k}\right)-\frac{1}{\varepsilon}\left(C\left(x_{i}, x_{k}\right)-a_{x_{k}}\right)\right)\)
    \(a_{y_{j}} \leftarrow \operatorname{Smin}_{\varepsilon, x \sim \alpha}\left(C\left(y_{j}, x\right)-a(x)\right)=-\varepsilon \log \sum_{k=1}^{N} \exp \left(\log \left(\alpha_{k}\right)-\frac{1}{\varepsilon}\left(C\left(y_{j}, x_{k}\right)-a_{x_{k}}\right)\right)\)
    return \(a_{y_{j}}=a_{y_{j}}^{\alpha \leftrightarrow \alpha}, a_{x_{i}}=a_{x_{i}}^{\alpha \leftrightarrow \alpha} \quad \triangleright\) Vectors of size \(M\) and \(N\), respectively
```

The ε-Sinkhorn divergence. Coming back to the standard Sinkhorn algorithm and optimal transport plans, this new ε-Hausdorff point of view allows us to prove the positivity conjecture of [7]: if we define the "unbiased" Sinkhorn divergence as

$$
\begin{align*}
\mathrm{d}_{\varepsilon \text {-Sinkhorn }}(\alpha, \beta) & =\mathrm{W}_{\varepsilon}(\alpha, \beta)-\frac{1}{2} \mathrm{~W}_{\varepsilon}(\alpha, \alpha)-\frac{1}{2} \mathrm{~W}_{\varepsilon}(\beta, \beta) \tag{28}\\
& =\left(\alpha_{i} \mid b_{x_{i}}^{\beta \rightarrow \alpha}-a_{x_{i}}^{\alpha \leftrightarrow \alpha}\right)+\left(\beta_{j} \mid a_{y_{j}}^{\alpha \rightarrow \beta}-b_{y_{j}}^{\beta \leftrightarrow \beta}\right), \tag{29}
\end{align*}
$$

with $\left(a_{y_{j}}^{\alpha \leftrightarrow \alpha}, a_{x_{i}}^{\alpha \leftrightarrow \alpha}\right)=\operatorname{SymSink}\left(\alpha_{i}, x_{i}, y_{j}\right),\left(b_{x_{i}}^{\beta \leftrightarrow \beta}, b_{y_{j}}^{\beta \leftrightarrow \beta}\right)=\operatorname{SymSink}\left(\beta_{j}, y_{j}, x_{i}\right)$ and $\quad\left(a_{y_{j}}^{\alpha \rightarrow \beta}, b_{x_{i}}^{\beta \rightarrow \alpha}\right)=\operatorname{Sink}\left(\alpha_{i}, x_{i}, \beta_{j}, y_{j}\right)$, we can state our main result:

Fig. 11: The KeOps library lets shape analysis routines scale up to real data. Performances on a cheap laptop's GPU (GTX 960M). (a) As it provides CUDA routines for online map-reduce operations, our "KErnelOPerationS" library - developed with Benjamin Charlier and Joan A. Glaunès - allows Matlab, numpy and pytorch users to compute huge N-by-N convolutions without having to store large kernel matrices in the GPU memory. (b) Experiments performed on point clouds in \mathbb{R}^{3}, endowed with a Euclidean cost $C(x, y)=\|x-y\|$.

Fig. 12: On real data. Our routines could be used to registrate thin structures such as these knee caps from the OsteoArthritis Initiative - special thanks to Zhenlin Xu and Marc Niethammer for letting us know about this dataset. Here, the source and target volumes are respectively made up of 52,319 and 34,966 voxels - out of a 192-192-160 volume. As advertised in Figure 11, this Energy Distance's gradient was computed in half a second on the author's laptop.

Theorem 1 (Positivity). Let α and β be two positive measures with finite support and same total mass on a feature space X. Let us choose a smoothing scale $\varepsilon>0$ and a cost function C on $X \times X$ such that

$$
\begin{equation*}
k_{\varepsilon}(x, y)=\exp (-C(x, y) / \varepsilon) \tag{30}
\end{equation*}
$$

defines a positive kernel function on X. Then, one can show that

$$
\begin{equation*}
0 \leqslant d_{\varepsilon-H a u s d o r f f}(\alpha, \beta) \leqslant d_{\varepsilon-\text { Sinkhorn }}(\alpha, \beta) \tag{31}
\end{equation*}
$$

Proof. A detailed proof of this result will soon be published in [6].
In a nutshell: the first inequality relies on the positivity of the kernel k_{ε}, as it ensures the convexity of the potential $F_{\varepsilon}-$ Eq. 25 - and the positivity of the associated Bregman divergence. The second inequality derives from the convexity of $\mathrm{W}_{\varepsilon}(\alpha, \beta)$ with respect to α and β varying independently - see Eq. 22 .

4 Conclusion

Overview. All things considered, we introduced three positive divergences to the shape analysis community: the cheap and global Energy Distance; the highquality ε-Sinkhkorn cost; and, sitting in-between, a brand new ε-Hausdorff divergence inspired by computer graphics.

As we linked all these theories with each other in sections 2 and 3, we were able to provide important theoretical guarantees and efficient GPU routines - in practice, we advocate the use of the PyTorch + KeOps combination [10|2] that provides automatic differentiation and scalability to shapes with up to 100,000 active vertices.
Going further. Now, which one of these formulas should we use in practice? As seen in Figure 10, using an ε-Sinkhorn divergence is equivalent to performing a full convex registration - with no guarantee of topology preservation - every time we need a descent direction... Do we really need to go that far?

The answer to this question is highly dependent on the remainder of the registration pipeline. In months to come, we thus plan to test our new fidelities in a wide range of settings - from standard LDDMM to Deep Learning based methods - as we strive to provide our colleagues with reliable tools.

References

1. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using the hausdorff distance. In: Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on. vol. 1, pp. 705-708. IEEE (2002)
2. Charlier, B., Feydy, J., Glaunès, J.: Kernel operations on the gpu, with autodiff, without memory overflows. http://plmlab.math.cnrs.fr/benjamin.charlier/ libkeops accessed: 2018-06-25
3. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: Advances in neural information processing systems. pp. 2292-2300 (2013)
4. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., et al.: 3d slicer as an image computing platform for the quantitative imaging network. Magnetic resonance imaging 30(9), 1323-1341 (2012)
5. Feydy, J., Charlier, B., Vialard, F.X., Peyré, G.: Optimal transport for diffeomorphic registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 291-299. Springer (2017)
6. Feydy, J., Séjourné, T., Vialard, F.X., Amari, S.i., Trouvé, A., Peyré, G.: Sinkhorn entropies and divergences. to be published in July 2018
7. Genevay, A., Peyré, G., Cuturi, M.: Learning generative models with sinkhorn divergences. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 84, pp. 1608-1617. PMLR (09-11 Apr 2018)
8. Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface comparison and registration with oriented varifolds. In: Computer Vision and Pattern Recognition (CVPR) (2017)
9. Lombaert, H., Grady, L., Pennec, X., Ayache, N., Cheriet, F.: Spectral log-demons: diffeomorphic image registration with very large deformations. International journal of computer vision $107(3), 254-271$ (2014)
10. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)
11. Peyré, G., Cuturi, M.: Computational optimal transport. arXiv preprint arXiv:1803.00567 (2018)
12. Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances. Journal of statistical planning and inference 143(8), 1249-1272 (2013)
