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Insights on event-triggered control for linear
systems subject to norm-bounded uncertainty

S. Tarbouriech, A. Seuret, C. Prieur, L. Zaccarian

Abstract The chapter deals with the design of event-triggered rules to stabilize a
class of uncertain linear control systems. The uncertainty affecting the plant is norm-
bounded. The event-triggering rule uses only local information, namely it uses only
the output signals available to the controller. The approach proposed combines a hy-
brid framework to describe the closed-loop system with techniques based on looped
functionals. The proposed design conditions are formulated in terms of linear matrix
inequalities (LMIs), ensuring global robust asymptotic stability of the closed-loop
system. A tunable parameter allows guaranteeing an adjustable dwell-time property
of the solutions. The effectiveness of the approach is evaluated on an example taken
from the literature.

1 Introduction

In recent years, sampled-data control designs for linear or nonlinear plants have
been studied in several works. In particular, robust stability analysis with respect
to aperiodic sampling has been widely studied (see, for example, [7, 17, 23] and
references therein), where variations on the sampling intervals are seen as a dis-
turbance, an undesired perturbation of the periodic case. The objective is then to
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provide an analysis of such systems using the discrete-time approach [17, 8], the in-
put delay approach [12, 31], or the impulsive systems approach [22]. Furthermore,
an alternative and interesting vision of sampled-data systems has been proposed in
[3, 5], suggesting to adapt the sampling sequence to certain events related to the
state evolution (see, for example, [4, 15, 18, 20, 34, 38]). This is called “event-
triggered sampling”, which naturally mixes continuous and discrete-time dynamics.
Thus, the event-triggered algorithm design can be rewritten as the stability study
of a hybrid dynamical system, which has been carried out in different contexts in
[13, 14, 27, 29].

In the context of event-triggered control, two objectives can be pursued: 1) the
controller is a priori designed and only the event-triggered rules have to be designed,
or 2) the joint design of the control law and the event-triggering conditions has to
be performed. The first case is called the emulation approach, whereas the second
one corresponds to the co-design problem. A large part of the existing works is ded-
icated to the design of efficient event-triggering rules, that is the designs done by
emulation: see, for example, [16, 37, 26, 35, 2] and references therein. Moreover,
most of the results on event-triggered control consider that the full state is available,
which can be unrealistic from a practical point of view. Hence, it is interesting to
address the design of event-triggered controllers by using only measured signals.
Some works have addressed this challenge as, for example, in [36] where the dy-
namic controller is an observer-based one, [1], where the co-design of the output
feedback law and the event-triggering conditions is addressed by using the hybrid
framework.

The results proposed in the current chapter take place in the context of the em-
ulation approach, when the predesigned controller is issued from a hybrid dynamic
output feedback controller, with the aim at using only the available signals. The
controller under consideration is a continuous controller possibly including some
reset loop as in [28] (see also [10, 11, 32] for more details on reset control sys-
tems). Actually, the approach proposed combines a hybrid framework to describe
the sampled-data system with Lyapunov-based techniques. Constructive conditions,
in the sense that linear matrix inequality (LMI) conditions are associated to a con-
vex optimization scheme, are proposed to design the event-triggered rule ensuring
asymptotic stability of the closed-loop system. Differently from [1], a condition in-
volving the allowable maximal sampling period T can be deduced by solving a set
of LMIs proposed using a similar approach to the one in [21]. Furthermore, comple-
mentary to most of the results in the literature, uncertainty affecting the continuous
plant is considered in our approach. The results of this chapter are complementary
to those in [33] where polytopic uncertainties (rather than norm bounded ones) are
considered with similar design approaches.

The chapter is organized as follows. In Section 2, the system under considera-
tion is defined, together with the sampled-data architecture. The problem that we
intend to solve is also formally stated in Section 2, describing the associated hybrid
formulation. Section 3 is dedicated to presenting the main conditions, allowing to
design the event-triggering rules in both the nominal and the uncertain cases. The
condition to design the associated dwell-time is also derived. We point out that the
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contribution is twofold. On the first hand, we provide a new event-triggered algo-
rithm yielding robust stability controllers for the closed-loop system. Secondly, the
stability conditions depend on a dwell-time T , which appears as an explicit tuning
parameter for the selection of the control law. Section 4 illustrates the results and
compares them with some existing approach. Finally, in Section 5, some concluding
remarks end the chapter.

Notation. The sets N, R+, Rn, Rn×n and Sn denote respectively the sets of posi-
tive integers, positive scalars, n-dimensional vectors, n×n matrices and symmetric
matrices in Rn×n. If a matrix P in Sn

+, it means that P is symmetric positive definite.
The superscript “>” stands for matrix transposition, and the notation He(P) stands
for P+P>. The Euclidean norm is denoted | · |. Given a compact set A , the nota-
tion |x|A := min{|x−y|, y ∈A ]} indicates the distance of the vector x from the set
A .The symbols I and 0 represent the identity and the zero matrices of appropriate
dimensions.

2 Problem formulation

The chapter deals with linear systems fed by an output feedback sampled-data con-
trol described by the following hybrid dynamical system ẋ = Ax+Bu,

u̇ = 0,
σ̇ ∈ gT (σ),

(x,u,σ) ∈ C ,

 x+ = x,
u+ = KCx,
σ+ = 0,

(x,u,σ) ∈D ,

(1)

where x∈Rn represents the state of the system and u∈Rm represents the zero order
holder of the system input since the last sampling time. The output y of the system
is given by

y =Cx ∈ Rp. (2)

System (1)-(2) can appear when connecting, for instance, a linear continuous-
time plant with a dynamic output feedback controller.

Remark 1. In [28], a reset controller is considered, which corresponds to modifying
system (1)-(2) by considering x+ = Jx, where J is a matrix of appropriate dimen-
sions.

To study stability properties for (1), the hybrid formalism of [13, 27, 30] can be
used. Matrices A,B,C characterize the system dynamics and matrix K corresponds
to the controller gain. While C is assumed to be constant and known, let us assume
that matrices A and B are constant but uncertain (see, for example, [24], [39]) and
expressed by
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A B

]
=
[

A0 B0
]
+DF

[
E1 E2

]
, (3)

with A0, B0, D, E1 and E2 constant and known matrices. These matrices define the
structure of the uncertainty. A0 and B0 define the nominal case and the uncertainty
parameter is F , which is supposed to be constant and belongs to the set:

F =
{

F ∈ R f× f ;F>F ≤ I
}
. (4)

Timer σ ∈ [0,2T ] flows by keeping track of the elapsed time since the last sample
(where it was reset to zero) according to the following set-valued dynamics:

gT (σ) :=
{

1 σ ≤ 2T
[0,1] σ = 2T, (5)

whose rationale is that whenever σ < 2T , its value exactly represents the elapsed
time since the last sample, moreover σ ∈ [T,2T ] implies that at least T seconds have
elapsed since the last sample.

Remark 2. The use of a set-valued map for the right hand side gT of the flow equa-
tion for σ enables us to confine the timer σ to a compact set [0,2T ]. Note also that
with the selection in (5), the regularity conditions in [14, As. 6.5] and the desirable
robustness properties of stability of compact attractors established in [14, Ch. 7] are
satisfied.

In (1), the so-called flow and jump sets C and D must be suitably selected to
induce a desirable behavior of the sampled-data system, and are the available de-
grees of freedom in the design of the event-triggered algorithm addressed here. In
particular, the problem that we intend to solve in this chapter can be summarized as
follows.

Problem 1. Given an uncertain linear plant and a hybrid controller defined by (1),
(2), (3), (4), (5), design an event-triggering rule, with a prescribed dwell-time T that
makes the closed loop globally asymptotically stable to a compact set wherein x = 0
and u = 0.

Problem 1 corresponds to an emulation problem (see, for example [16, 37, 26, 35]
and the references therein) since we assume that the controller gain K is given.

3 Event-triggered design

In order to address Problem 1, we focus on hybrid dynamics (1) for suitably se-
lecting the flow and jump sets C and D , whose role is precisely to rule when a
sampling should happen, based on the available signals to the controller, namely
output y =Cx, the last sampled input u and timer σ . Then, we select the following
sets C and D :



Insights on event-triggered control 5

C := (F × [0,2T ])∪
(
Rn+m× [0,T ]

)
(6a)

D := (J × [0,2T ])∩
(
Rn+m× [T,2T ]

)
, (6b)

where sets F and J are selected as

F :=

{
(x,u);

[
y

s−Ky

]>
M
[

y
s−Ky

]
≤ 0

}
, (6c)

J :=

{
(x,u);

[
y

s−Ky

]>
M
[

y
s−Ky

]
≥ 0

}
, (6d)

where matrix M =
[

M1 M2
M>2 M3

]
∈ R(p+m)×(p+m) has to be designed, and y is defined

in (2). Solution (6) to the considered event-triggered problem is parametrized by M
and T .

Note that the jump set selection in (6b) ensures that all solutions satisfy a dwell-
time constraint corresponding to T . Moreover the definition of the flow and jump
sets provided in (6) meets the one provided in the recent paper [25]. The novelty of
this definition, which is also used in [33], relies on the consideration of a general
matrix M. For example, selecting M2 = 0 leads to the definition of the flow and jump
sets usually employed in the literature, issued from an Input-to-State (or Input-to-
Output) analysis. See [25] for more details.

3.1 Nominal case

In this section, the design is addressed for the nominal case, namely A = A0 and
B = B0 (which corresponds to F = 0 in (3)).

Theorem 1. Assume that, for a given T > 0, there exist matrices P ∈ Sn
+, M =[

M1 M2
M>2 M3

]
∈ Sp+m satisfying

ΨC (A0,B0) :=
[

He(P(A0 +B0KC)))−C>M1C ?
B>0 P−M>2 C −M3

]
< 0,

ΨD (A0,B0,T ) :=
[

I
KC

]>
Λ>(A0,B0,T )>PΛ(A0,B0,T )

[
I

KC

]
−P < 0,

(7)

with

Λ(A0,B0,T ) :=
[
I 0
]

e
[

A0 B0
0 0

]
T ∈ Rn×(n+m). (8)

Then the compact attractor

A := {(x,u,σ) : x = 0,u = 0,σ ∈ [0,2T ]} (9)
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is globally asymptotically stable for the nominal closed-loop dynamics (1), (6) with[
A B

]
=
[

A0 B0
]
.

Proof. To prove this result one uses a non-smooth Lyapunov function and the hybrid
invariance principle given in [33]. In particular, the following function is considered,
with the standard notation |z|2P := z>Pz:

V (x,u,σ) :=e−ρ min{σ ,T}
∣∣∣∣Λ(T−min{σ ,T})

[
x
u

]∣∣∣∣2
P︸ ︷︷ ︸

=:V0(x,u,σ)

+ η |u|2︸ ︷︷ ︸
=:Vu(u)

, (10)

with Λ given in (8), and where ρ and η are sufficiently small positive scalars.
Let us first denote ξ := (x,u,σ). We can also notice that in (6a) the flow set is

the union of two sets, and then one can split the analysis in three cases:

• Case 1: σ ∈ [0,T );
• Case 2: σ = T ;
• Case 3: (x,u) ∈F and σ ∈ [T,2T ].

Then along flowing solutions one gets:

• In Case 1, after some simplifications (as done in [33]) we get:

V̇ (ξ )=−ρe−ρ min{σ ,T}
∣∣∣∣Λ(T −min{σ ,T})

[
x
u

]∣∣∣∣2
P
=−ρV0(ξ )≤ 0,

• In Case 3 (which also addresses Case 2, because no flowing is possible for a
solution from σ = T , unless (x,u) ∈F ), from inequality ΨC (A0,B0)< 0 in (7),
there exists a sufficiently small ε > 0 such that ΨC (A0,B0)<−εI, and then one
obtains the following strict decrease property:

V̇ (ξ )≤−ε

∣∣∣∣[ x
u−Ky

]∣∣∣∣2 , if (x,u) ∈F and σ ≥ T. (11)

Therefore, the Lyapunov function V is strictly decreasing along flows.
Along jumps, it is easy to verify that, for all ξ ∈D , after some calculations (see

again [33]), the condition ΨD (A0,B0,T )< 0 ensures that

V+(ξ ) = e−ρTV0(ξ )≤ e−ρTV (ξ ), (12)

which proves the strict decrease of the Lyapunov function, across any jump from a
point outside A .

One can finally show that no “bad” complete solution exists, which keeps V
constant and nonzero. If any such “bad” complete solution existed, then it would
start outside A (where V (ξ ) 6= 0) and it could not jump, because otherwise from
(12), a decrease of V would be experienced across the jump. However, any solution
flowing forever outside A would eventually reach a point where σ > T , and (11)
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would imply again some decrease of V . The proof is then completed by applying
the invariance principle in [33]. �

Remark 3. Let us provide some comments on the conditions of Theorem 1.

• The satisfaction of ΨC (A0,B0)< 0 imposes that the Lyapunov function V in (10)
is decreasing while flowing with σ ≥ T (which requires (x,u) ∈F ).

• The satisfaction of ΨD (A0,B0,T )< 0 can be interpreted as an asymptotic stabil-
ity criterion for system (1) when the control updates are performed periodically
with a period T , which motivates the union and intersection in (6a) and (6b).

Remark 4. The interest of the proposed approach with respect to the literature,
where the dwell time is computed a posteriori, resides in the fact that Theorem 1
includes a guaranteed dwell-time T as a tuning parameter. In particular, if one can
find a solution to the LMI conditions (7) for a given parameter T , then this same T
can be employed in the definition of the flow and jumps sets (6) and is a guaranteed
dwell time for all solutions of (1), (6). This method can be compared to [35] or [1]
where a similar triggering rule includes a dwell time constraint, but in the current
case, the dwell time T is a parameter for the design of event triggering algorithm.

Remark 5. Theorem 1 can be stated when an additional reset control component,
as mentioned in Remark 1, is included in the jump dynamics of system (1)-(6).
Preliminary results in this direction are provided in [28].

3.2 Uncertain case

Let us address now the case where matrices A and B are uncertain as defined in (3)-
(4). In this case, it is difficult to verify the inequality ΨD (A,B,T ) < 0, which will
depend nonlinearly on the uncertain parts. Nevertheless, it is possible to adapt re-
sults developed in [31, Thm 1], which are based on the recent developments arising
from stability analysis of periodic sampled-data systems (see also [19]). Then, the
following lemma can be proven by using the looped-functional approach developed
in [31, 6].

Lemma 1. For a given positive scalar T and matrices A,B,K,C as defined in (3)-
(4), if there exist P,Z ∈ Sn

+, Q,X ∈ Sn, R∈Rn×n, Y ∈R2n×n such that the inequalities

ΨD1(A,B,T ) := F0(A,B,T )+T F1(A,B) < 0,

ΨD2(A,B,T ) :=
[

F0(A,B,T ) TY
? −T Z

]
< 0, (13)

hold for all pairs (A,B) satisfying (3)–(4), where

F0(A,B,T ) := He(e>S Pe1−e>12Re2−Ye12)− e>12Qe12−Te>2 Xe2,
F1(A,B) := He(e>S Qe12+e>S Re2)+ e>S ZeS +2e>2 Xe2,
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and eS :=
[
A BKC

]
, e1 :=

[
In 0
]
, e2 :=

[
0 In
]

and e12 :=
[
In −In

]
, then inequality

ΨD (A,B,T )< 0 in (7) holds for any pair (A,B) satisfying (3)-(4).

By adapting Lemma 1 to the case of norm-bounded uncertainty, we can derive
the following theorem solving Problem 1. It is based on the non-smooth hybrid
Lyapunov function introduced in (10), which is weak in the sense that it does not
provide a strict decrease both during flow and across jumps (samplings) of the pro-
posed event-triggered sampled-data system. The proof then relies on the non-smooth
invariance principle presented in [33].

Theorem 2. Given positive scalar T > 0 and matrices A0, B0, D, E1, E2 as defined
in (3)-(4). Assume that there exist matrices P ∈ Sn

+, M =
[

M1 M2
M>2 M3

]
∈ Sp+m, and

matrices Z ∈ Sn
+, Q,U ∈ Sn, R ∈ Rn×n and Y ∈ R2n×n and positive scalars εi, i =

0,1,2,3 satisfying conditions

ΘC :=
[
ΨC (A0,B0)+ ε0e>C eC ?[

D>P 0
]

−ε0I

]
< 0, (14)

ΘD1 :=
[

F0(A0,B0,T )+T F1(A0,B0)+(ε1 +T ε3)e>DeD ?
D>(Pe1 +T (Qe12 +Re2 +Ze0)) −ε1I

]
< 0, (15)

ΘD2 :=

F0(A0,B0,T )+ ε2e>DeD ? ?
TY> −T Z ?

D>Pe1 0 −ε2I

< 0, (16)

ΘD3 := ε3I−D>ZD > 0, (17)

with

F0(A0,B0,T ) := He(e>0 Pe1−e>12Re2−Ye12)− e>12Qe12−Te>2 Xe2
F1(A0,B0) := He(e>0 Qe12+e>0 Re2)+ e>0 Ze0 +2e>2 Xe2

and e0 :=
[
A0 B0KC

]
, eC =

[
E1 +E2KC E2

]
, eD =

[
E1 E2KC

]
, e1 :=

[
In 0
]
, e2 :=[

0 In
]

and e12 :=
[
In −In

]
. Then the compact attractor A in (9) is globally asymp-

totically stable for the uncertain closed-loop dynamics (1)-(6) that is for each pair
(A,B) satisfying (3)-(4).

Proof. The proof of the theorem follows by showing that (14)–(17) imply the two
conditions in (7) (with [A0 B0] replaced by [A B]), and then the proof can be com-
pleted by following the same exact steps as those in the proof of Theorem 1.
First condition in (7). Condition ΨC (A0,B0) < 0 of (7) has to be replaced by
ΨC (A,B)< 0 where (A,B) have the expression in (3). After some calculations, this
substitution gives:

ΨC (A,B) = ΨC (A0,B0)+He

[PD
0

]
F
[

E1 +E2KC E2
]︸ ︷︷ ︸

=eC

< 0 (18)
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Using the fact that F>F ≤ I, this expression can be upper-bounded as follows:

ΨC (A,B)≤ΨC (A0,B0)+ ε0e>C eC + ε
−1
0

[
PD
0

][
PD
0

]>
(19)

for any positive scalar ε0. By using a Schur complement on the rightmost term of
(19), one obtains the matrix ΘC in (14). Then its follows that inequality (14) implies
that ΨC (A,B)< 0.
Second condition in (7). To prove this second condition, we use Lemma 1 and show
that (15)–(17) imply (13). In particular, the expressions of F0(A,B,T ) and F1(A,B)
in Lemma 1 are developed by substituting eS = e0+DFeD , as defined in Theorem 2.
Indeed, we note that

ΨD1(A,B,T ) = ΨD1(A0,B0,T )+He
(
e>DF>D>(Pe1 +T Qe12 +T Re2 +T Ze0)

)
+Te>DF>D>ZDFeD ,

ΨD2(A,B,T ) = ΨD2(A0,B0,T )+
[

He
(
e>DF>D>Pe1

)
0

0 0

]
,

where we recall that eD =
[

E1 E2KC
]
. First we note that, since ΘD3 > 0 and F>F ≤

I, the last term of ΨD1(A,B,T ) can be upper-bounded by ε3TeDe>D . Following the
same procedure as for ΘC in (19), and using F>F ≤ I, for any positive selection of
ε1,ε2 we have,

ΨD1(A,B,T ) ≤ΨD1(A0,B0,T )+(ε1 +T ε3)e>DeD

+ε
−1
1 (Pe1 +T (Qe12 +Re2 +Ze0))

>DD>(Pe1 +T (Qe12 +Re2 +Ze0))

ΨD2(A,B,T ) ≤ΨD2(A0,B0,T )+
[

ε2e>DeD + ε
−1
2 e>1 PDD>Pe1 0

0 0

]
.

Finally the expression of ΘD1 and ΘD2 are retrieved by application of the Schur
complement. This shows that (15)–(17) imply the two conditions in (13), and also
the second inequality in (7) is proven to hold, which completes the proof. �

3.3 Optimization and computational issues

Note first that conditions of Theorems 1 and 2 are linear in all the decision variables
provided that K and T are given, as classically in an emulation problem. It is impor-
tant to note that if matrix A0 +B0KC is Hurwitz, there always exists a small enough
positive scalar T such that the conditions of Theorem 1 or 2 are feasible. Indeed, the
event-triggered rule is defined through two design parameters, which are matrix M
and dwell-time T . The implicit objective is to reduce the number of control updates.

Let us observe that in the LMI ΘC < 0 in (14) (see also (7)), the blocks
He(P(A0 + B0KC)))−C>M1C and −M3 are required to be negative definite. A
natural optimization procedure could then consist in minimizing the effect of the
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off-diagonal term PB0−C>M2, which could be performed by minimizing the size
of the positive definite matrix M3 appearing on the diagonal. Obtaining small values
of the diagonal term −M3 will indeed reduce also the off-diagonal term in (7). This
optimization problem can be formulated in terms of an LMI optimization as follows

min
P,M,Z,Q,U,R,Y,ε0,ε1,ε2,ε3

Trace(M3),

subject to:
ΘC < 0,ΘD1 < 0,ΘD2 < 0,ΘD3 > 0
P > I, M1 < 0,

(20)

In the optimization problem (20), the additional constraint P > I is imposed for
well conditioning the LMI constraints. In addition, constraint M1 < 0 has been in-
cluded in order to obtain negative definiteness of He(P(A0 +B0KC)) in (7), which
avoids exponentially unstable continuous dynamics, thereby giving more graceful
inter-sample transients. Furthermore, the fact of minimizing the trace of M3 aims at
increasing the negativity of matrix M3, which leads to larger flow sets (see equation
(6)). Since the jump set is the closed complement of the flow set, it is expected that
solutions will flow longer and jump less in light of larger flow sets. Moreover, the
dwell-time T being also a design parameter, whose role is connected to the expected
average sampling rate of the event triggered implementation, one can seek for max-
imizing its value through problem (20) by iteratively increasing T and testing the
conditions.

4 Illustrative example

In this example, we consider that system (1) is issued from the connection of a
linear plant with a dynamical output feedback controller, inspired from [9, 1]. Fur-
thermore, this example can be viewed as a complementary example to that one tack-
led in [33], where polytopic uncertainties were considered. Hence, we consider the
following plant:{

ẋp = Apxp +Bpup = (Ap0 +DpFEp1)xp +(Bp0 +DpFEp2)up,
yp = Cpxp,

(21)

for which the nominal data is given by

Ap0 =

[
0 1
−2 3

]
, Bp0 =

[
0
1

]
, Cp =

[
−1 4

]
(22)

and the matrices describing the norm-bounded uncertainty are defined by:

Dp =

[
0
1

]
,Ep1 =

[
0 ω0

]
,Ep2 = 0.1ω0 (23)
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(a) T = 0.01s, Nu = 537.
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(b) T = 0.05s, Nu = 256.
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(c) T = 0.10s, Nu = 174.
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(d) T = 0.11s, Nu = 177.

Fig. 1 Figure representing the state of the plant xp, the inter-sampling times (with the dwell time
T ) and the control input u issued from Theorem 2 for several values or T for the same initial
condition xp(0) = [10 −5]>, xc(0) = [0 0]>.

with a positive constant ω0. The following controller obtained using an optimization
process provided in [1] is also considered:{

ẋc = Acxc +Bcyp,
up = Ccxc +Dcyp,

(24)

With plant (21) interconnected to the controller (24), denote the overall state by
x :=

[ xp
xc

]
. The complete closed-loop system under consideration in this chapter can

be reformulated as system (1) with

[
A B
K C

]
=


Ap 0 Bp 0
0 Ac 0 Bc

Dc Cc Cp 0
I 0 0 I

 (25)

Similarly, from (3) one can define the nominal and uncertain parts as follows:
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A0 =

[
Ap0 0
0 Ac

]
;B0 =

[
Bp0 0
0 Bc

]
D =

[
Dp
0

]
;E1 =

[
Ep1 0

]
;E2 =

[
Ep2 0

]
(26)

4.1 Nominal case

The nominal case corresponds to setting ω0 = 0. Let us note that in [1], some im-
provements with respect to the literature (for instance with respect to [9]) have been
reported in the nominal case. More precisely, the authors of [1] obtained a dwell-
time T = 0.0114s, whereas by using the conditions of Theorem 1, one can verify
that there exist values of the design parameter T up to 0.113s providing feasible
designs. This corresponds to a parameter T ten times larger than the solution pro-
vided in [1], which well illustrates the potential of the proposed method. Moreover,
it is worth pointing out that the numerical results obtained from the application of
Theorem 1 (which is only applicable to the nominal case) are very similar to the
maximal guaranteed dwell-time obtained by Theorem 2 specialized to the nominal
case by setting E1 = 0 and E2 = 0. This means that the conservatism introduced
by Theorem 2, to be able to provide an event-triggered algorithm for the system, is
quite limited compared to Theorem 1.

Figure 1 shows several simulation results of the nominal system obtained for four
dwell-time parameters T selected in Theorem 1. The caption of the figure also shows
the number of control updates (Nu) that have been required by each event-triggered
simulation. While increasing T leads apparently to a notable reduction of the num-
ber of control updates, it can also be seen in Figure 1(d) that the selection of a too
large guaranteed dwell-time has several drawbacks. First of all, a similar number of
control updates Nu are required for simulations (c) and (d). The sampling algorithm
in (c) is still able to often trigger the sampling well after T = 0.1 times after the
previous update, and the inter-sampling time may reach up to 0.8s. The sampling
algorithm employed in (d) results in a periodic implementation of the control law.
As another consequence, the simulation provided in (d) shows some undesirable os-
cillatory behavior that makes this emulation rule not effective with respect to some
performance index.

Apart from that, the three simulations depicted in Figure 1(a,b,c) are quite similar
if one only regards the x state response. The main difference can be seen in the
triggering rule and in the number of control updates Nu. Indeed, a trend can be
seen in these simulations, which consists in noting that increasing the dwell-time
parameter T allows to notably reduce the number of control updates, while obtaining
similar responses in the x variable. Of course, regarding the previous remarks on
Figure 1(d), increasing too much T up to the maximal feasibility value of the LMI
conditions of Theorem 2 (or Theorem 1), is not a good option to obtain effective
emulation algorithms.
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Fig. 2 Evolution of the average number of control updates Nu with respect to the dwell time pa-
rameter T for several values of ω0.

4.2 Uncertain case

In order to illustrate the uncertain case, corresponding to the situation where ω0 is
not equal to 0 anymore, we have conducted the following test. For five values of ω0
taken in the interval [0,0.1], the average number of control updates Nu obtained over
60 different initial conditions is computed for several values of T in [0,0.1]. Figure 2
shows these simulations. One can first note that the maximal value of ω0, for which
a solution to the conditions of Theorem 2 can be found, depends on the dwell-time
parameter T . More precisely, increasing T reduces the maximal allowable uncer-
tainty range ω0. For T = 0.01, solutions to the conditions of Theorem 2 can be
found up to ω0 = 0.1 while for T = 0.1, solutions can be found up to ω0 = 0.025.

In addition, the decreasing trends shown in the figure reveal that the expected
control updates, suitably averaged over the 60 initial conditions, are a decreasing
function of the dwell-time parameter T .

5 Conclusion

In this chapter, we have presented a method to provide efficient output-feedback
event-triggered controls for linear systems subject to norm-bounded uncertainties.
Based on an existing control law, which ensures, a priori, the stability of the associ-
ated continuous-time closed-loop system, the chapter presents several constructive
theorems providing an efficient event-triggered sampling algorithm dedicated to the
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nominal and the uncertain cases. The conditions are expressed in terms of LMIs
where a guaranteed dwell-time appears as a tunable parameter. The method is then
evaluated on an example taken from the literature, which demonstrates the potential
of the proposed solutions.

References

1. M. Abdelrahim, R. Postoyan, J. Daafouz, and D. Nešić. Co-design of output feedback laws
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