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Stabilization of Linear Hyperbolic Systems of
Balance Laws with Measurement Errors

Aneel Tanwani, Christophe Prieur, and Sophie Tarbouriech

Abstract This chapter considers the feedback stabilization of partial differential
equations described by linear balance laws when the measurements are subjected to
disturbances. Compared to our previous work on robust stabilization of linear hyper-
bolic systems, the presence of source terms in the system description complicates
the analysis. We first consider the case of static controllers, and provide conditions
on system data and feedback gain which result in stability of the closed-loop system,
and robustness with respect to measurement errors. Motivated by the applications
where it is of interest to bound the maximum norm of the state trajectory, we also
study feedback stabilization with dynamic controllers. Conditions in terms of matrix
inequalities are proposed which lead to robust stability of the closed-loop system in
the presence of measurement errors in the feedback. As an application, we study the
problem of quantized control, where the quantization error plays the role of distur-
bance in the measurements. The simulations for an academic example are reported
as an illustration of our theoretical results.

1 Introduction

Balance laws are used to describe the physical systems with certain conservative
properties, and hyperbolic partial differential equations (PDEs) provide the mathe-
matical framework to model systems governed by such laws. Stability and stabiliza-
tion of this class of systems is indeed relevant from several applications viewpoint,
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and several tools are now available for analyzing such properties of hyperbolic sys-
tems. We encourage the reader to consult [1] for physical examples of hyperbolic
PDEs, and an overview of tools used for studying solutions and stability of this
system class.

This chapter concerns the problem of feedback stabilization for a class of bound-
ary controlled hyperbolic systems, which model linear balance laws. We are par-
ticularly focused on studying a notion of robust stability when the measurements
used for feedback control are subjected to unknown disturbances. In the literature
on ordinary differential equations (ODEs), the property of input-to-state stability
(ISS), coined in [15], captures the desired robust behavior that we want to study
here, while regarding the disturbances as exogenous inputs in the closed-loop sys-
tem. The Lyapunov function based techniques available for verifying ISS are thus
generalized in the context of hyperbolic PDEs in this chapter. Our previous work
on robust stabilization of hyperbolic PDEs [17, 18] only considers systems with
conservation laws and no source term in the dynamics. Whereas, in this chapter we
generalize our results to linear balance laws by including a source term in the PDE.
This results in novel stability conditions and calculations.

One finds the Lyapunov stability criteria with L 2-norm and dissipative boundary
conditions in [2]. Lyapunov stability in H 2-norm for nonlinear systems is treated in
[3]. Thus, the construction of Lyapunov functions in H 2-norm for the hyperbolic
PDEs with static control laws can be found in the literature. In the literature, one
finds various instances where the ISS related tools are used for stability analysis of
interconnected systems. For infinite dimensional systems, the problem of ISS has
attracted attention recently but most of the existing works treat the problem with re-
spect to uncertainties in the dynamics. See, for example [11], where a class of linear
and bilinear systems is studied. See also [4] where a linearization principle is ap-
plied for a class of infinite-dimensional systems in a Banach space. When focusing
on parabolic partial differential equations, some works to compute ISS Lyapunov
functions have also appeared, such as [9, 10]. For time-varying hyperbolic PDEs,
construction of ISS Lyapunov functions has also been addressed in [13]. The recent
work reported in [6, 7] derives ISS bounds for 1-D parabolic systems in the presence
of boundary disturbances but without the use of Lyapunov-based techniques.

For systems of conservation laws, when seeking robust stabilization with mea-
surement errors, one could see that the results in [5] provide robust stability of X(·, t)
in L 2((0,1);Rn) space by using static controllers. The use of dynamic controller
for stabilization of systems of conservation laws with ISS estimates in H 1-norm
and maximum norm is studied in our previous works [17] and [18], respectively.
Inspired by the applications of such notions in finite-dimensional systems [19, 16],
these works also discuss the applications of ISS notion in the context of sampled-
data and quantized control of hyperbolic systems, which require stability in a func-
tional space equipped with maximum norm. An intermediate exposition of such
applications in finite and infinite dimensions appears in [14].

In this chapter, we build on our works [17] and [18] dealing with input-to-state
stabilization in maximum norm and using dynamic feedbacks. The novelty here
appears due to the presence of source terms as we migrate from conservation laws
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to balance laws. The presence of source terms induces some changes in the criterion
for achieving ISS. The system class and the stability notions of our interest are
discussed in Section 2. To clearly highlight the role of the source term, we first deal
with the static feedback case and ISS estimates in L 2-norm in Section 3. We then
develop ISS estimates in supremum norm in Section 4 and carry out the design of
a dynamic feedback to achieve that purpose. The applications of these notions in
the context of quantized control are discussed in Section 5. Section 6 illustrates the
main results of the chapter through an academic example. Finally, some concluding
remarks end the chapter in Section 7.

2 System Class and Stability Notions

The problem of interest for us is to address feedback control for the class of linear
hyperbolic balance laws described by the equation

∂X
∂ t

(z, t)+Λ
∂X
∂ z

(z, t) = SX(z, t) (1a)

where z ∈ [0,1], and t ∈ [0,∞). The matrix Λ is assumed to be diagonal and positive
definite. The expression SX(z, t) in (1a) denotes the source terms. We call X : [0,1]×
R+→ Rn the state trajectory, and the initial condition is defined as

X(z,0) = X0(z), z ∈ (0,1) (1b)

for some function X0 : (0,1)→ Rn. The value of the state X is controlled at the
boundary z = 0 through some input u : R+→ Rm so that

X(0, t) = HX(1, t)+Bu(t) (2)

where H ∈ Rn×n and B ∈ Rn×m are constant matrices. We consider the case when
only the measurement of the state X at the boundary point z = 1 is available for each
t ≥ 0. We thus denote the output of the system by

y(t) = X(1, t)+d(t) (3)

where d ∈L ∞([0,∞),Rn) is seen as the perturbation in the measurement of the state
trajectory at the boundary point.

We are interested in designing a control law u as a function of the output mea-
surement y, which stabilizes the system in some appropriate sense. In case there are
no perturbations, that is, d ≡ 0, one typically chooses u(t) = Ky(t). Following this
recipe with uncertain measurements, we obtain the closed-loop boundary condition

X(0, t) = (H +BK)X(1, t)+BKd(t) (4)
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where K is chosen such that (H +BK) satisfies a certain dissipative condition. We
are interested in studying stability of system (1)-(4) with respect to the measurement
disturbance d.

Definition 1. System (1)-(4) is said to be input-to-state stable in L 2-norm (L 2-
ISS) with respect to the disturbance d if there exist constants c,a > 0 and a class K
function γ such that

‖X(z, t)‖L 2((0,1);Rn) ≤ ce−at‖X0‖L 2((0,1);Rn)+ γ
(
‖d[0,t]‖∞

)
. (5)

In Section 3, we treat this case and propose conditions for choosing feedback gain
K, which results in aforementioned stability estimate for the closed-loop system
with static control.

Stabilization in L 2-norm does not necessarily guarantee convergence of the
maximum norm of X(·, t) over the spatial domain [0,1]. To do that, we have to
consider stability of X(·, t) in H 1-norm, which is defined as:

‖X‖H 1((0,1);Rn) := (‖X‖2
L 2((0,1);Rn)+‖∂X‖2

L 2((0,1);Rn))
1/2.

The following proposition, proved in [18], allows us to make the connection be-
tween C 0-norm and H 1-norm.

Proposition 1. Given any function X : [0,1]→ Rn such that X ∈ C 0([0,1];Rn)∩
H 1((0,1);Rn). It holds that, for every z ∈ [0,1],

max
z∈[0,1]

|X(z)|2 ≤ |X(0)|2 +‖X‖2
H 1((0,1);Rn). (6)

By definition, functions with finite H 1-norm must be differentiable Lebesgue al-
most everywhere, and since d ∈ L ∞, we can no longer use static feedbacks. The
use of dynamic controller allows us to circumvent this problem; see [18] for details.
The dynamic controller driven by the output y that we choose for our purposes is
described by the following equations:

η̇(t) =−α(η(t)− y(t)) =−α η(t)+αX(1, t)+αd(t) (7a)

η(0) = η
0 (7b)

u(t) = Kη(t), (7c)

where η0 ∈ Rn is the initial condition for the controller dynamics.

Definition 2. System (1), (2), (7) is said to be input-to-state stable in C 0-norm (C 0-
ISS) with respect to the disturbance d if there exist constants c,a > 0 and a class K
function γ such that

max
z∈[0,1]

|X(z, t)| ≤ ce−atMX0,η0 + γ
(
‖d[0,t]‖∞

)
. (8)
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In (8), MX0,η0 is a constant that depends on some norm associated with the function
X0 and the initial state η0 chosen for the dynamic compensator η . We are interested
in designing α,K such that the closed-loop system (1), (2), (7) is stable in the sense
of Definition 2.

In terms of analysis, the addition of dynamic controller introduces a coupling of
ODEs and PDEs in the closed loop, which makes the analysis more challenging.
The derivations of the main results are also more involved compared to [18] due
to the presence of source terms. We use Lyapunov function based analysis to syn-
thesize the controller and guarantee ISS with respect to the perturbation d. After
designing controllers which achieve the desired ISS estimates, we study an appli-
cation of these notions in the context of quantized control: We establish practical
stability of the system, and derive ultimate bounds on the state trajectory in terms
of the quantization error. The problem of quantized control has mostly been studied
in finite-dimensional systems so far [8, 12, 14, 17], and this chapter extends this
problem setting to the case of hyperbolic balance laws.

3 Static Control and L 2-estimates

We first address the problem of finding conditions for the system to be L 2-ISS as
formulated in Definition 1. In the following, Dn

+ denotes the set of diagonal positive
definite matrices

Theorem 1. If there exist scalars κ ∈ (0,1), c < λmin(Λ), a matrix D ∈ Dn
+, and a

matrix K ∈ Rm×n, such that

(H +BK)>ΛD(H +BK)≤ κΛD (9a)

S>D+DS≤ c log
(

1
κ

)
D, (9b)

then system (1)-(2) with u = Ky is ISS with respect to the disturbance d.

Proof. The proof is based on introducing a Lyapunov function and analyze its
derivative with respect to time. As a candidate, we choose V : L 2((0,1);Rn)→R+

given by

V (X) :=
∫ 1

0
X>(z)DX(z)e−µz dz,

where D is a diagonal positive definite matrix satisfying (9). The constant µ > 0 is
chosen such that

c
λmin(Λ)

log
(

1
κ

)
< µ < log

(
1
κ

)
, (10)

which is possible because c < λmin(Λ).
Using an integration by parts, along the solutions to (1)-(2) with u = Ky, the time

derivative of V yields
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V̇ =
∫ 1

0
(∂tX>DX +X>D∂tX)e−µz dz

=−
∫ 1

0
(∂zX>ΛDX +X>DΛ∂zX)e−µz dz+

∫ 1

0
X>(S>D+DS)Xe−µz dz

≤−[X>ΛDXe−µz]10−µ

∫ 1

0
X>DΛXe−µzdz+ c log

(
1
κ

)∫ 1

0
X>DXe−µzdz

≤−e−µ X(1, t)>ΛDX(1, t)+X(0, t)>ΛDX(0, t)−σV,

where σ := (µλmin(Λ)−c log(1/κ))> 0 due to the first inequality in (10). We now
substitute the expression for boundary control to get

X(0, t) = (H +BK)X(1, t)+BKd(t).

Using (9a), we get

V̇ (t)≤−σV (t)− (e−µ −κ)X>(1, t)ΛDX(1, t)+d(t)>ΛDd(t)

≤−σV (t)+χd(t)>d(t).

where χ = λmax(ΛD), and e−µ > κ due to the second inequality in (10). The ISS
estimate now follows from the last inequality. ut

4 Dynamic Control and C 0-estimates

In this section, we are interested in analyzing the closed-loop system (1), (2), (7).
Since we are interested in computing estimates on the H 1-norm of the state X , we
need to look at the evolution of Xz. We recall that, for the closed-loop system with
dynamic controller, the state trajectory X satisfies

Xt(z, t)+ΛXz(z, t) = SX(z, t), (11a)

X(z,0) = X0(z), ∀z ∈ [0,1], (11b)
X(0, t) = HX(1, t)+BKη(t). (11c)

For what follows, we are also interested in analyzing the dynamics of Xz := ∂zX
which are derived as follows:

∂Xz

∂ t
(z, t)+Λ

∂Xz

∂ z
(z, t) = SXz(z, t). (12)

To obtain the boundary condition for Xz, from (11c), we have

Xt(0, t) = HXt(1, t)+BKη̇(t).

Substituting Xt(z, t) =−ΛXz(z, t)+SX(z, t) for each z ∈ [0,1], we get
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ΛXz(0, t) = HΛXz(1, t)+(SH−HS)X(1, t)+SBKη(t)−BK η̇(t)

= HΛXz(1, t)+S(H +BK)X(1, t)+SBK(η(t)−X(1, t))−HSX(1, t)
−BK(η̇(t)−Xt(1, t))+BK(ΛXz(1, t)−SX(1, t))

= (H +BK)ΛXz(1, t)+
[
S(H +BK)− (H +BK)S

]
X(1, t)

+SBK(η(t)−X(1, t))−BK(η̇(t)−Xt(1, t))
=−(H +BK)Xt(1, t)−BK(η̇(t)−Xt(1, t))+S(H +BK)X(1, t)

+SBK(η(t)−X(1, t)). (13)

using (11a) for the last equality. We now use these equations as the system descrip-
tion and proceed to develop the next result.

4.1 Stability Result

The second main contribution of this chapter is to present conditions on the con-
troller dynamics (7) which results in stability of system (1)-(2), and robustness
with respect to the measurement disturbances d in the sense of Definition 2. To
state the result, we introduce some notation. For scalars µ > 0 and 0 < κ < 1,
let ρ := e−µ − κ; let F := BK, and Q := F>ΛDF for D ∈ Dn

+; and finally, let
G := H>ΛDF . We introduce the matrices

Ω1 :=

ρβ1ΛD −β1(G+Q) 0
∗ 2αβ3I− (β1 +α2β2)Q β3I +αβ2G
∗ ∗ β2(ρΛD+Q+G+G>)


and with S̃ := S(H +F),

Ω2 := β2

−S̃>ΛDS̃ −S̃>ΛDSF H>ΛDS̃
∗ −F>(S>ΛDS+ΛDS+S>ΛD)F H>ΛDSF
∗ ∗ 0


in which α,β1,β2,β3 are some positive constants, and ∗ denotes the transposed
matrix block. It must be noted that the matrix Ω2 = 0 if there is no source term, that
is, S = 0. In the following statement, we denote the induced-Euclidean norm of a
matrix M by ‖M‖2.

Theorem 2. Assume that there exist scalars µ ∈ R+, κ ∈ (0,1), a matrix D ∈ Dn
+,

the gain matrix K, and the positive constants α,β1,β2,β3 in the definitions of Ω1
and Ω2 such that
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(H +BK)>ΛD(H +BK)≤ κΛD (14a)

S>D+DS < µλmin(Λ)D, (14b)

S>Λ
2D+Λ

2DS≤ µλmin(Λ)Λ 2D, (14c)
Ω1 +Ω2 > 0 (14d)

Then, the closed-loop system satisfies the ISS estimate (8) with

MX0 := ‖X0‖2
H 1((0,1);Rn)+ |η

0−X(1,0)|2. (15)

Remark 1. Condition (14) provides a generalization of stability conditions that were
studied earlier in [17, 18] in the sense that (14a) and (14d) (with Ω2 = 0) were
already proposed there. Conditions (14b) and (14c) appear because of the non-zero
source term SX . If S is symmetric, then (14b) and (14c) are equivalent.

The proof of Theorem 2 is based on constructing a Lyapunov function for the
closed-loop system (1), (2), (7). Within the remainder of this section, we provide
this construction, and the analysis involving the computation of the derivative of
this function. The required ISS estimate then follows from the condition (14) and
the bound on the derivative of the Lyapunov function constructed.

4.2 Construction of the Lyapunov Function

As a candidate, we choose V : H 1((0,1);Rn)×Rn→ R+ given by

V :=V1 +V2 +V3 (16)

where V1 : H 1((0,1);Rn)→ R+ is defined as,

V1(X) :=
∫ 1

0
X(z)>P1X(z)e−µz dz,

where we choose P1 := β1D, and β1,D satisfy (14). Similarly, V2 : H 1((0,1);Rn)→
R+ is given by

V2(X) :=
∫ 1

0
∂X(z)>P2∂X(z)e−µz dz,

with P2 = β2Λ 2D, and finally V3 : H 1((0,1);Rn)×Rn→ R+ is given by

V3(X ,η) = (η−X(1))>P3(η−X(1)).

with P3 = β3I. With this choice of V , we can now introduce the constants cP :=
e−µ mini=1,2,3{λmin(Pi)}, cP :=maxi=1,2,3{λmax(Pi)} such that, for all X ∈H 1((0,1);Rn),
and η ∈ Rn,
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cP(‖X‖2
H 1((0,1);Rn)+ |η−X(1)|2)≤V (X ,η)≤

cP(‖X‖2
H 1((0,1);Rn)+ |η−X(1)|2). (17)

4.3 Lyapunov Dissipation Inequality

We now derive the bound on V̇ that was used in Section 4.2 to obtain the desired ISS
estimate. This is done by analyzing the time derivative of each of the three functions
in the definition of the Lyapunov function.

Analyzing V1:

Using an integration by parts and recalling that P1 = β1D is a diagonal positive
definite matrix, the time derivative of V1 yields

V̇1 = β1

∫ 1

0
(∂tX>DX +X>D∂tX)e−µz dz

=−β1

∫ 1

0
(∂zX>ΛDX +X>DΛ∂zX)e−µz dz+β1

∫ 1

0
X>(S>D+DS)Xe−µz dz

≤−β1[X>ΛDXe−µz]10−β1µ

∫ 1

0
X>ΛDXe−µzdz+β1ν

∫ 1

0
X>DXe−µzdz

≤−β1e−µ X(1, t)>DΛX(1, t)+β1X(0, t)>DΛX(0, t)−σ1V1, (18)

where ν < λmin(Λ) due to (14b) which results in σ1 := β1(µλmin(Λ)−ν) strictly
positive. We now impose the boundary conditions by substituting the value of con-
trol u given in (11c) to get

X(0, t) = (H +BK)X(1, t)+BK(η−X(1, t))

which results in

V̇1 ≤−σ1V1−β1e−µ X(1, t)>ΛDX(1, t)

+β1X(1, t)>(H +BK)>ΛD(H +BK)X(1, t)

+2β1X(1, t)>(H +BK)>ΛDBK(η−X(1, t))

+β1(η−X(1, t))>K>B>ΛDBK(η−X(1, t)).

With (14a), we thus get

V̇1 ≤−σ1V1−β1(e−µ −κ)X(1, t)>ΛDX(1, t)

+2β1X(1, t)>(H +BK)>ΛDBK(η−X(1, t))

+β1(η−X(1, t))>K>B>ΛDBK(η−X(1, t)). (19)
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Analyzing V2:

Using (12) and repeating the same calculations as in the case of V̇1 when obtaining
(18), we get

V̇2 ≤−β2e−µ Xz(1, t)>Λ
2DΛXz(1, t)+β2Xz(0, t)>Λ

2DΛXz(0, t)−σ2V2 , (20)

where σ2 := β2(µλmin(Λ)− ν) > 0 by our choice of ν . Substitute the value of
ΛXz(0, t) from (13) results in

V̇2 ≤−σ2V2−β2e−µ Xz(1, t)>Λ
2DΛXz(1, t)+β2(T1 +T2 +T3)

where

T1 := [(H +F)Xt(1, t)+F(η̇−Xt(1, t))]>ΛD[(H +F)Xt(1, t)+F(η̇−Xt(1, t))]

T2 := [S̃X(1, t)+SF(η(t)−X(1, t))]>ΛD[S̃X(1, t)+SF(η(t)−X(1, t))]

T3 := 2[−(H +F)Xt(1, t)−F(η̇−Xt(1, t))]>ΛD[S̃X(1, t)+SF(η(t)−X(1, t))]

=−2[(H +F)Xt(1, t)+F(η̇−Xt(1, t))]>ΛD[S̃X(1, t)+SF(η(t)−X(1, t))]

and we used the notation S̃ = S(H+F) and F =BK. The term T1 is already analyzed
in a manner similar to our paper [18], whereas the terms T2 and T3 appear only
because of the source term S, which is considered in this paper. After substituting
η-dynamics in (7a), straightforward calculations yield

T1 = Xt(1, t)>[(H +F)>ΛD(H +F)−H>ΛDF−F>ΛDH−F>ΛDF ]Xt(1, t)

+α
2(η(t)−X(1, t))>F>ΛDF(η(t)−X(1, t))

−2αXt(1, t)>H>ΛDF(η−X(1, t))−2α
2(η(t)−X(1, t))>F>ΛDFd(t)

+2αXt(1, t)>H>ΛDFd(t)+α
2d>F>ΛDFd(t).

Similarly, for T2, we get

T2 = X(1, t)>S̃>ΛDS̃X(1, t)+2X(1, t)>S̃>ΛDSF(η(t)−X(1, t))

+(η(t)−X(1, t))>F>S>ΛDSF(η(t)−X(1, t)),

and finally, T3 yields

T3 = 2α(η(t)−X(1, t))>F>ΛDSF(η(t)−X(1, t))

−2Xt(1, t)>H>ΛDS̃X(1, t)−2Xt(1, t)>H>ΛDSF(η(t)−X(1, t))

+2α(η(t)−X(1, t))>F>ΛDS̃X(1, t)

−2αX(1, t)>S̃>ΛDFd(t)+2α(η(t)−X(1, t))>F>S>ΛDFd(t).

One can use the Young’s inequality to bound the terms with disturbances d, so that,
for every ζ > 0, the disturbance terms in β2T1 are bounded as
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|2α
2
β2(η−X(1, t))>F>ΛDFd(t)| ≤ ζ

4
|η−X(1, t)|2+4(α2

β2)
2 ‖F>ΛDF‖2

2

ζ
|d(t)|2

|2αβ2Xt(1, t)>H>ΛDFd(t)| ≤ ζ |Xt(1, t)|2 +(αβ2)
2 ‖H>ΛDF‖2

2

ζ
|d(t)|2

and the terms in β2T3 can be bounded as

|2αβ2X(1, t)>S̃>ΛDFd(t)| ≤ ζ |X(1, t)|2 +(αβ2)
2 ‖S̃>ΛDF‖2

2

ζ
|d(t)|2,

|2αβ2(η(t)−X(1, t))>F>S>ΛDFd(t)| ≤ ζ

4
|η−X(1, t)|2

+4(αβ2)
2 ‖F>S>ΛDF‖2

2

ζ
|d(t)|2 .

With (20), using (9a) and (13), we get

V̇2 ≤−σV2−β2Xt(1, t)>
[
(e−µ −κ)ΛD+H>ΛDF +F>ΛDH +F>ΛDF

]
Xt(1, t)

+β2(η(t)−X(1, t))>F>
[
α

2
ΛD+S>ΛDS+ΛDS+S>ΛD

]
F(η(t)−X(1, t))

+β2 X(1, t)>S̃>ΛDS̃X(1, t)−2β2 Xt(1, t)>H>ΛDS̃X(1, t)

−2β2 Xt(1, t)>
[
α(H +F)>ΛDF +H>ΛDSF

]
(η−X(1, t))

+2β2 X(1, t)>
[
S̃>ΛDSF +αF>ΛDS̃

]
(η(t)−X(1, t))

+ζ |X(1, t)|2 +ζ |Xt(1, t)|2 +
ζ

2
|η(t)−X(1, t)|2 +χ1|d(t)|2

where

χ1 :=α
2 ‖F>ΛDF‖2

2 + 4α
4
β

2
2
‖F>ΛDF‖2

2

ζ
+(αβ2)

2 ‖H>ΛDF‖2
2

ζ

+4(αβ2)
2 ‖F>S>ΛDF‖2

2

ζ
+(αβ2)

2 ‖S̃>ΛDF‖2
2

ζ
. (21)

Analyzing V3:

Once again, substituting the dynamics of η from (7a) in the expression of V̇3 to get

V̇3 = 2β3(η(t)−X(1, t))>(η̇(t)−Xt(1, t))

=−2αβ3 |(η(t)−X(1, t))|2−2β3(η(t)−X(1, t))>Xt(1, t)

+2αβ3(η(t)−X(1, t))>d(t).
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Once again, Young’s inequality is used to obtain, ∀ζ > 0

2αβ3(η(t)−X(1, t))>d(t)≤ ζ

4
|η(t)−X(1, t)|2 + 4(αβ3)

2

ζ
|d(t)|2,

which further yields

V̇3 ≤−

(
2αβ3 +

ζ

4

)
|(η(t)−X(1, t))|2−2β3(η(t)−X(1, t))>Xt(1, t)

+
ζ

2
|(η(t)−X(1, t))|2 + 4(αβ3)

2

ζ
|d(t)|2.

Combining V̇1,V̇2,V̇3:

By introducing the vector w as

w(t) := (X(1, t)>,(η(t)−X(1, t))>,X>t (1, t))>,

one can manage the terms in the expressions for V̇i, i = 1,2,3 to get

V̇ ≤−σ1V1−σ2V2−
ζ

4
V3−w>(Ω1 +Ω2)w+ζ w>w+χ|d(t)|2

where the constant χ is given by

χ := χ1 +
2(αβ3)

2

ζ
. (22)

From (14d), there exists ζ > 0 such that Ω1 +Ω2 > ζ I, and hence by choosing
ζ = ζ , we obtain

V̇ (X(t),η(t))≤−σV (X(t),η(t))+χ|d(t)|2 (23)

with σ := min
{

σ1,σ2,
ζ

4

}
.

5 Quantized Control

We are interested in studying stabilization of the system (1), (2), (7) when the out-
put X(1, ·) is quantized using a set of finite alphabets, and cannot be transmitted
to the control precisely. In this case, the role of disturbance d is played by the
quantization error. To define a quantizer, we first specify a set of finite alphabets
Q := {q1,q2, . . . ,qN}. A quantizer with sensitivity ∆q > 0, and range Mq > 0, is
then a function q : Rn→Q having the property that
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|q(x)− x| ≤ ∆q if |x| ≤Mq (24)

and
|q(x)| ≥Mq−∆q if |x|> Mq. (25)

In other words, within the space Rn, where the measurements of X(1, ·) take values,
we take a ball of radius Mq, and partition it into N regions. Each of these regions is
identified with a symbol qi from the set Q. If |X(1, t)| ≤Mq, the controller receives
a valid symbol and knows the variable X(1, t), modulo the error due to sensitivity of
the quantizer. When the measurements are out of the range of the quantizer, then the
quantizer just sends an out of bounds flag and no upper bound on the error between
X(1, t) and its quantized value can be obtained in that case. For this paper, we limit
ourselves to the case of static quantizers, that is, the parameters of the quantizer are
assumed to be fixed which introduces a bounded measurement error determined by
the sensitivity of the quantizer.

The ratio between the range and the sensitivity of the quantizer Mq/∆q deter-
mines the rate at which the information is communicated by the quantizer on aver-
age. The basic idea of the quantized control in finite-dimensional systems is to show
that the state of the system converges to a certain ball around the origin if this rate
is sufficiently large (to dominate the most unstable mode) [12]. In the same spirit,
we derive a lower bound on the ratio Mq/∆q which is required to achieve practical
stability in the presence of quantization errors.

With quantized measurements, the controller (7) takes the form

η̇(t) =−α η(t)+α q(X(1, t)) (26a)
u(t) = Kη(t). (26b)

By writing q(X(1, t))=X(1, t)+q(X(1, t))−X(1, t), and letting dq(t) := q(X(1, t))−
X(1, t), we are indeed in the same setup as earlier with y(t) = q(X(1, t)). Here, dq is
such that

|dq| ≤
√

n |dq|∞ ≤
√

n∆q, if |X(1, t)|∞ ≤Mq.

To state this result, we need the following lemma which relates |X(1, t)| with the
value of the Lyapunov function V considered in the previous section and defined in
(16).

Lemma 1. There exists a constant C > 0 such that

|X(1, t)|2 ≤CV (X(·, t),η(t)), ∀ t ≥ 0, (27)

for the Lyapunov function V defined in (16).

The proof of Lemma 1 is omitted but we emphasize that the value of C in (27)
can be computed directly in terms of closed-loop system data, see [18] details.

Theorem 3. Consider system (1), (2) and (26), and assume that the conditions of
Theorem 2 hold, and the initial condition X0 and η0 satisfy

CV (X0,η0)≤M2
q (28)
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where the constant C is obtained from (27). With the constants σ ,χ appearing in
(23), if the quantizer is designed such that

M2
q

∆ 2
q
>

Cnχ

σ
, (29)

then the following items hold:

• The output X(1, t) remains within the range of the quantizer for all t ≥ 0, that is,

|X(1, t)| ≤Mq, ∀ t ≥ 0.

• The state of the system remains ultimately bounded in H 1-norm, that is, there
exists T such that for all t ≥ T

V (X(·, t),η(t))≤ γq(∆q)

where γq(s) =
nCχ

σ
s2(1 + ε), for some sufficiently small ε > 0, is a class K

function.

We provide below a sketch of the proof of Theorem 3, and suggest the reader to
consult [18] for more details.

In the light of condition (29), fix ε > 0 such that

nχ

σ
∆

2
q (1+ ε)≤

M2
q

C
.

When the controller uses quantized measurements of X(1, t), the derivative of the
Lyapunov function in (23) satisfies, along the solutions to (1), (2), (26),

V̇ (X(t),η(t))≤−σV (X(t),η(t))+χ|q(X(1, t))−X(1, t)|2.

Thus, for the chosen ε > 0, if

nχ

σ
∆

2
q (1+ ε)≤V (X(t),η(t))≤

M2
q

C

then, using (27), |X(1, t)| ≤ Mq implying, with (24), that |q(X(1, t))−X(1, t)| ≤√
n∆q, and hence

V̇ (X(t),η(t))≤−εnχ∆
2
q .

From the constraints imposed on the initial condition of the system, it readily fol-
lows from the above inequality that

|X(1, t)|2 ≤CV (X(t),η(t))≤M2
q , ∀ t ≥ 0,

and hence the quantization error is always upper bounded by ∆q. The uniform de-
crease in the value of V also guarantees that
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V (X(t),η(t))≤ nχ

σ
∆

2
q (1+ ε).

for sufficiently large t, and for initial condition satisfying |X(1,0)| ≤Mq. This con-
cludes the sketch of proof of Theorem 3.

6 Example

To illustrate the effectiveness of the controller (7), we provide simulation results for
the case of a 2× 2 hyperbolic system. The system we simulate is of the form (1)
with

Λ :=
[

1 0
0 2

]
, S :=

[
0.1 0
0 0.3

]
,

and the boundary condition (2) is described by

H =

[
0.25 −1

0 1.25

]
, B =

[
1 0
0 1

]
.

We first check conditions for Theorem 2. Selecting the matrix K =

[
0 0.5

−0.25 −0.5

]
,

it could be checked that the conditions of Theorem 2 are satisfied with

µ = 0.1, κ = 0.2, D =

[
1 0
0 1

]
, α = 90, β1 = 1, β2 = 1, β3 = 75.

Thus the ISS estimate (8) holds for (11a) and (26) with the closed-loop bound-
ary condition (11c). One can for example select the following initial condition,
which satisfies the first-order compatibility condition for the existence of solutions
in H 1((0,1);Rn):

X1(z,0) = cos(4πz)−1 , X2(z,0) = cos(2πz)−1,

with z ∈ [0,1].
Now to illustrate Theorem 3, let us consider the quantizer centered at the origin,

and given by
q(x) = b`x+0.5c/`

with the parameter `= 5. The error due to quantization in this case is ∆q = 1/`, and
for the sake of simplicity we take a sufficiently large range Mq to bound the initial
condition.

The time-evolution of the solutions for the first and second component of X , as
well as the state of the dynamic controller η are plotted in Figures 1 and 2 respec-
tively. It could be seen that the solution to (11) converges to a neighborhood of the
origin as the time increases. This simulation is thus in agreement with the result
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reported in Theorem 3. Figure 2b also gives the time-evolution of the quantized
measurements.
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Fig. 1: Time and space evolution of state X .
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(b) Time evolution of q(X(1, t)). Black:
q(X1(1, t)), Red: q(X2(1, t))

Fig. 2: Time evolution of controller state η and quantized measurements q(X(1, t)).

7 Conclusion

In this chapter, the stabilization of partial differential equations described by lin-
ear balance laws when the measurements are subjected to disturbances has been
addressed via the use of a dynamic controller. This chapter can then be comple-
mentary to our previous work on robust stabilization of linear hyperbolic systems,
because the presence of source terms in the system description has been taken into
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account. As a first step, the case of static controllers has been tacked allowing to
provide conditions on stability of the closed-loop system and robustness with re-
spect to measurement errors. In a second step, the case of dynamic controllers is
considered. Conditions in terms of matrix inequalities have been then proposed to
bound the maximum norm of the state trajectory, leading to robust stability of the
closed-loop system in the presence of measurement errors in the feedback. The case
of the quantized control, where the quantization error plays the role of disturbance
in the measurement, have been also considered.

This work opens the door for studying other problems. For example, it could be
interesting to study the design of a more general dynamical controller ensuring the
robustness properties of the closed loop.

References

1. G. Bastin and J.-M. Coron. Stability and Boundary Stabilization of 1-D Hyperbolic Systems.
Subseries in Control: Progress in Nonlinear Differential Equations and Their Applications.
Birkhauser, 2016.
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