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Abstract—Neuromorphic architectures that exploit emerging
resistive memory devices as synapses are currently receiving a
lot of interest. Phase Change Memory (PCM), in particular, is a
strong candidate for such architectures. However, it suffers from
a resistance-drift effect in the amorphous phase (high-resistance).
In this work, we investigate the impact of resistance-drift in
‘Learning-’ and ‘Read-’ mode operation of large-scale hybrid
neuromorphic architectures that use bio-inspired ‘STDP-type’
learning rules. We show that our ‘2- PCM Synapse’ approach
is inherently tolerant to resistance-drift. We also present a new
architecture (‘Binary-PCM Synapse’) and programming strategy
based on partial-reset states of PCM devices, which strongly
minimizes the impact of resistance-drift. To benchmark the two
programming approaches and architectures, we perform system-
level simulations on a complex visual pattern extraction appli-
cation. A power consumption analysis for the two approaches is
finally presented. It highlights the ultra low-power potential of
PCM-based neuromorphic computing.

I. INTRODUCTION

Interest in the field of bio-inspired computational hardware
has increased dramatically over the last few years. Several
research groups [1], [2], [3], [4] are actively exploring neu-
romorphic hardware due to its promising advantages such
as low-power, high defect/variability- tolerance, and efficient
handling of large scale non-linear computations. Among the
different implementations of neuromorphic hardware, of par-
ticular interest are the ones that exploit hybrid architectures:
CMOS + emerging resistive memory (RRAM). In these hybrid

Fig. 1. Resistance drift with time for different initial programming conditions.
Measurement was carried out on GST PCM devices. Equation governing the
drift dynamics is also shown.

architectures, the neuronal functionality is implemented by
using standard CMOS circuits while the synaptic function-
ality is implemented through densely integrated arrays or
crossbars of RRAM technologies. These RRAM technolo-
gies may include devices such as phase change memory
(PCM) [5], [6] conductive-bridge (CBRAM) or programmable-
metallization cell (PMC) [4], [7] and oxide based resistive
memory (OXRAM) [8], [9], [10]. Owing to their compact
size, resistive-memory devices help in achieving a high synap-
tic density which is not possible with pure CMOS-synapse
circuits, as a large number of transistors are required (>10)
per synapse [11]. RRAM also provides the much needed non-
volatility to the neuromorphic system.

Here, we focus on hybrid neuromorphic architectures that
use PCM devices as synapses. PCM devices consist of an
active chalcogenide layer sandwiched between two metal elec-
trodes. The working principle exploits reversible and non-
volatile phase-change phenomena inside chalcogenide layers
such as Ge2Sb2Te5 (GST). Phase-change is obtained through
joule-heating, when electrical bias or pulses are applied. PCM
devices can be programmed to a high-resistance (or reset)
state by creating a resistive amorphous region inside the
chalcogenide layer. Heating the chalcogenide layer above its
melting temperature and then quickly quenching it gives rise to
formation of amorphous region. A low-resistance (or set) state
can be obtained by creating crystalline regions in the chalco-
genide layer. Crystallization occurs when the chalcogenide
layer is heated at its crystallization temperature for sufficient
duration. Intermediate resistance states can also be obtained by
carefully tuning the programming conditions (i.e pulse-width
and amplitude) [12]. These properties have led to proposed use
of PCM devices for mimicking synaptic-plasticity effects such
as potentiation (LTP-like) [13], depression (LTD-like) and bio-
inspired learning rules like spike-timing dependent plasticity
(STDP). In previous works [6], we presented a novel low-
power PCM based neuromorphic architecture called the ‘2-
PCM Synapse’. Using our architecture we demonstrated a two-
layer spiking neural network (SNN) capable of complex visual
pattern extraction.

However, in PCM devices, the amorphous or high-
resistance states are not entirely stable. Melt-quenched amor-
phous regions created inside the chalcogenide layer undergo
structural relaxations and the resistance of PCM device tends to
increase with time (known as resistance-drift). The resistance-
drift follows an empirical exponential rule which depends upon



the initial programmed resistance and a parameter known as
the drift coefficient (ν) [14]. The crystalline or low-resistance
states of PCM are shown to be free from resistance-drift [15].
Fig.1 shows the resistance-drift measured in our GST-PCM
devices and the equation governing the drift dynamics. The
devices were programmed in two different initial (reset) states
and the resistance was read at different time intervals. Inside
a neural network such resistance-drift may cause undesired
change of trained synaptic weights.

In this paper, we discuss how our ‘2-PCM Synapse’
architecture is inherently tolerant to PCM resistance-drift. We
also introduce a new ‘Binary-PCM Synapse’ architecture with
a stochastic STDP learning rule. We show that by carefully
defining the reset state (partial-reset) in the ‘Binary-PCM
Synapse’ architecture the effects of drift can be mitigated
even further. Section II describes the two different PCM based
architectures and programming schemes. Section III, discusses
the visual pattern extraction simulations, the impact of drift,
and overall system performance.

II. PCM BASED SYNAPTIC ARCHITECTURES

A. The ‘2-PCM Synapse’

Our main motivation for developing the ‘2-PCM Synapse’
architecture was to emulate synaptic behavior (i.e. gradual
synaptic-potentiation and -depression) using identical neuron
spikes (Fig.2) [6]. In this approach, we use two PCM devices
to implement a single synapse and connect them in a com-
plementary configuration to the post-synaptic output neuron.
One of the PCM device implements synaptic potentiation
(LTP-device), while the other implements synaptic depression
(LTD-device). Both devices are initialized to a high resistive
amorphous state. When synaptic potentiation is required, the
LTP device is crystallized, while when synaptic depression
is required, the LTD device is crystallized. Fig.3 shows the
characteristic resistance evolution of our GST-PCM devices
with gradual crystallization events. The detailed programming
schemes and the simplified STDP learning rule used are
described in [6]. Note that as the neural network undergoes
learning, with time the PCM devices become more and more
crystallized and finally saturate to a minimum resistance value.
In order to enable continuous learning of the network, we
defined a refresh-sequence, explained in detail in [16]. In this

Fig. 2. Schematic of the ‘2-PCM Synapse’ architecture. Inset shows a TEM
image of GST PCM device.

Fig. 3. Experimental LTP curve for pulse width of 300ns. Inset shows
100 different simulated LTP curves with a 20% standard deviation variability
included on all synaptic parameters described in equation 3 of [6].

refresh-sequence, the saturated PCM devices are amorphized
(reset) and the effective weights of the corresponding synapses
are re-programmed.

B. ’Binary-PCM Synapse’ and Partial-Reset

Alternatively, we propose for the first time, to use PCM
devices as binary synapses but with a stochastic-STDP rule,
similar to the one we developed for bipolar CBRAM devices
[4]. In this approach, there will be 1-PCM device per synapse.
Two resistance states (or weights) can be defined for the
PCM synapse. The high-resistance state should be chosen such
that it is a partial-reset (Fig. 4) state. The partial-reset state
should lie in the negligible or low-driftable region. For GST
based devices a resistance value < 50 kΩ will lie in low or
negligible drift regime [15], [14]. Fig. 5 shows an example of
our stochastic-STDP rule. The y-axis represents a probability
to switch from the set-to-reset or reset-to-set states for the PCM
synapses. Fig. 6 shows the architecture and the programming
scheme required to implement the stochastic learning with
binary PCM synapses.

The stochasticity is controlled by an extrinsic PRNG
(pseudo-random number generator) circuit. The PRNG circuit
controls the probability of LTP and LTD with a 2-bit signal.
Initially, the input neurons (A-D) generate small read pulses
when they encounter any stimuli event. The read current is
integrated in the output neurons A’ and B’. When the output
neuron reaches its firing threshold it generates a feedback
signal(3) and a post-spike signal. In the example shown in
Fig. 6 output neuron A’ fires and B’ doesn’t fire. The signal(3)
activates the gates of all the select transistors on the synaptic
line connected to A’. If LTP is to be implemented the Input
neuron will send a signal(1), as shown for Input neuron A in
this example. In the case of LTD the input neuron will send a
signal(2), as shown for the input neuron D. The probabilities
of LTP/LTD can be tuned according to the learning rule (Fig.
5).

III. RESULTS AND DISCUSSION

In this section, we benchmark impact of drift on the two
different architectures discussed in the previous section, by



Fig. 4. Experimental Resistance-Voltage curves for different programming
pulse widths on GST PCM devices.

Fig. 5. Simplified stochastic STDP learning rule. ‘On’ corresponds to set
and ‘Off’ to reset of the PCM synapse.

Fig. 6. Schematic of the ‘Binary-PCM Synapse’ architecture and the proposed
programming-scheme.

Fig. 7. (Top) Model of the retina and DVS sensor [18] used for generating
AER data. (Bottom) Schematic of the two-layer SNN used for complex visual
pattern extraction.

simulating a large-scale real world pattern extraction applica-
tion. We used our custom built XNET SNN simulator [17]
to simulate a complex visual pattern application. Our 2-layer
SNN with 70 neurons and about 2 million PCM synapses is
shown in Fig. 7. AER video of cars passing on a freeway was
recorded using a special DVS-Sensor [18] and used as the
input data for our SNN. During the learning, the neurons were
able to extract patterns (car-shapes) in different lanes (different
positions and orientations) in a fully unsupervised manner. The
detailed learning mechanism of the network is described in
[19]. Table. I and Table. II summarize the SNN performance
and detection rates for all the simulations performed for this
paper.

A. Drift Impact

In order to study the impact of PCM resistance-drift in
our network we first classify its operation in two different
modes: (a) Learning-mode and (b) Read-mode. In learning
mode the synaptic programming is enabled and the network
is trained using various datasets or stimuli. It is only during
this mode that the synaptic weights can be changed. For the
‘2-PCM Synapse’ architecture, in the learning-mode, the PCM
are typically not experiencing drift. Only, whenever a refresh-
sequence is applied to a synapse, it pushes the respective PCM
devices into the driftable region. In the refresh-sequence, both
devices are reset and one of them is reprogrammed to a lower
resistance state. For the device which stays in the fully reset
state, drift is irrelevant: the more reset it is, the better. The
other device, which is reprogrammed to a high resistance but
intermediate state, may experience drift until it encounters
sufficient crystallizing events (LTP or LTD) that push it in
the non-driftable region. Such drift can delay learning, and its
occurrence can be attributed to the refresh-frequency. More
precisely, the drift in learning will be a consequence of the
on-going competition between the refresh-frequency and the
set-frequency.

Set-frequency depends on (1) nature of the learning rule
and (2) nature of the stimuli used for training, while the



refresh-frequency mainly depends on the type of chalcogenide
material used. A chalcogenide material which crystallizes
slowly and offers more intermediate resistance states before
saturation will require less frequent refresh. In previous works
we showed that growth dominated materials like GeTe have
almost double the refresh-frequency compared to nucleation
dominated material such as GST [20]. While interface en-
gineering (GST+HfO2) can further improve the number of
intermediate resistance states thus decreasing the refresh fre-
quency [21]. From Table. I, we can see that for the ‘2-
PCM Synapse’, the ratio of set-frequency (/device/s) to reset-
frequency (/device/s) is about 25. In the case of interface
engineered devices [21] this ratio further increases to a value
of 55.

Drift is more dramatic in the case of the read-mode
compared to learning mode, since the system has no means to
compensate for it through learning. In the read-mode, synaptic
programming is disabled and a pre-trained neural network is
used to identify patterns in new datasets or stimuli without
changing the synaptic weights. Thus impact of resistance-drift
in the read-mode is proportional to the final weight distribution
of the synapses at the end of the training, and the time interval
after which the network is operated in read-mode post training.

Synaptic weight distribution at the end of learning mode
gives the number of synapses that are left in the high-
resistance or driftable state. An inherent advantage of the ‘2-
PCM Synapse’ approach, compared to the methodology used
in [22], is that we implement both potentiation and depression
by crystallization. Thus the majority of PCM devices at the
end of the learning are programmed in low resistance or non-
driftable states. This is irrespective of the fact that we use
a pre-dominantly depression (LTD) based learning rule. As
crystalline or low resistance states are more stable and immune
to the resistance drift [14], [15], [23] the ‘2-PCM Synapse’
diminishes the loss of synaptic information in the read-mode.
Fig. 8, shows the final synaptic resistance (weights) distribution
at the end of the cars learning simulation. About 60% of the
devices are in the non-driftable region. The strong reduction in
percentage of devices in driftable region is more evident from
Table. I. We can see that the number of set events is about
ten times greater than number of reset events for the ‘2-PCM
Synapse’ as LTD is also implemented by set or crystallization.

In the case of ‘Binary-PCM Synapse’ architecture the
impact of drift in learning-mode can be fully mitigated if the
reset state of the PCM devices is tuned carefully to a partial-
reset state (negligible drift region). Fig. 9 shows the final
synaptic resistance distribution at the end of learning when
the simulation was performed for the ‘Binary-PCM Synapse’
architecture with stochastic learning. In this simulation the
mean reset state was defined as 20 kΩ, which lies in the non-
driftable region. At the end of the learning, about 97% of the
synapses are in the reset state. This is due to the strongly LTD
dominant nature of our learning rule (Fig. 5). Even though
majority of the synapses are in reset state, they will not drift
as they lie in the non-driftable region.

We performed the cars-learning simulations for the
‘Binary-PCM Synapse’ architecture with 3 different PCM reset
resistance states, keeping the set state constant: (1) negligible
drift region (mean Roff = 20 kΩ), (2) Low drift region (mean
Roff = 30 kΩ), and (3) high drift region (mean Roff > 100

Fig. 8. Distribution of synaptic resistance states for the ‘2-PCM Synapse’
architecture at the end of the visual learning simulation.

Fig. 9. Distribution of synaptic resistance states for the ‘Binary-PCM
Synapse’ architecture with 20 kOhm mean Roff.

kΩ). The final synaptic resistance distributions for the reset
devices and the set devices in the 3 cases are shown in Fig.
10 and Fig. 11 respectively.

B. Overall System Performance

Fig. 12 shows the final neuron sensitivity maps for the
6-lanes at the end of cars-learning simulation for the case
of ‘2-PCM Synapse’ and ‘Binary-PCM Synapse’ (20 kΩ)
architectures. Table. 2 gives the exact value of detection rate
for each individual lane. Lanes 1 and 6 were classified as
not-learnt as their detection rates were < 85%. The average
detection rate was 91% for the ‘2-PCM Synapse’ and 95% for
the ‘Binary-PCM Synapse’. Obtaining a high detection rate
with an unsupervised system is a strong accomplishment from
a machine learning point of view. It is also interesting that
the binary synapses performed better. Binary synapses appear
especially fit to process this kind of highly dynamic video data.

From Table. 1 we can see that, as we move from the ‘2-
PCM Synapse’ architecture to the ‘Binary-PCM Synapse’, the
number of read-events becomes half as the number of PCM
devices is also halved. However the read frequency/device/s
stays constant. The read-frequency stays constant as it depends



Fig. 10. Distribution of synapses in off-state for the ‘Binary-PCM Synapse’
with mean Roff values of 20 kOhm, 30 kOhm and 123 kOhm.

Fig. 11. Distribution of synapses in on-state for the three cases shown in
Fig.10.

on the nature of stimuli used to train the network. In the case
of ‘Binary-PCM Synapse’ the set and reset events are a direct
representative of the number of LTP and LTD events. However
in the case of ‘2-PCM Synapse’ the reset events represent the
number of refresh-sequences while the set events denote both
LTP and LTD.

To estimate the energy consumption by the PCM devices
during the learning process, we use the following equations
(CMOS or neuron power consumption is not included):

Eset/reset = Vset/reset×Iset/reset×tpulse

Etotal = (Eset×total set events) + (Ereset×total reset events)

Powersynaptic learning = Etotal/Durationlearning

The total duration of learning for all the simulations is
fixed (680 s). The energy consumption decreases in the case
of ‘Binary-PCM Synapse’ as the current required to program
partial-reset states (20 kΩ and 30 kΩ) is much less compared
to the current required to program a strong reset state (128 kΩ).
However the energy consumption doesn’t decrease drastically
as the number of reset-events increases in the ‘Binary-PCM
Synapse’ architecture.

Fig. 12. Final neuron sensitivity maps for the ‘2-PCM Synapse’ and the
‘Binary-PCM Synapse’ (20 kOhm partial-reset state) architectures.

TABLE I. COMPARISON OF LEARNING STATISTICS AND
PERFORMANCE FOR THE DIFFERENT ARCHITECTURES.

In both cases (Roff:20 kΩ, 30 kΩ ), the power consumption
by the PCM devices during learning remains low (<80 µW).
Additionally, use of aggressively scaled PCM devices may
futher decrease the power to a few nanowatts [6]. During read,
the devices are not programmed anymore and their power con-
sumption is much smaller (about 75 nW). The total read energy
and power dissipation for all the cases is provided in Table.1.
Read-energy is estimated using the following equation:

Eread = Σ
(Vread)

2 · Tread

Ri

where, Ri is the instantaneous resistance value of a specific
PCM device that received the ‘ith’ read-pulse. The Ri values
are recorded in real time using the XNET simulator.

IV. CONCLUSION

In this paper, we show how our ‘2-PCM Synapse’ archi-
tecture is inherently tolerant to the impact of PCM resistance-
drift. We show that the synaptic weight distribution post-
learning are concentrated more in the non-driftable region,
as in our approach even LTD is obtained by crystallization.
We introduce, for the first time, a new architecture ‘Binary-
PCM Synapse’ with stochastic STDP learning rule and partial-



TABLE II. AVERAGE CAR DETECTION RATE FOR DIFFERENT LANES.

reset states. The programming methodology is also presented.
We show that by carefully tuning the partial-reset state the
impact of drift can be mitigated even further as almost all the
synapses post-learning lie in the non-driftable regime. System-
level simulations show that both approaches can perform
complex problems of machine learning with ultra low power
consumption. This highlights the potential of PCM technology
for future intelligent ubiquitous embedded systems.
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