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Abstract— We propose a design methodology to exploit 
adaptive nanodevices (memristors), virtually immune to their 
variability. Memristors are used as synapses in a spiking neural 
network performing unsupervised learning. The memristors 
learn through an adaptation of spike timing dependent 
plasticity. Neurons’ threshold is adjusted following a 
homeostasis-type rule. System level simulations on a textbook 
case show that performance can compare with traditional 
supervised networks of similar complexity. They also show the 
system can retain functionality with extreme variations of 
various memristors’ parameters, thanks to the robustness of the 
scheme, its unsupervised nature, and the power of homeostasis. 
Additionally the network can adjust to stimuli presented with 
different coding schemes. 

I. INTRODUCTION 
anotechnology has long been announced as a game 
changer of microelectronics. Nanodevices are compact, 
low power, and above all they provide novel functions 

like memristivity [1]. However, introducing them into actual 
products has proved challenging in particular due to their 
less desirable features: they have strong variability, and it is 
difficult to achieve acceptable yield. Fully exploiting 
nanoelectronics potential will thus require architectures and 
design approaches with an actual immunity to device 
variability and a high level of fault tolerance. 

Spiking neural networks can provide a serious lead since 
the brain – in particular – itself relies on variable and 
unpredictable neurons and synapses [2] and manages 
computational efficiency that outperforms manmade systems. 
Architectures allying memristors synapses and CMOS 
neurons have been proposed [3]-[10], promising cognitive 
computing and robustness to defects. In this paper system 
simulations introduce quantitative results in terms of 
computing performances and robustness to variability. We 
show that a simplified spike timing dependent plasticity 
scheme adapted to memristors is key to achieve effective 
learning with extreme robustness to memristors’ variability. 
It is associated with the use of unsupervised learning, and of 
a homeostatic-type mechanism.  

We describe the required technology and architecture 
(section II) and perform system-level simulations on the 
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MNIST database [11] that show the potential of the 
approach and its robustness. The system consists of a first 
fully unsupervised layer that extracts features of the inputs 
using a simplified spike timing dependent plasticity (section 
III), and can be complemented with a layer to label the 
outputs (section IV). The network performance compares 
favorably with traditional – but supervised networks with 
similar numbers of adjustable parameters and achieves 
excellent tolerance to various memristors’ parameters 
variability. 

Technological context: In recent years several classes of 
adaptive devices have emerged. The most famous are 
memristors [1] (stricto sensu memristive devices), resistive 
RAMs [12], or adaptive transistors like the NOMFETs [13] 
and OG-CNTFETs [14]. An emerging route is to exploit 
them as synapses in neuromorphic circuits (electronic 
circuits that work analogously to the brain). In particular it 
has been suggested [8],[9],[15], and shown experimentally 
[4], that such devices could indeed reproduce a feature of 
biological synapses – spike timing dependent plasticity 
(STDP) [16],[17] – that is believed to be a foundation for 
learning in the brain [18],[19]. A system consisting of 
nanoscale synapses and CMOS processing units (neurons) 
could be a major breakthrough in computing, possibly 
allowing cognitive-type tasks. This precise idea is currently 
receiving considerable interest through for example the 
DARPA SyNAPSE program in the USA or similar projects 
in Europe and Asia. However, its sustainability is still to be 
demonstrated. 

As mentioned above, one common characteristic of all 
these technologies is a high degree of variability [20],[21]. 
Though technological maturity will improve the situation, it 
is expected to be intrinsic especially if we scale to ultra-small 
sizes that make the devices particularly sensitive to any 
variation in the fabrication process. This puts a challenge to 
designing systems able to exploit their new functionality. 
This paper provides some insight on how such technology 
may be exploited. 

Prior art: Other proposals have been made to exploit 
variable adaptive devices in the context of nanotechnological 
implementations. Most proposed architectures rely on 
reconfigurable logic (FPGA type) [22],[23] or on state-based 
supervised neural networks [7]. In the first approach 
variability is addressed through error mapping and 
redundancy, in the second case through a standard neural 
network approach using supervised learning based on error 
gradient descent.  

Our approach of using unsupervised learning with 
asynchronous spiking neural networks to tackle the 
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variability issue of nanodevices is original and takes 
inspiration from recent works in computational neuroscience 
and neural networks [24]-[27]. Different works have been 
published that go into that direction. As mentioned above, 
several proposals exist to use memristive devices for STDP 
[8],[9],[15]. In this paper we propose a simplified STDP 
scheme that we believe to be easier to implement, and to 
allow learning in a more natural way. Additionally, we 
propose a homeostasic property to the neurons that has not 
been used in this context before and that is shown to be 
essential for the robustness of the scheme. One work had 
already shown that memristors with STDP could allow the 
emergence of receptive fields in a variability-compatible 
unsupervised approach and synchronous neurons [5]. Our 
work uses asynchronous designs (like the ones used in the 
neuromorphic community [28],[29]), and performs full 
learning on a standard dataset. Finally, an alternative way to 
allow learning with memristors in a variability-compatible 
way can be to use all digital designs [10]. This requires more 
devices per synapses [3]. In this paper we show that 
variation-tolerance can be retained by using nanodevices 
with continuous variation of the conductance. 

II. PRESENTATION OF THE NETWORK AND OF ITS 
IMPLEMENTATION 

A. Architecture 

 
In this paper we first propose a simple two layer topology. 

Input and output CMOS neurons are connected in a feed-
forward manner by nanodevices (the synapses), using a 
crossbar configuration (described below). The synapses learn 
using a simplified STDP scheme (II.B.1). The output 
neurons behave as leaky integrate-and-fire neurons (II.B.2) 
and have a homeostatic property (II.B.4). They are also 
connected by inhibitory connections using diffuser networks 
(II.B.3) 

The input neurons present the stimuli as asynchronous 
voltage spikes using several possible coding schemes 

described in section III (spiking rate is proportional to 
stimulus intensity). These stimuli may originate for example 
directly from a spiking retina [30] or cochlea [31] designed 
in the neuromorphic community. It is natural to lay out the 
nanodevices in the widely studied crossbar as illustrated on 
Fig. 1 (CMOS silicon neurons and their associated synaptic 
driving circuitry are the dots, the squares being the 
nanodevices). The synapses indeed act as adaptive resistors. 
With the crossbar layout, if several synapses are active at the 
same time (i.e. receiving spikes), the output receives directly 
the sum of the currents flowing through the synapses. In a 
more futuristic design, the system could also be laid out in a 
CMOL architecture where nanodevices crossbar is fabricated 
on top of the CMOS neurons and driving circuits [7]. 

As a result of learning, the output neurons will become 
selective to the different stimuli classes that are presented in 
a fully unsupervised manner: the output neurons will develop 
selectivity to specific features contained in the input patterns. 
The learning rule of the nanodevices needs to be fully local 
to be implementable in the crossbar architecture. The 
behavior of the neurons needs to be simple to make it easy to 
implement in a compact way. We now describe how this can 
be achieved. 

B. Neurons and synapses 

 
1) Synaptic behavior: In this scheme, the synapses are 

acting in two ways. They are variable resistors and thus 
transmit spikes with a variable conductance (or weight). But 

 
 

Fig. 2.  Pulses for simplified STDP (voltage pulses as a function of 
time). When an input neuron spikes, it applies a PRE pulse to the 
nanodevices to which it is connected. When an output neuron spikes 
it applies a POST spike to the nanodevices to which it is connected. 
When the voltage applied on the device (difference between the 
voltages applied at the two ends) reaches VT+ or VT-, its conductance 
is increased or decreased, respectively. 
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Fig. 1.  Circuit topology. Wires originate from CMOS input layer 
(horizontal black wires) and from the CMOS output layer (vertical 
grey wires). Adaptive nanodevices are at the intersection of the 
horizontal and vertical wires. 
 



 
 

 

they also adapt their weight depending on the activity of the 
neurons to which they are connected, which provides the 
foundation of learning by the system. 

The memristive nanodevices are programmed as follows. 
When applied a positive voltage pulse higher than a 
threshold VT+, they increase their conductance. When 
applied a voltage pulse smaller than a negative threshold VT-, 
they decrease their conductance [4],[8]. Previous works have 
shown that memristors can implement spike timing 
dependent plasticity (STDP), a learning rule used by 
synapses in the brain. This was proposed in [9], itself close 
to the proposal [8] and experimentally demonstrated in [4]. 
We propose a simpler adaptation of these schemes (Fig. 2). 

• When an input neuron spikes it applies a long pulse to 
its synapse (PRE pulse). This voltage is high enough 
to drive some current into the memristor but not 
enough to reprogram it. This current is integrated by 
the output neurons (resistor role of the synapse). If 
several synapses connected to the same output neuron 
are ON at the same time their currents are summed. 

• When an output neuron spikes it applies a pulse that is a 
succession of a negative and a positive bias (POST 
pulse). If no PRE pulse is being applied on the 
device, only the second part reaches a threshold and 
the weight of the synapse is decreased by wδ − . 
However, if the input neuron had spiked recently, and 
the PRE pulse is still being applied on the other end 
of the device, the voltage applied on the device 
actually increases its weight by wδ + , as illustrated on 
Fig. 2. 

This simple learning rule, easily implemented with 
nanodevices, is the ground of all learning. Compared with 
the purely bioinspired and more complex scheme introduced 
in [9], no delay matching is necessary between the PRE and 
POST synaptic waveforms, which should make the driving 
circuitry much easier to design. The learning rule is also 
more appropriate for our feed-forward application. 

The way this simple learning rule works is 
straightforward. When an output neuron declares a spike (at 
time tspike), it increases by wδ +  the weights of the synapses 
connected to input neurons that spiked recently (from tspike to 
tspike-tPRE, if tPRE is the duration of the PRE pulse). It 
decreases by wδ −  the weights of all its other synapses. This 
increases the sensitivity of the neuron to the specific pattern 
that activated it, making it more likely to spike for a similar 
(correlated) pattern in the future. This process – that works 
surprisingly well in practice, as we show in this paper – has 
been partially theorized in [27]. 

To model the weight increments and decrements wδ +  and 
wδ −  in our system simulations, we take inspiration from the 

memristor measurements [4],[32]. When a POST occurs: if 
PRE has occurred just before the weight is increased by 
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The exponential factor expresses the fact that is observed 
in most memrsitive technology that a same voltage pulse has 
reduced effect on the device conductance if applied several 
times [4],[32]. This natural (partly multiplicative) device 
behavior is actually a valuable behavior for learning. The 
parameters α+, α-, β+, β+ depend heavily on the PRE and 
POST pulse voltages that are chosen. These parameters, as 
well as minimum and maximum weights wmin and wmax are 
subject to device variability.  

2) Output neurons’ dynamics: Exploiting the devices 
requires connecting them to processing units – silicon 
neurons able to process and generate spikes in a bioinspired 
manner by integration of their input. An approach widely 
studied in the neuromorphic community is to use analog 
circuits (generally with transistors operating in the sub-
threshold regime) able to receive and generate asynchronous 
spikes [28],[29]. Though smaller than in nanodevices, 
variability is also a serious problem for such devices. It is a 
challenge for any neuromorphic design [31] and will become 
even more crucial when scaling to modern technology. 

Neurons are leaky integrate-and-fire type that is meant to 
solve the simple equation (expressed in normalized unit): 
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where V is the state variable (a current or a voltage) of the 

neuron. Iinput is the current flowing through the line of the 
crossbar connected to the neuron: 
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where the Ij are the currents flowing through each 

memristor j connected to output neuron. 
The neuron declares a spike if V reaches a given threshold 

Vth, in which case V is reset to zero and the integration is 
prevented during a so-called refractory period. 

Such neurons have been implemented with compact 
CMOS neuromorphic circuits as in [33] or equivalently with 
a neuromorphic circuit with positive feedback as in 
[28],[29]. 

This kind of CMOS design is extremely low power 
because most transistors operate in the subthreshold regime, 
and thanks to the use of asynchronous computation [28],[29]. 
On the other hand, power consumption of the nanosynapses 
will depend tremendously on the nanotechnology, and should 
scale with the devices.  

3) Output neurons’ lateral inhibition: When an output 
neuron spikes it should send inhibitory signals to the other 
output neurons of the layer that prevent them from spiking 
during the inhibition time and resets their potential to zero. 



 
 

 

This inhibition between the neurons can be implemented in a 
compact way through diffuser networks as in [28]. With this 
inhibition, the network is reminiscent of a Winner-Takes-All 
topology [27]. 

More precisely, when an output neuron spikes, the state 
variable V of the other output neurons  is reset to zero during 
a time tinhibit. 

4) Homeostasis: A final difficulty for the architecture is 
the adjustment of the neurons’ threshold. It is essential, but 
although this is natural for traditional artificial neuron 
networks, it is not for spiking neurons. A bioinspired original 
route is homoeostasis [2]. A target activity is defined for the 
neurons (i.e. a number of times an output neuron should 
spike over an extended period of time, like 100 digits 
presentation). Regularly the threshold of the neuron is 
increased if the average activity of the neuron is above the 
target, and decreased if it is below. 

This ensures that all the outputs neurons are used and 
adjust the neurons’ thresholds to the stimuli for which they 
become specialized. In neuromorphic hardware, 
homoeostasis has been implemented with analog memories 
like in [34] or could be implemented digitally. The potential 
associated with this technology is evidenced in this paper in 
section III.B. 

C. Simulations 
In this paper, all simulations are system-level and are 

based on a C++ special purpose code. The code is event-
based for simulation performance and runs on traditional 
CPUs. Simulation parameters as introduced above are 
τ = 100 ms, g = 1, Vth = 0.5 (normalized unit), inhibition 
time tinhibit = 10 ms, α+  = 10-2, α−  = 5.10-3, minw  = 10-4, 

maxw  = 1 (normalized units), β+ = 3.0, β- = 3.0. The width of 
the PRE pulses is 25 ms. Parameter variations are introduced 
around all the parameters using Gaussian random numbers 
(the value of their standard deviation is given in Section III). 
The initial weights are selected randomly around mid-range 
(0.5). The stimuli are applied using the coding schemes 
described in section III.C. 

For demonstration of the concept, in this paper we use the 
widely studied case of handwritten number recognition. The 

MNIST database is used, which consists in handwritten 
number of 28x28 pixels by 250 writers [11]. This database 
has been used as test for many learning algorithms. 

In order to achieve learning, we present the full MNIST 
training database (60,000 digits) three times to the circuit. 
Each input neuron is connected with one pixel of the image. 
It emits spikes with a jittered rate that is proportional to the 
pixel intensity (maximum rate is 20 Hz). The initial phase is 
random. Every digit is presented during 350ms. No kind of 
preprocessing on the digits is used and the set is not 
augmented with distortions. The network is then tested on 
the MNIST test database (10,000 digits). 

Fig. 3 plots the synaptic weights learned by the system in a 
configuration with only 10 output neurons. It is remarkable 
that without any supervision and using only our local custom 
STDP rule, the system has identified 9 (out of 10) different 
numbers, the real features of the input. Moreover it has 
learned the distinctive features of the digits (and not just the 
most likely handwriting): it has learnt the loop of the digit 
two, the bottom of the six, or the horizontal parts of three 
and eight. 

 

 
In order to evaluate quantitatively the network 

performance, Fig. 4 plots the recognition rate during the 
learning process for different numbers of output neurons. To 
evaluate the recognition rate, we associate output neurons 
with the digit for which they spike the most frequently a 
posteriori. In hardware this association could be performed 
with digital circuitry. This labeling could also be 
implemented using nanodevices in a variability compatible 
way as will be shown in section IV. 

With ten output neurons the recognition rate reaches 
60 %. With 50 output neurons it reaches 81% and with 300 
output neurons 93.5 % (obtained with the same number of 
adjustable weights). A traditional artificial neural network 
with back-propagation with 300 hidden neurons reaches 
95 % [11], which compares to our rate of 93.5 %. In the 
literature, the best algorithm has a largely superior 99.7 % 
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Fig. 4.  Recognition rate during learning for simulations with 
different numbers of output neurons (from bottom to top: 10, 50, 100, 
300). The recognition rates are running averages on 10,000 iterations. 
 

 
Fig. 3.  Weights (conductances) learned in a simulation with 10 
output neurons. Red is maximum weight, blue is minimum weight. 
 



 
 

 

 
recognition rate, but has 12 million adjustable weights (vs. 
235,200 here) and is using a largely augmented training set 
[35]. Though our numbers are clearly more modest, the 
interest here is that the network is fully unsupervised with 
local extremely simple learning rules and variability 
immunity. 

III. VARIABILITY IMMUNITY 

A. Synaptic variability 
We first study the impact of nanodevices (synaptic) 

variability on the performance of the network. For this study, 
we simulated the network with 50 output neurons, 
introducing different kinds of variability. All the simulations 
were repeated five times, and the recognition rate given is 
averaged on the five runs. Simulation time was about 8 hours 
per run on an AMD Opteron 2216 CPU. Results are reported 
in Table I. 

On the first row of Table I, we evaluate the impact of 
variability of the initial state (i.e. the initial weight of the 
nanodevices, before learning starts). We can see it has no 
impact on the final performance, even when the variability is 
extreme. This means that we do not need to control the initial 
weight precisely. This is fortunate since this would be 
extremely difficult with memristors. 

On the second row of Table I, we evaluate the impact of 
the variations on the learning increments and decrements 
( α+ , α− ). These variations can be caused by variations of the 
device thresholds and of their programming characteristics. 
We can see that the network is immune to variations up to 
25% of the mean value of these parameters, which is already 
an extremely high level of variation for an electron device 
(but typical for research nanodevices). With 50% of 
variation, there is a small decrease of performance. With a 
dramatic variability of 100% on the synaptic parameters, the 
recognition rate decreases significantly, but interestingly the 
functionality of the network is not challenged. We should 
note that with a variability of 50%, 4% of the nanodevices 
cannot be programmed in at least one direction (i.e. they 
have an α value of 0). The latter figure becomes 30% when 

parameter variability is 100%. This is an indication of the 
overall tolerance to defects. 

The last row of Table I adds variations of minw , maxw . In 
that case some nanodevices will overpower the others due to 
increased maximum weight. Results are however similar to 
the previous case, and extreme robustness is preserved. The 
most sensitive parameter is the maximum weight. 

Tolerance to synaptic variability is natural in a way since 
learning actually takes its root in synaptic variability. The 
degree of tolerance achieved is however still impressive. 

 

B. CMOS neuron variability 

We now study the impact of the variability of the CMOS 
neurons. The impact of the variability of their threshold is 
seen in Table II. We can see that without homeostasis the 
impact of the variability is dramatic. The more excitable 
neurons (the ones with lower thresholds) spike 
predominantly and the other neurons do not specialize 
efficiently. In a typical simulation with a threshold variation 
of 25 %, the most excitable neuron spikes 51 % of the time, 
and in a simulation with a threshold variation of 50 %, it 
spikes 91% of the time. Homeostasis however fully 
compensates this issue (all the neurons spike between 1.5 
and 3% of the time, most neurons spiking around 2%). And 
the same degree of performance than without threshold 
variation is achieved as evidenced in Table II. Homeostasis 
appears as extremely valuable in this application.  

C. Stimulus encoding 
Another remarkable point is the insensitivity to stimulus 

encoding scheme. Different schemes are possible to encode 
the stimulus into spikes as illustrated in Fig. 5. In the first 
two schemes, the input neurons spike periodically, the firing 
rate being proportional to the input quantity. The input 
neurons can spike either in phase or out of phase. This is a 
natural scheme based on how spiking retinas currently work 
[30]. In the last possibility, input neurons spike in a 
Poissonian way, the time constant being inversely 
proportional to the input. All three coding styles lead to a 

TABLE I 
RECOGNITION RATE ON THE MNIST TESTING SET WITH DIFFERENT 

KINDS OF NANODEVICE (SYNAPTIC) VARIABILITY. ALL THE 
SIMULATIONS WERE REPEATED 5 TIMES, THE RECOGNITION RATE GIVEN 

IS AVERAGED ON THE 5 RUNS. ALL THE SIMULATIONS HAVE 
HOMEOSTASIS. THE DEGREE OF VARIABILITY (10%, 25%, 50%, 100%) 

IS DEFINED AS STANDARD VARIATION OF THE MEAN VALUE. 

Dispersion on the 
parameter 10% 25% 50% 100% 

Initial weights 81.3% 82.0% 80.8% 81.3% 

Learning steps α+, 
α- 

81.8% 81.4% 79.0% 74.0% 

Learning steps α+, 
α-, min. and max. 
weights wmin, wmax 

81.9% 80.6% 77.2% 67.8% 

 
 

TABLE II 
IMPACT OF THE NEURONS’ THRESHOLD VARIABILITY, WITH AND 
WITHOUT HOMEOSTASIS ON THE RECOGNITION RATE. ALL THE 

SIMULATIONS WERE REPEATED 5 TIMES. THE DEGREE OF VARIABILITY 
(10%, 25%, 50%) IS DEFINED AS STANDARD VARIATION OF THE MEAN 

VALUE. 

Variability on the 
neurons’ threshold Homeostasis No 

homeostasis 
No variability 81.3% 73.4% 

10% 81.9% 60.2% 

25% 81.2% 27.5% 

50% 80.8% 14.9% 

 
 



 
 

 

performance between 81% and 82%, which again shows the 
robustness of the approach. This kind of robustness to spike 
jitter is consistent with computational neuroscience works on 
STDP [24]. 

IV. OVERALL NETWORK 

A. Supervised learning scheme 

 
The second layer of the proposed architecture is a simple 

classical supervised classifier. It is used to label outputs of 
the first unsupervised layer. 

For this second layer, we propose a new scheme. It is 
similar to the unsupervised scheme presented in the previous 
sections with the difference that no voltage is applied on the 
nanodevices when an output neuron spikes. Instead, after a 
pattern has been applied for a given time, input and output 
neurons apply a programming pulse on the nanodevices as 
illustrated on Fig. 6. 

The input neurons apply a pulse only if they spiked during 
the period. Depending if the output neuron reacted as was 
expected, it will program the nanodevices connected to input 
neurons that spiked one way or another. The pulse from the 
input neurons (PRE) indeed contains a positive and a 
negative part so that by conjunction with the pulse applied to 
the output neuron (POST) it may program the nanodevice 

one way or another. 
If the output neuron was expected to spike (it corresponds 

to the digit actually presented), the connections to the input 
neurons that spiked should be strengthened. The output 
neuron applies a negative spike that will strengthen the 
positive part of pre-synaptic pulses, and increase the weights 
of nanodevices that present such pulses. If the output neuron 
was not expected to spike, inversely it should apply a 
positive pulse to weaken the synapses connected to input 
neurons that spiked. If the output neuron actually spiked (i.e. 
made a mistake) a significant pulse is applied to significantly 
reduce the weights. If it did not spike (and thus was right) – 
which is the most typical situation – the pulse is smaller in 
order to only weakly weaken the weights (and not cause the 
weights to decrease too rapidly). 

B. Two layer scheme 

 
The role of the supervised layer is to label neurons trained 

by the unsupervised first layer of section III. As illustrated 
on Fig. 7, this works well and in that case the insensitivity to 
variations is kept because labeling is not a difficult problem. 
Even with variations of α+ , α−  , minw , maxw  of 50% the 
supervised layer performance is matching perfectly the 
unsupervised layer.  

The supervision does not improve performance, but 
provides a practical approach for the labeling operation. This 
opens up many opportunities. One promising way could be 
to pretrain the unlabeled layer on natural data, and then to 
perform a “labeling” on a small training set. This could be 
 a useful way to process all kinds of natural data. 

V. CONCLUSION 
In this paper we have shown how by using a simple 

custom STDP scheme, memristors associated with CMOS 
neuromorphic circuits could perform unsupervised learning 
in a way that is extremely robust to variability. Non-
supervision is the foundation for this tolerance and will 
provide extreme adaptability to the system. Homeostasis was 
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Fig. 6.  Pulses for supervised learning (voltage pulses as a function of 
time). 

 
 

Fig. 5.  Illustration of the three stimulus coding schemes. Stimulus 
spikes timing for ten input neurons with the same pixel value in the 
three schemes. All three lead to a recognition rate between 81% and 
82%, without any parameter needing to be adjusted. 
 



 
 

 

also introduced as an essential component to retain 
insensitivity to CMOS variability. In the last section a 
scheme to use memristors for supervised learning was also 
introduced in a second layer. When used for labeling results 
of the first unsupervised layer, it retains excellent variability 
robustness, and provides a scheme for complete learning of 
real case data. 

This design approach could be the groundwork for future 
circuits that will process natural data in a compact and low 
power way. Thanks to their unsupervised learning 
capabilities, such circuits will be able to adapt to various 
environments. Future work should focus on the experimental 
demonstration of these concepts, and to demonstrate its 
scaling to more complex multi-layer networks, and to other 
kinds of sensory stimuli. 
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