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Abstract—We introduce an event-based methodology, and its
accompanying simulator (“Xnet”) for memristive nanodevice-
based neuromorphic hardware, which aims to provide an inter-
mediate modeling level, between low-level hardware description
languages and high-level neural networks simulators used pri-
marily in neurosciences. This simulator was used to establish
several results on Spike-Timing-Dependent Plasticity (STDP)
modeling and implementation with Resistive RAM (RRAM),
Conductive Bridge RAM (CBRAM) and Phase-Change Memory
(PCM) type of memristive nanodevices. We present several
simulation case studies that illustrate the event-based simulation
strategies that we implemented, including unsupervised features
extraction and Monte Carlo simulations. A discussion comparing
event-based and fixed time-step simulation is included as well,
and gives some metrics to guide the choice between the two
depending on the application to simulate.

I. INTRODUCTION

FOLLOWING the advancements in computational neu-
roscience, spiking neuromorphic hardware has gained

momentum over the last years [1]–[4]. This trend is rein-
forced with the latest proposals to use memristive nanode-
vices as synapses, which are particularly attractive to imple-
ment efficient timing-based learning rules like Spike-Timing-
Dependent Plasticity (STDP) in dense crossbar arrays [5]–[9].
A major focus of Spiking Neural Network (SNN) hardware
is to capture biological processes with a much higher realism
than earlier Artificial Neural Networks (ANN), thus enabling
richer interactions with neuroscience, large-scale hardware-
accelerated neural simulations and real-time behaving systems
[10]. Another emerging field of applications for SNN are
hardware Intellectual Property (IP) cores, especially in em-
bedded computers, where efficiency is a major focus. SNN
could indeed complement or replace otherwise computation-
ally heavy sensor processing, like audio or video patterns
extraction, learning, recognition and tracking. To model such
systems, hardware description languages such as VHDL [11],
Verilog or SystemC [12] do not provide the appropriate level
of abstraction for fast and efficient architectural exploration,
which generally implies tuning the network topology, neural
parameters or learning rules depending on the intended task.
At the opposite, neural network simulators popular in the
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neuroscience community such as Neuron [13], Brian [14]
or NEST [15] can provide a higher level of abstraction.
However, they lack the integration of synaptic memristive
device modeling, hardware constraints and any custom features
required for the targeted application.

Additionally, aggressively scaled down analog sub-threshold
CMOS neurons and memristive nano-devices are plagued by
device-to-device variations and intrinsic device variability to a
large extend [16], [17]. Tacking into account this variability at
a system level is becoming increasingly critical as it is more
and more challenging to conceal it at the device level. This
is however typically hard and expensive to tackle with both
hardware description languages and high-level NN simulators.

To provide an intermediate modeling level for neuromor-
phic hardware, we introduce several event-based simulation
strategies that are implemented in our event-driven simulator
(“Xnet”). It is aimed to be a simple and effective simulator,
which is designed from the beginning to integrate variability
and stochasticity in both synaptic and neural models. With
semi-physical synaptic device models, event-based simulation
can also be used to estimate the synaptic power consumption
of the system and to give direct feedback for technological
optimization.

In the first section of this paper, we briefly introduce
the event-based model used for memristive devices based
neuromorphic hardware. Several case studies are presented in
section II, namely event-driven spike shape modeling, unsu-
pervised features extraction with LIF neuron model equipped
with STDP and lateral inhibition introduced earlier, phase-
change memory detailed device and system modeling, Monte
Carlo simulations and genetic optimization of parameters.
Finally, event-based simulation is compared with the Brian
fixed time-step one in section III, in order to illustrate the main
differences between the two types of simulation and give some
metrics to guide the choice between the two depending on the
parameters of the problem.

II. METHODOLOGY

The programming and reading pulses applied on the nan-
odevices (or “synapses”) constitute the base events in our
spiking neuromorphic hardware. They are sent or received
by the networks nodes – its “neurons”. These neurons are



the active elements in the network and are implemented with
analog or digital CMOS. In Xnet, the neurons are modeled
functionally for computational efficiency. To simulate the
system, we propose a mixed and flexible event processing
model. The use of the C++ programming language [18] fulfills
the need for a systems level language that provides high-level
abstractions and fast simulations.

A. Events Processing

The simple yet flexible event processing engine, which is
used in Xnet, is presented in figure 1. It is organized around
an event queue, implemented with a priority queue of the
C++ standard library. This turned out to be the most efficient
structure for this purpose. The events are sorted by their
timestamp. The event on top of the queue is therefore the next
event scheduled to take place. When an event is processed, it
induces new events. Their timestamp is calculated using the
voltages in the system, and the models for the neurons and
the synapses. The new events are inserted and sorted in the
event queue. Events that have been processed are removed
from the queue. An event can be a neuron spiking, or a voltage
in the system changing. Some events cause some memristive
nanodevices to change their conductance, and thus the system
to learn.

This event processing engine differs from some spiking
neural networks simulators that do not compute the events’
exact timings (like SpikeNET [19]), but just model the events’
order. Knowing the exact timings is necessary for using
nanodevices models.
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Fig. 1. Events processing in Xnet. The next scheduled event is processed by
its destination node in the incomingSpike() method (1), which can create
internal events (2) that are inserted into the priority queue (3). Internal events
are processed by the emitSpike() method (4), which can then emit events
towards output nodes by calling their propagateSpike() method (5).

B. Input Stimuli Generation

The input nodes of a network can be mapped to various
types of external stimuli summarized in figure 2. Static frames
and auditory stimuli can be temporally coded to emulate spik-
ing retina- or cochlea-like sensors [20], [21]. Address Event
Representation (AER) data can be loaded directly to form the
input stimuli. AER is a standard asynchronous communication
protocol, widely used in the neuromorphic hardware commu-
nity for communication between spiking neurons.

Input data Pre-processing Temporal coding 

AER 

Frames 
(image, 

MNIST) 

Scaling and filtering 

 
Luminance to time 

(linear relation) 

• Single burst 

• Periodic 

• Jittered periodic 

• Poissonian 

Audio 
(wav) 

Band-pass filter bank 

Leaky Integrate and 

Fire on each filtered 

frequency 

Fig. 2. Possible input stimuli: AER recording, static image and audio
waveform. The pre-processing and temporal coding steps can be adapted to
emulate hardware sensors or pre-processing units.

The basic building block to implement competitive learning
is a group of neurons fully connected to the inputs with global
lateral inhibition, as shown in figure 3. Lateral inhibition can
be of any form, the simplest one implementing a winner-
take-all between all the neurons. Considering its nano-scale
hardware implementation, the canonical form of this building
block is a crossbar of memristive synaptic devices.

Lateral 

inhibition 

…… 

Lateral 

inhibition 

Input nodes 

Input nodes 
Output nodes 

O
u
tp

u
t 

n
o
d
e
s
 

Fig. 3. Basic building block for a group of neurons, which can feature
lateral inhibition. Left: topological view. Right: flattened view in a crossbar
of synaptic elements.

C. Synapse and Neuron Models

Xnet is fundamentally synapse-centric. This differs from
the neural network simulators which are neuron-centric, where
the synapses are usually modeled as a single floating number
parameter. In Xnet, the neurons and associated synaptic learn-
ing rule always emulate programming pulses on the synaptic



devices: the two rules used in our modeling methodology are
(1) they cannot change the conductance of the nanodevices in
absolute value, and (2) they do not have any knowledge of the
current value of the conductance (no free read before write).

Functional and/or semi-physical modeling is possible with
event-based modeling. We developed models for PCM,
CBRAM and RRAM devices that fit experimental charac-
terizations for selected programming conditions: program-
ming pulses voltage, duration and initial device conductance
state. For PCM, cumulative conductance increase through
progressive crystallization with identical programming pulses
is modeled. The models also include the variability and
stochasticity in device conductance change. Each parameters is
thus modeled with a normal or log-normal distribution, with
a mean and a standard deviation: minimum/maximum con-
ductance, conductance increment/decrement upon successive
programming pulses, increment/decrement damping depend-
ing on the conductance of the device, or increment/decrement
effective conductance change probability, which are the main
parameters used for CBRAM and RRAM devices.

By choosing experimentally a fixed programming condition,
in terms of pulse voltage and duration, a simple behavioral
model for conductance change can be established, using the
above-mentioned parameters, without requiring a deep under-
standing of the underlying physics.

III. CASE STUDIES

In this section, several system-level simulation examples
using Xnet are presented. They show the versatility of the
simulator by integrating various hardware constraints such as
voltage pulse width, lateral inhibition, phase-change memory
behavioral modeling and system modeling. Monte Carlo simu-
lations and genetic optimization of parameters capabilities are
also presented.

A. Spike Shape Modeling

Although Xnet is an event-based simulator, modeling non-
zero duration pulses is possible, without the performances
penalty that would incur the switch to a fixed time steps
simulation. Spike shape modeling is essential to model the
more complex synaptic behaviors at the electrical level and
reliably predict circuit performances at this level, while still
working with a highly abstract description for the system and
the network nodes, that can be either implemented with an
analog or a digital circuit for example.

To allow spike shape modeling in Xnet, events have a type
and each node in the network can define its own types. An
example of a node modeling square pulses on its synapses
is shown in figure 4. Event-based modeling is by nature
only possible for piece-wise analytically solvable pulse and/or
synaptic behavior. Moreover, because the simulation time is
directly proportional to the number of events, multi-events
spike modeling is suitable only up to a few events per spike
or synaptic updates, compared to fixed time step simulations.

A square pulse model was used for the simulated results
reported in [8], [22], which show unsupervised learning of the
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Fig. 4. Non-zero duration pulse modeling in Xnet. The EventOn and
EventOff event types model respectively the rising edge and the falling edge
of the electrical pulse.

MNIST handwritten digits database through STDP on RRAM
memory devices with classification performances comparable
to classical ANN. Homeostasis and semi-supervised learning
were also shown, using a global reward mechanism, which is
easy to implement at the network level in the simulator.

B. Unsupervised Features Extraction

In this example, we present a biologically inspired approach
to extract temporally correlated patterns from an asynchronous
event stream using unsupervised STDP learning implemented
with memristive devices. We have simulated the development
of selectivity in an array of 60 neurons receiving spikes
from a 128×128 pixels silicon retina chip that generates
spikes in response to local increases (“positive” events) and
decreases (“negative” events) in luminance at the pixel level
[23]. The neurons implement a special form of STDP, that
increases the conductance of memristive devices that were
activated just before a post-synaptic spike and decreases the
conductance of all the other memristive devices uniformly.
The memristives devices are modeled as in [24]. When tested
with a recorded input sequence of 10 minutes of traffic on
a freeway, the system develops neurons that respond to cars
moving at particular locations within the image. The complete
study, featuring a two-layers system and robustness to noise
and variability analysis can be found in [25].

C. Phase-Change Memory System Modeling

The following case study present the implementation of
the previous example using Phase-Change Memory (PCM)
devices as synapses. PCM is a mature resistive memory tech-
nology, which is a good candidate for neuromorphic applica-
tions because of CMOS compatibility, high scalability, strong
endurance, and good retention characteristics. The complete
system was introduced in [26] and described in details in [27].
Because of the specific phase-change physical process, only
the increase of PCM conductance can be made gradual with
identical programming voltage pulses (shown in figure 6(a)),
a scheme using two PCM devices per synapse was devised
and validated with Xnet (figure 6(b)). For each connection,
the synaptic state is stored in a special purpose Synapse_PCM

object, inherited from the base Synapse object, containing two
complete sets of parameters for the behavioral model exposed
in figure 6(a).
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Fig. 5. Output reporting for a typical simulation. (a) Raster plot for 10 output
nodes. (b) Internal integration state of a neuron. (c) Firing rate for 10 output
nodes. (d) Weights reconstruction for an output neuron.
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Fig. 6. Overview of a PCM-based synapse system modeling. (a) Experimental
device data fitting (device’s conductance increase vs. number of applied
voltage pulses). (b) Two-PCM synapse modeling. (c) Simulated variability for
the PCM devices over 100 potentiating cycles. (d) Reset operations diagram
as implemented in Xnet.

Contrary to related work on PCM [28], the simulation
proposed here avoid relying on an experimental STDP char-
acterization, but rather uses directly the device behavior for
simple potentiating pulses to implement STDP, which is done
very easily thanks to the event-driven nature of Xnet. Exper-
imentally measured device variability, modeled with normal
or log-normal distribution, is therefore included at the device
level and its impact on the STDP characteristic can be studied
through Monte Carlo simulations (see next section).

This also offers the possibility to perform detailed synaptic
learning analysis and estimate the total synaptic power con-
sumption for a given technology, as shown in table I. The
energy consumption is estimated by counting the total number

of read, set and reset pulses during the learning. The energy
of a pulse is estimated as E ≈ V × I × t, where V , I and
t are respectively the pulse voltage, current and duration. For
the set and reset pulses, the current during phase change is
essentially independent on the device conductance due to the
threshold switching effect, and the average current measured
experimentally is used. For the read pulses, the current is
computed with Ohm’s law according to the modeled device
conductance.

TABLE I
LEARNING STATISTICS FOR THE PCM-BASED NEUROMORPHIC CIRCUIT,

USED TO ESTIMATE THE SYNAPTIC POWER CONSUMPTION OF THE SYSTEM
(FOR LANCE-TYPE GST-PCM TEST DEVICES, WITH A 100 NM THICK

PHASE CHANGE LAYER AND 300 NM DIAMETER TUNGSTEN PLUG [26]).

Total Synapses: 1,966,680 [= 1st Layer (2×128×128×60) 2nd (60×10)]
Total PCM cells: 3,933,360 [= 2× Total Synapses (LTP and LTD)]
Total learning duration = 680 s

Quantity Values for Number of pulses Energy consumption
Total read pulses 4,975,830,080 0.12 pJ
Total set pulses 416,334,080 121 pJ
Total reset pulses 16,585,048 1552 pJ

Total synaptic power consumption 112 µW

D. Monte Carlo Simulations and Genetic Optimization of
Parameters

Xnet includes facilities to perform distributed Monte Carlo
simulations and genetic evolution on (synaptic and neural)
network parameters, which are essential for variability robust-
ness analysis and parameter space exploration. To this end, it
implements a transparent, efficient and type-safe mechanism
(derived from “Chameleon Objects” [29]) to declare any type
of C++ variable as a model parameter that can be read and
write into configuration files. Configuration files can be shared
within a layer or distinct for each node of the network,
allowing to load and save the entire state of the simulation.
We use the standard Mersenne twister MT19937 pseudo-
random number generator, which is optimized for Monte Carlo
simulations [30].

In a first case study, Monte Carlo simulation is used to eval-
uate the robustness of the learning to variability on minimum
(GOFF) and maximum (GON) synaptic device conductance.
The results presented in figure 7 show the recognition rate
for the MNIST handwritten digit database, in function of the
relative standard deviation on GOFF and GON (for extrinsic,
device to device variation and intrinsic, device variation during
switching) [31]. In this experiment, each synapse is constituted
of five binary resistive devices and the learning exploits the
device switching stochasticity to implement STDP.

In a second case study, genetic evolution of neural param-
eter is used to evaluate the performance impact of system
modifications and simplifications based on the setup presented
in section III-B. The figure 8 illustrates how a new set of
neural parameters can be found automatically through genetic
evolution for a new system, with 4 bits digital synapses, linear
neural leak instead of exponential and order-based STDP,
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Fig. 7. Monte Carlo robustness analysis on digit recognition for intrinsic
and extrinsic min. (GOFF) and max. (GON) synaptic conductance variability.
Synapses are constituted of binary resistive devices and learning is stochastic
[31].

where only the synapses activated by the latest 8192 events
are potentiated upon activation of the output neuron [32].
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Fig. 8. Genetic evolution on neural parameters in Xnet to evaluate the
performances of the simplified unsupervised features extraction system with
4 bits digital synapses, linear leak and order-based STDP [32]. The insets show
the weights map of an output neuron after the learning of the car sequence,
for four sets of parameter obtained at different point in the genetic evolution.

IV. EVENT-BASED VS. FIXED TIME-STEP SIMULATION

In the following, we compare the Xnet event-based simula-
tion with the Brian fixed time-step one, in order to illustrate the
main differences between the two types of simulation. We give
some performance metrics, to help choosing the simulation
type that is the most adapted depending on the parameters of
the problem, regardless of the absolute figures obtained for this
particular benchmark. Brian is used in its default configuration
(according to the documentation, typical gains of 30% can be
expected when activating compiled C code optimizations).

Xnet is not designed for biological systems modeling and
simulation, contrary to neurosciences simulators, which are
not designed to simulate neuromorphic hardware. The Brian

simulator [14] however integrates more and more features
towards this end. Using some Brian 1.4 experimental features,
it is possible to emulate approximately the unsupervised
features extraction presented earlier, from an AER recording.
One limitation is that it does not allow to reset the membrane
potential of the neurons through lateral inhibition directly,
however this can be circumvented by disabling the pre-
synaptic pulses integration during the inhibitory period, which
allows the membrane potential to leak to zero.

The results in table II show that for 60 neurons (∼2 millions
synapses), Xnet is ∼400% faster than Brian with a default
time step of 0.1 ms. In this simulation, each neuron is fully
connected to the AER retina. The number of events is therefore
proportional to the number of neurons, as each AER event is
distributed to every neuron. With five times more neurons (300
neurons), the event-based simulation is as expected more than
five times longer and uses five time more memory. As the
number of events per time-step increases, clock-based simula-
tion becomes more efficient and the Brian simulation is almost
as fast as Xnet for 300 neurons. However, this can have side
effects such as ineffective lateral inhibition, if multiple neurons
fire in the same time-step, or poor precision during learning, if
the time-step is several percents of the LTP or LTD windows.
These issues are non-existent in event-based simulation, where
the time precision is arbitrary (one femtosecond in Xnet).
Parallelization of the event-driven priority queue is possible,
although not implemented in Xnet, where code correctness and
simplicity are preferred over simulation speed (which is not
restrictive for our current needs). A one order of magnitude
smaller time-step in Brian does not multiply the simulation
time by ten, because synaptic updates are event-driven even in
Brian and there is lateral inhibition in the simulated network.

The memory consumption is dominated by the synaptic
parameters, which can be significant for semi-physical mem-
ristive device models. With a simple behavioral model, ten
state variables are used for each synapse in Xnet, compared
to only one state variable per connection in the equivalent
Brian simulation, where synaptic variability is not modeled.

TABLE II
XNET AND BRIAN PERFORMANCES COMPARISON. THERE ARE 1,966,080

SYNAPSES FOR N=60 NEURONS AND 9,830,400 SYNAPSES FOR N=300
NEURONS. XNET PROCESSES IN AVERAGE 2 MILLION EVENTS/SECOND.

Setup Exec. time Memory cons. (max)
Xnet (N=60) 131 s (×1.0) 344 MB (×1.0)
Brian (N=60, ∆T=0.1 ms) 524 s (×4.0) 399 MB (×1.2)
Brian (N=60, ∆T=0.01 ms) 1797 s (×5.2) 456 MB (×1.3)
Xnet (N=300) 817 s (×6.2) 1687 MB (×4.9)
Brian (N=300, ∆T=0.1 ms) 963 s (×7.4) 1134 MB (×3.3)
Brian (N=300, ∆T=0.01 ms) 2157 s (×17) 1192 MB (×3.5)
Xnet (N=1500) 5693 s (×43) 8224 MB (×24)
Brian (N=1500, ∆T=0.1 ms) 2826 s (×22) 4823 MB (×14)
Brian (N=1500, ∆T=0.01 ms) 5168 s (×39) 4881 MB (×14)

V. CONCLUSION

Xnet was developed to allow fast and efficient design ex-
ploration of spiking neuromorphic architectures by providing



a framework that can mix high-level behavioral modeling
with hardware constraints integration. More specifically, it
was designed with spiking retina and memristive nano-devices
based architectures in mind. The Xnet source code is currently
not licensed, but is available through partnership with CEA
LIST. Additional information on implementation details is
available upon request.

This simulator, along with its accompanying methodology
was used for the simulations in several papers published by
our group [8], [25]–[27] and is now mature and useful to be
introduced to the community, in addition to the necessity to
provide means of reproducing and validating scientific results.

Until now, the neuromorphic hardware community lacked
a generic and efficient framework for high-level memristor-
based spiking neuromorphic architectures exploration. We
hope that Xnet will be a first step towards such a framework,
as it proved to be extremely valuable for rapid evaluation of
new nanodevices and for a better understanding of STDP-like
learning rules. Xnet is always under active development, with
current integration of magnetic tunnel junction synaptic device
model and audio processing and learning simulations.
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