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Abstract—Processing the current deluge of data using con-
ventional CMOS architectures requires a tremendous amount
of energy, as it is inefficient for tasks such as data mining,
recognition and synthesis. Alternative models of computation
based on neuroinspiration can prove much more efficient for
these kinds of tasks, but do not map ideally to traditional
CMOS. Spintronics, by contrast, can bring features such as
embedded nonvolatile memory and stochastic and memristive
behavior, which, when associated with CMOS, can be key
enablers for neuroinspired computing. In this paper, we explore
different works that go in this direction. First, we illustrate
how recent developments in embedded nonvolatile memory based
on magnetic tunnel junctions (MTJs) can provide the large
amount of nonvolatile memory required in neuro-inspired designs
while avoiding Von Neumann bottleneck. Second, we show that
recently developed spintronic memristors can implement artificial
synapses for neuromorphic systems. With a more groundbreaking
design, we show how the probabilistic writing of single MTJ bits
can efficiently replace multi-level weighting for some classes of
neuroinspired architectures. Finally, we show that a special class
of MTJs can exhibit the phenomenon of stochastic resonance, a
strategy used in biological systems to detect weak signals. These
results suggest that the impact of spintronics extends beyond the
traditional standalone and embedded memory markets.

I. INTRODUCTION

Emerging applications of electronics, such as Big Data and
ubiquitous sensing, call for systems capable of handling large
quantities of natural data with low power consumption. The
relevant tasks, which rely on machine learning and can be
qualified as “cognitive”, have been summarized as recognition,
mining and synthesis [1]. These tasks do not map perfectly
to traditional computers; most machine learning algorithms
suffer heavily from the von Neumann bottleneck. In recent
years, many researchers have advocated a bioinspired comput-
ing paradigm as a solution for implementing cognitive tasks
with high energy efficiency [2]–[5]. However, CMOS does
not provide all features necessary for ideal implementation
of bioinspired architectures. In particular, fast and compact
embedded nonvolatile memory and efficient random number
generation are not available.

In parallel, spintronics (spin electronics) has emerged as a
major advance in micro and nanoelectronics since the Nobel
prize of Albert Fert and Peter Grünberg in 2007. Spintronics
exploits the intrinsic magnetic moment (spin) of electrons in
addition to their electrical charge to achieve novel features.

Fig. 1. (a) Schematics of a MTJ. (b) Illustration of Spin transfer torqie and
thermal switching in a MTJ.

The prominent example is the magnetic tunnel junction, the
flagship structure of spintronics, which exhibits a wide variety
of complex and tunable behaviors [6], particularly a fast,
compact and reliable binary nonvolatile memory. This memory
function is envisioned for diverse applications as standalone
and embedded memory, or in original logic-in-memory circuits
[7]. Additionally, the features provided by spintronics share
some features with biology [8]. Much recent work has inves-
tigated the use of nanotechnology for bioinspired computing
[9]–[13], by mimicking biology’s use of nanoscale elements.
In this paper, we show how spintronics fits specially well in
this vision, and may complement CMOS ideally to provide the
features necessary for emerging neuroinspired applications.

Here, after introducing several features that spintronics can
bring to CMOS, we present ideas for using spintronics in
bioinspired design. A form of hybrid logic differentiating
between volatile and nonvolatile signals can implement cog-
nitive algorithms. Spintronics devices may also be used as
“synapses”. Finally, they may be used as stochastic oscil-
lators that synchronize in a bioinspired way based on the
phenomenon of “stochastic resonance”

II. SPINTRONIC BUILDING BLOCKS

Exploiting the spin degree of freedom of electrons permits
numerous novel device features. Most spintronics devices
are based on a magnetic tunnel junction structure (MTJ,
Figure 1(a)). A MTJ consists in a patterned stack composed
of layered magnetic and nonmagnetic materials. An MTJ
consists of a patterned stack composed of layered magnetic



Fig. 2. Schematics of some spintronic building blocks. (a) MTJ used as binary
nonvolatile memory. (b) MTJ used as a stochastically programmed nonvolatile
memory. (c) Spintronic memmristor exploiting domain wall motion. (d)
Superparamagnetic MTJ used as stochastic oscillator.

and nonmagnetic materials. It features a first nanomagnet with
a pinned magnetization (fixed or pinned layer), and a second
nanomagnet (free layer) with a magnetization that can be
parallel (P) or antiparallel (AP) to the magnetization of the
fixed layer. These two nanomagnets are separated by a thin
tunnel barrier. The magnetization of the nanomagnets can be
either in-plane, as illustrated in Figure 1, or perpendicular to
the plane, in more recent designs.

Due to spin transport physics, the electrical resistance of
the P and AP state differ (P is low resistance, AP is high
resistance). This difference is quantified by the tunnel magne-
toresistance ratio (TMR):

TMR =
RAP −RP

RP
. (1)

In typical devices, the TMR ranges between 30% and
150%. A magnetic field can be used to switch the state of
the MTJ between the P and AP states. The first generation of
magnetic random access memory (MRAM) was based on this
principle; however, this leads to parasitic crosstalk between
MTJs when the technology is scaled. A second spin transport
effect, called “spin transfer torque”, allows the MTJ state to
be switched using an electrical current flow through the MTJ.
A positive current switches the MTJ from the AP to the P
state, while a negative current switches the MTJ from the P
to the AP state (Figure 1(b), Figure 2(a)). This is the basis
of to the second generation of MRAM: Spin transfer torque
MRAM (STT-MRAM) [14]. STT-MRAM provides compact
nonvolatile memory with outstanding endurance and fast write
speeds (in the range of 10ns) that can be embedded at the

core of CMOS chips. Recent results suggest that writing
speed could scales in the ns range [15], providing a relatively
“universal” memory that is fast, reliable and nonvolatile.

A unique feature of MTJ-based memory is the stochastic
nature of its switching (Figure 2(b)) [14], [16], [17]. This effect
results from thermal effects in the MTJ switching process,
which is well-studied and can be modeled accurately [18],
[19]. When a short programming pulse is applied to a MTJ,
there is only a probability of switching the MTJ. Therefore,
we need to use long programming pulses to switch MTJs
reliably. On the other hand, this stochastic switching make
MTJs true nanoscale random number generator, as has been
proved experimentally in Ref. [20].

While simple MTJs of the form of Figure 1 possess only two
stable memory states, variations are currently developed to fea-
ture multibit information storage. This spintronic “memristor”
behavior is produced by engineering the MTJ such that the free
layer’s magnetization is divided into two domains: one domain
is aligned to the fixed layer, the other domain is antiparallel
to the fixed layer (Figure 2(c)). The domain position can be
shifted using current pulses. This device has for example been
proposed in Refs. [21], [22], and a demonstration has been
realized experimentally in Ref. [23].

Another original application of MTJs is to allow switching
in response to thermal noise, without applying a magnetic
field or an electrical current (Figure 2(d)). These so-called
super-paramagnetic junctions behave as stochastic oscillators
with electrical resistance states analogous to a telegraph noise
signal, with properties determined by the sizing of the MTJ.
We will show that this feature of controlled telegraph noise
can be useful for groundbreaking computing applications.

Finally, it should be mentioned that MTJs can be used
in many additional systems not discussed in the present
work: e.g. as a magnetic field detector, microwave oscillator
and receiver, or spin wave emitter [6]. In summary, MTJs
are simple compact device with a wide range of potential
applications due to their rich physics. The rest of this paper
discusses techniques for integrating spintronic devices with
CMOS circuits to develop efficient neuroinspired architectures.

III. NON-VOLATILE LOGIC GATES FOR COGNITIVE
COMPUTING

Magnetic tunnel junctions constitute a CMOS-compatible
technology and can be embedded at the core of CMOS.
This allows considering hybrid circuits that benefit from the
advantages of both CMOS and spintronics, as its nonvolatility.
An example of such approach is presented in [24] and Fig-
ure 3. Zhao et al. propose logic gates where some inputs are
traditional volatile CMOS signals, and some inputs are stored
in nonvolatile MTJs. Ref. [24] introduces a comprehensive
methodology to design such gates. Figure 3 presents a full-
adder designed using this methodology. The A and carry (Ci)
inputs are volatile, the B input is nonvolatile, while outputs
SUM and carry (C0) are volatile. The nonvolatile input B
is stored in complementary MTJs, and can be changed by
a standard MTJ write circuit. The outputs of the circuit are



Fig. 3. (a) Schematic of the part of a hybrid volatile/nonvolatile full adder
generating the output SUM. The full schematic appears in Ref. [24]. The
variable resistors represents MTJs. (b) Circuit simulation of this full adder
using a 40 nm commercial technology design kit and the compact model of
a realistic MTJ (data adapted from [18]).

read using a Precharge Sense Amplifiers (PCSA), which are
fast and energy-efficient MTJ read circuit. The volatile inputs
are inserted between the non volatile input and the PCSAs as
part of a MOS tree that alters the MTJ read operation and
implements the actual adder logic function.

Interestingly, once laid out and even including all the write
circuitry for input B, the circuit is slightly more compact than a
conventional CMOS full adder (18µm2 vs. 20µm2 in a 40nm
technology). When input B is not changed, the circuit has
nearly same delay (90ps vs. 75ps) and power consumption
(2.0µW vs. 2.2µW ) as a conventional CMOS full adder [24].
However, changing input B requires more time and power, as
it consists in programming a MTJ.

This class of circuit is therefore useful when some inputs
are fundamentally volatile, and some inputs are parameters that
are rarely changed and need to be nonvolatile. Making such

a separation in a general purpose computer is a difficult task.
However, for a machine learning algorithm, this separation
is intuitive. Machine learning algorithms largely differentiate
between model parameters and actual inputs to be processed.
For example, in a deep network, neuron states need to be
updated frequently, while synaptic weights are not changed
once the network has been trained. Putting the parameters as
nonvolatile inputs could lead to a machine learning specialized
circuit that avoids issues related to von Neumann bottleneck
and is instant on/off.

IV. SPINTRONIC DEVICES AS ARTIFICIAL SYNAPSES

A. Multilevel Synapses

In recent years, many research groups have focused on using
memristive devices as synapses. Synapses are the connections
in the brain, and also feature a form of long term memory: a
synapse possesses an analog synaptic weight that modulates
the transmission between neurons. Synapses are a fundamental
element in neuroinspired systems; however, CMOS imple-
mentations of learning-capable synapses are volatile, and are
not compact [25], [26]. Memristive devices are nonvolatile
resistive memories that usually features multilevel memory,
and possess the capability to naturally emulate some properties
of synapses, such as the capability of learning with “spike tim-
ing dependent plasticity” [9]–[13], [27]. They might therefore
implement ideally the synapses of neuromorphic systems.

The spintronic memristor introduced in section 2 can natu-
rally implement this vision, and this idea is currently widely
investigated [21]–[23]. A feature of spintronic memristor with
regards to other memristive devices is that the memory states
are well defined by domain wall pinning, while they are analog
(and harder to control) in other technologies. Spintronic mem-
ristors, with programming times in the range of nanoseconds,
also constitute a fast technology. Additionally, the separation
between low and high resistance states is typically smaller
for spintronic memristor than for other technologies. This
might require the use of adapted differential circuits for read
operation.

B. Stochastic Synapses

As mentioned in section 2, a distinctive feature of MTJs
is stochastic switching [14], [16], [18]. This usually consti-
tutes a nightmare for circuit engineers, which calls for long
programming pulses or specialized circuits solutions such as
self-enabled programming [28]. However, when using MTJs
as synapses this can be turned into a useful feature: stochas-
tic programming of a memory device can be a particularly
efficient way to implement stochastic learning rules, which
have proven useful in some situations [29], [30]. Synapses
programmed using stochastic learning rules need not neces-
sarily be multilevel, and we can therefore use standard binary
MTJs as synapses using this concept.

Figure 4 illustrates this breakthrough idea [31], [32]. Fig-
ure 4(a) presents experimental measurements of stochastic
switching: we can see that the probability for a MTJ to switch
when a programming pulse is applied can be adjusted by
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Fig. 4. (a) Measurements of stochastic stochastic switching in binary MTJs.
(b) Simplified architecture for implementing stochastic learning with binary
MTJs. (c) Final states of the MTJs in a network that has been trained on a
task of car counting (as obtained by system-level simulation).

choosing pulse duration and voltage amplitude. This effect
is now fully understood and can be modeled using analytical
equation [19].

Figure 4(b) presents a simplified learning architecture that
implements a stochastic spike timing dependent plasticity rule,
described in more detail in [32]. The MTJs, organized as
a crossbar, connect CMOS input neurons to CMOS output
neurons, in a manner analogous to “feed-forward” neural
networks. Such a system can be trained to perform tasks in an
unsupervised manner. The CMOS input neurons present the

inputs as asynchronous voltage spikes, which are transmitted
to the output differently depending on the MTJ states, which
therefore act as binary synaptic weight. The CMOS output
neurons act as leaky integrate-and-fire neurons [5]. When an
output neuron spikes, it applies a simple voltage waveform
on the crossbar, as illustrated in Figure 4(b), which leads
to stochastic programming of the MTJs and implements the
stochastic simplified spike timing dependent plasticity learning
rule.

This seemingly simple process allows the system to learn
complex tasks. For example, if we present as input a video
of vehicles passing on a freeway acquired from a bioinspired
retina [33], each output neuron naturally specializes to a
particular lane of the freeway and becomes a vehicle detector
for this lane. This is illustrated in Figure 4(c). Each subimage
is a two-dimensional representation of the states of the MTJs
connected to one output neuron; it is apparent that each output
neuron is sensitive to one lane of the freeway. More neurons
are sensitive to the four inward lanes than the two outward
lanes, because fewer vehicles are driving on the two outward
lanes. The system can thus be used as a vehicle counter, with
detection rate on the four inward lanes higher than 95%, and
a number of false detection smaller than 5%.

Interestingly, such a system is extremely robust to device
variation, although these variations make the switching prob-
abilities of the devices programmed in the same conditions
extremely variable [31], [32]. The robustness to device vari-
ation, a common issue in nanoscale devices, makes a strong
argument for using bioinspiration to better exploit emerging
spintronics devices.

V. SPINTRONIC DEVICES FOR STOCHASTIC RESONANCE

The sensitivity of the spintronic nano-devices to thermal
fluctuations can also be useful to harvest thermal noise energy
in electronic systems. As already mentioned in section 2,
when, by proper design, reducing the energy barrier separating
the two P and AP states to a few times the thermal energy, a
magnetic tunnel junction undergoes random switching between
those states due to thermal fluctuations, therefore behaving as
a stochastic oscillator [36], [37]. The MTJ’s free layer is then
said to be superparamagnetic.

Such stochastic dynamics can lead to complex behav-
iors, relevant to bioinspired applications. Recent works have
demonstrated the capacity of superparamagnetic tunnel junc-
tions to naturally achieve stochastic resonance [34], [35],
[38]. By properly setting the barrier height in respect to the
thermal noise amplitude, the system exhibits an increased
sensitivity to sub-threshold inputs mediated by the noise. For
small amplitude periodic excitations, the mean frequency of
the system response shows a strong correlation with the input
frequency, demonstrating noise-enhanced synchronization.

In Figure 5, a square current signal with amplitude one sixth
of the MTJ critical current and varying frequency is applied
to a 60 × 180 nm2 superparamagnetic tunnel junction [34].
When the period of the input signal is small compared to
the mean switching time τ of the MTJ (high frequency),



Fig. 5. Experimental measurements of stochastic resonance in a superpara-
magnetic MTJ (data from [34]). (a) Waveform of the applied Input. (b-d)
Resistance of the MTJ for several input frequencies. In situation (c), quasi-
deterministic synchrony between input and output is observed, consistently
with stochastic resonance theory [35]. (e) Mean switching frequency of the
MTJ as a function of input frequency. (f) Proportion of matching time between
input and output as a function of input frequency.

there is a low probability that a switch of the MTJ occurs
during a half-period (Figure 5(b)). However, when the input
frequency is decreased, and the half-period compares to a few
times τ , the probability that an input oscillation triggers a
single back-and-forth switch of the MTJ becomes increasingly
significant (Figure 5(c)). When the frequency is decreased
further, supplementary short glitches are then likely to occur
due to the high instability of the device (Figure 5(d)).

As the resulting behavior, under a critical frequency, the
switching frequency of the MTJ starts to correlate to the exci-
tation frequency (Figure 5(e)) and the matching time between
the input and the output gradually increases (Figure 5(f)). Last
but not least, this critical frequency increases as the device
stability decreases, and these results are consistent with general
stochastic resonance theory [35].

Stochastic resonance and its variations have been suggested
as a strategy used by the brain to achieve lowpower sensing in
noisy environments [39], [40], and has also been proposed for
applications [41], [42]. Nevertheless, harnessing the stochastic
resonance property of superparamagnetic MTJs for applica-
tions will require further research.

VI. CONCLUSION

In this work, we have introduced the features that spin
electronics can bring to CMOS and how they can enhance
functionality of neuroinspired circuits. Several ideas have been
introduced, exploiting variations of the flagship device of spin
electronics: the MTJ. Logic gates with hybrid volatile and
nonvolatile behaviors are especially appropriate to implement
cognitive systems. Spintronic memristors and binary stochas-
tic magnetic tunnel junctions may be used as synapses for
systems capable of learning. Superparamagnetic MTJs exhibit
stochastic resonance that could be used for sensing systems.

There are fundamental reasons for which the MTJ in its
different flavors fits especially well in a bioinspired design.
As a compact nanodevice with rich physics, switching charac-
teristics enhanced by thermal noise and nonvolatility, it is more
reminiscent of the nanodevices used by biology (ion channels,
synapses) than traditional electron devices. All these results
and considerations suggest that the impact of MTJs on micro
and nanoelectronics may go further than traditional embedded
and standalone applications, although considerable work is still
needed to develop the alternative paradigms of computation of
the future involving spintronics.
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