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BOUNDARY NULL-CONTROLLABILITY OF SEMI-DISCRETE
COUPLED PARABOLIC SYSTEMS IN SOME

MULTI-DIMENSIONAL GEOMETRIES

DAMIEN ALLONSIUS∗ AND FRANCK BOYER†

Abstract. The main goal of this paper is to investigate the controllability properties of semi-
discrete in space coupled parabolic systems with less controls than equations, in dimension greater
than 1. We are particularly interested in the boundary control case which is notably more intricate
that the distributed control case, even though our analysis is more general.

The main assumption we make on the geometry and on the evolution equation itself is that
it can be put into a tensorized form. In such a case, following [4] and using an adapted version
of the Lebeau-Robbiano construction, we are able to prove controllability results for those semi-
discrete systems (provided that the structure of the coupling terms satisfies some necessary Kalman
condition) with uniform bounds on the controls.

To achieve this objective we actually propose an abstract result on ordinary differential equations
with estimates on the control and the solution whose dependence upon the system parameters are
carefully tracked. When applied to an ODE coming from the discretization in space of a parabolic
system, we thus obtain uniform estimates with respect to the discretization parameters.

Key words. Control theory, Lebeau-Robbiano strategy, parabolic systems, semi-discretization
in space.

AMS subject classifications. 35K10 - 65M06 - 93B05

1. Introduction.

1.1. Motivating example. In this paper, we are interested in null-controllability
properties at any time T > 0 of coupled linear parabolic equations at the continuous
level as well as at the semi-discrete in space level. In this introduction, we will focus
on the following prototype system (which is in the so-called cascade form)

(1)


∂tα−∆α = 0, in (0, T )× Ω,

∂tβ −∆β + α = 0, in (0, T )× Ω,

α = 1Γv, on (0, T )× ∂Ω,

β = 0, on (0, T )× ∂Ω,

where Ω is a bounded domain of Rd (d ≥ 1), Γ is a non empty part of the boundary
∂Ω, α and β are the two components of the system, and v is the boundary control
we are looking for. The main difficulty in the analysis of the controllability of such
system comes from the fact that we only have one boundary control v to drive the
two components (α, β) to 0 at the final time. The coupling terms (here the term α
in the equation for β) plays a key role in the problem and it can be seen as a kind
of indirect control for the second component of the system. Note that this indirect
controllability issue arises even if Γ = ∂Ω.

Actually, it appears that the results for such systems may be quite different from
the case of scalar equations or from the case of coupled systems with a distributed
control. We refer for instance to the survey [2] for a review on that topic. In particular,
it is explained in that reference that usual techniques based on Carleman estimates
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are useless on those problems. This is mainly because those techniques naturally gives
the controllability of the system when there is as many controls as components of the
system (for (1) it would consist in another boundary control for β on Γ) and, in a
second step, it is needed to prove that only on control is necessary. This is done, at
the observability inequality level (see the discussion in Section 2.3) by removing one
observation term thanks to the PDE itself. This last step cannot be done for boundary
controls (or observations). This is why other approaches have to be developped.

Most of the results available up to now for such controllability problems are
only proved in dimension d = 1 by using the so-called moments method. This is a
quite powerful method but, unfortunately, restricted to autonomous problem in space
dimension 1. In the multi-dimensional case, one of the more advanced result available
in the literature is proved in [4], in the case where the geometry and the diffusion
operator can be tensorized and this is also the case we shall consider in the present
work.

ω2

Ω1 = (0, a)

Ω2

Figure 1: Typical geometric situation

For problem (1), this structure assumption amounts to assume that the geometry
is as follows: Ω = Ω1 × Ω2 with Ω1 = (0, a) and Ω2 ⊂ Rd−1, and Γ = {0} × ω2 (see
Figure 1). Then, we can rewrite the system as follows

(2)



∂tα− ∂2
x1
α−∆2α = 0, in (0, T )× Ω1 × Ω2,

∂tβ − ∂2
x1
β −∆2β + α = 0, in (0, T )× Ω1 × Ω2,

α = β = 0, on (0, T )× Ω1 × ∂Ω2,

α = 1{0}×ω2
v, on (0, T )× {0, a} × Ω2,

β = 0, on (0, T )× {0, a} × Ω2,

where ∆2 is the (d−1)-dimensional Laplace operator in Ω2. The fact that the diffusion
operator is split into two parts, each of them acting on different sets of variables, is
crucial in the analysis. That is the reason why we shall adopt a tensor product
formalism that consists essentially in identifying L2(Ω) to L2(Ω1) ⊗ L2(Ω2) and to
write the two equations above in the following equivalent form

(3)

{
∂tα+ (−∂2

x1
)⊗ I α+ I ⊗ (−∆2)α = 0, in (0, T ),

∂tβ + (−∂2
x1

)⊗ I β + I ⊗ (−∆2)β + α = 0, in (0, T ),

where the same symbol I is used for the identity operator in L2(Ω1) and L2(Ω2). All
the necessary notations concerning tensor products will be recalled in Section 3.
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By exploiting this tensor product structure, even though the tensor product for-
malism was not explicitly used, it was proved in [4], that the null-controllability of
(3) holds at any time T > 0.

1.2. Passing to the discrete world. We are now interested in semi-discrete
versions of the controllability result for (1) mentioned just before. To simplify the pre-
sentation in this introduction, we assume that d = 2, that Ω1 = Ω2 = (0, 1) and that
the computation grid is made of N ×N uniformly distributed points (ih, jh)1≤i,j≤N
with h = 1

N+1 . The semi-discrete system we consider is obtained by the finite differ-
ence method and reads
(4)

∂tαi,j +
4αi,j − αi−1,j − αi+1,j − αi,j−1 − αi,j+1

h2
= 0, ∀1 ≤ i, j ≤ N,

∂tβi,j +
4βi,j − βi−1,j − βi+1,j − βi,j−1 − βi,j+1

h2
+ αi,j = 0, ∀1 ≤ i, j ≤ N,

αi,0 = βi,0 = αi,N+1 = βi,N+1 = 0, ∀1 ≤ i ≤ N,
α0,j = vj1ω2(jh), ∀1 ≤ j ≤ N,

αN+1,j = β0,j = βN+1,j = 0, ∀1 ≤ j ≤ N.

The grid geometry is essentially the one described in Figure 2, where the control
v = (vj)j is only appearing in the first equation of the system (the one for αi,j)
and only on the boundary points represented by the symbol corresponding to the
subdomain ω2.

At each time t, both components αh = (αi,j)i,j ∈ RN×N and βh = (βi,j)i,j ∈
RN×N of the system are now considered as elements of the tensor product RN ⊗RN
and we observe that the five-point discrete Laplace operator can be written as the
tensor product Ah ⊗ I + I ⊗ Ah with the usual definition of the three-point discrete
Laplace matrix

Ah =
1

h2


2 0

0

0

0 2

-1

-1

-1

-1

0

0

 .

We finally end up with the following equivalent form of our semi-discrete system

(5)

{
∂tαh + (Ah ⊗ I + I⊗Ah)αh = Bhvh,

∂tβh + (Ah ⊗ I + I⊗Ah)βh + αh = 0,

where Bh is a matrix that accounts for the influence of the control vh in the system
through the boundary conditions in (4), the precise definition of which will be given
in Section 4.1. This is the semi discrete version of (3).

For this particular system, the main result of this paper is be the following (see
Section 4.1 for the precise statement and definition of the norms involved).

Theorem. There exists C > 0 and h0 > 0 such that for any h < h0, any time
T > 0 and any initial data α0

h, β
0
h ∈ RN ⊗ RN , (with h = 1

N+1) there exists a control

vh ∈ L2(0, T,RN ) such that

JvhKL2(0,T,RN ) ≤ Ce
C
T (‖α0

h‖+ ‖β0
h‖),
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and the associated solution to (5) satisfies

‖αh(T )‖+ ‖βh(T )‖ ≤ Ce−C/h
2

e
C
T (‖α0

h‖+ ‖β0
h‖).

It is well known, see [6, 16], that we cannot expect in general to achieve exactly
αh(T ) = βh(T ) = 0 since the semi-discrete system may be not controllable. In this
sense, achieving exponentially small targets with respect to h is an optimal result.

Our aim will be to provide similar results for more general semi-discrete systems.
That is the reason why, in order to formulate them more conveniently for any number
of coupled equations and to ease the reading of the proofs, we shall actually gather the
two components (αh, βh) ∈ (RN ⊗ RN )2 into a single unknown yh ∈ RN ⊗ RN ⊗ Rn,
with n = 2 in the present case, in such a way that the considered system (5) will
finally be written in the compact form

∂tyh + (Ah ⊗ I + I⊗Ah)⊗ I yh + I⊗ I⊗
(

0 0
1 0

)
yh = Bh ⊗

(
1
0

)
vh.

In the sequel of this paper we shall not explicitly mention the subscript h for the
notation of quantities related to the discretization process but taking into account the
fact that the considered spaces, norms and operators are grid-dependent is a central
point in the analysis.

1.3. Main results and outline of the paper. Considering the previous dis-
cussion we shall analyse in this paper the controllability of parabolic systems of n
components and m controls of the following tensorized form

(6) ∂ty +A1 ⊗ I ⊗ I y + I ⊗ A2 ⊗ I y + I ⊗ I ⊗ Cy = B1 ⊗ B2 ⊗ Bv, in (0, T ),

where Ai is a diffusion operator in Ωi, Bi is a (boundary or distributed) control
operator in Ωi, I is the n × n identity matrix, C is a n × n coupling matrix and B a
n×m control matrix.

Our main aim being to analyse semi-discrete versions of (6), we shall also consider
linear ordinary differential equations of the similar form

(7) ∂ty + A1 ⊗ I⊗ I y + I⊗A2 ⊗ I y + I⊗ I⊗ Cy = B1 ⊗ B2 ⊗ Bv, in (0, T ),

where the unknown y and the control v belong to a finite dimensional tensor space,
Ai and Bi are linear operators on those space. All those objects depend, by nature,
on discretization parameters, as in the example of Section 1.1. Therefore, it will be
crucial to take care of all the constants in the estimates so as to obtain, at the end,
controllability results for (7), that will not depend on those parameters.

Remark 1.1. We have used in (6) and (7) a convention that will be used all
along the paper:

• Operators acting in infinite dimensional function spaces are written with cal-
ligraphic letters: A, B, I, ...

• Operators (matrices) acting in finite dimensional spaces coming from discreti-
sation issues (whose dimension may be large and depends on the discretization
parameters) are written with upright letters: A, B, I, ...

• Matrices acting in finite dimensional spaces coming the number of compo-
nents or controls in the system (their dimension is fixed and independent of
discretization parameters) are written with sans serif letters: B, C, I , ...
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The outline of the paper is the following. Section 2 is dedicated to recalling the
main results in the controllability theory for ODEs while paying a particular attention
to the discrete functional setting that will be adapted to the analysis of finite difference
approximations of parabolic PDEs. In section 3, we first review the material we need
concerning tensorized operators that are central in the present work, then we state the
precise assumptions we need and our main abstract result (Theorem 3.1). In short,
we will assume for our tensorized system (6) (in the continuous setting) or (7) (in the
discrete setting):

• that the associated sub-problem concerning only the first coordinate of the
tensor product which is

(8) ∂ty +A1 ⊗ I y + I ⊗ Cy = B1 ⊗ Bv, in (0, T ),

or

(9) ∂ty + A1 ⊗ I y + I⊗ Cy = B1 ⊗ Bv, in (0, T ),

is null-controllable (or a relaxed version of this) at any time T with a precise
control of the cost of the control.
If we come back to our motivating example, this subsystem reads

(10)


∂tα− ∂2

x1
α = 0, in (0, T )× Ω1,

∂tβ − ∂2
x1
β + α = 0, in (0, T )× Ω1,

α = 1{0}v, on (0, T )× ∂Ω1,

β = 0, on (0, T )× ∂Ω1,

Note that this system does not depend on the control set ω2.
• that the diffusion operator A2 (resp. A2) and the control operator B2 (resp.

B2) in the other direction satisfy a suitable spectral estimate similar to the
Lebeau-Robbiano spectral inequality, except that we allow the inequality to
hold only for a portion of the spectrum.
For system (2), this amounts to ask that the Lebeau-Robbiano spectral in-
equality holds, relative to the control set ω2, for the eigenfunctions of the
operator −∆2 in Ω2 with homogeneous boundary condition.

The complete proof of the theorem is given in Section 3.3. It consists, following
the strategy developped in [4], to implement a construction of the control similar to
the one originally proposed by Lebeau and Robbiano in [13]. We split the time interval
into a suitable number of subintervals whose length is carefully chosen and, on each
of those subintervals, we construct a partial control (obtained by combining the two
assumptions above) that is able to damp out exponentially the part of the solution
corresponding to the frequencies less than some threshold. Note that, contrary to
the usual construction, we are not necessary able to drive this part of the solution
exactly to zero at this stage. This threshold is then increased while the construction
progresses towards the final time T ; this eventually gives the expected control.

The main novelties in the present work are that : we allow relaxed controllability
and spectral inequalities in our assumptions and moreover we precisely take care of
the dependance of all the quantities of interest (norms, constants, ...) with respect to
parameters on which the problem may depend. Those two refinements of the proof
in [4] are mandatory since we want to apply this abstract result to systems obtained
by semi-discretization processes.
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To conclude the paper, in section 4, we precsiely explain how to use the abstract
formalism developed here to achieve the uniform controllability results of semi-discrete
coupled parabolic systems as announced in this introduction. As another example, we
also show how to deduce the result of [4] (slightly generalized to variable coefficients
operators) from the present abstract result and give some insights on other possible
applications.

2. Controllability for linear ODEs. Before studying discrete versions of Sys-
tem (6), which is the main aim of the paper, we start by introducing the main nota-
tions and results that we shall use in the sequel concerning the controllability of linear
ODEs. Most of this material is already well-known, however we propose a specific
point of view adapted to our needs.

2.1. Framework. Let (E, 〈•, •〉0) and (U, [•, •]0) be two (finite dimensional)
Euclidean spaces (each of them being identified with its own dual space). The corre-
sponding norms are denoted by ‖•‖0 and J•K0. The presence of a subscript 0 in the
notation is related to the fact that, in Section 2.2, those norms will be embedded in
a scale of Sobolev-like norms.

We consider for the moment a general linear autonomous controlled system of the
form

(11)

{
y′ + Ly = Bv, on (0, T ),

y(0) = y0,

where L : E → E and B : U → E are two linear operators, y : [0, T ]→ E is the state
and v : [0, T ]→ U is the control we are looking for.

In the sequel of this paper, different such systems will be considered, coming in
particular from the discretization of multi-D parabolic control problems such as (7)
or their reduced version (9). In particular, the spaces E, U and the operators L and
B will depend on some discretization parameter h. We will be interested in properties
of those systems that are uniform with respect to h, that is the reason why we will
pay, in this section, a particular attention to the various constants appearing in the
estimates. In section 4 we will propose a suitable framework ensuring that all those
constants will be uniform with respect to h.

2.2. Well-posedness. It is clear that (11) is well-posed for any choice of y0 and
v and that

(12) sup
t∈[0,T ]

‖y(t)‖0 ≤ e
T‖L‖( ‖y0‖0 +

√
T‖B‖ JvKL2(0,T ;U)

)
,

where ‖L‖ (resp. ‖B‖) is the operator norm of L : E → E (resp. B : U → E). How-
ever, in the framework we are interested in which comes from the semi-discretization
in space of an evolution PDEs, those operator norms will not be bounded in general
with respect to the discretization parameter. This is the consequence at the dis-
crete level of the fact that differential operators are naturally unbounded operators
in Sobolev spaces. For example if L the discrete Laplace operator on a uniform mesh
of size h and B the boundary control operator as defined in section 4.1, then ‖B‖ and
‖L‖ both behave like C/h2. Thus, inequality (12) will not give usable estimates.

Therefore, we need to introduce adapted estimates and some kind of discrete
Sobolev norms to take into account the particular geometry of the (discrete) control
operators under study. To this end, we introduce D : E → E a self-adjoint definite
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positive operator on E (one can think of the discrete Laplace operator for instance)
and we define a scale of inner products in E defined, for any s ∈ R, by

〈u, v〉s,D = 〈Dsu, v〉0 ,

and ‖•‖s,D is the associated norms. Observe that ‖•‖0 = ‖•‖0,D and that (E, 〈•, •〉−s,D)
is naturally isometric to the dual of (E, 〈•, •〉s,D) since

(13) ‖u‖−s,D = sup
ψ∈E

〈u, ψ〉0
‖ψ‖s,D

.

We shall now define, for given s ∈ R, the two constants Ms,adm > 0 and Ms,cont >
0 that satisfy

(14) sup
t∈[0,T ]

∥∥∥e−tL∗ψ∥∥∥
s,D
≤Ms,cont ‖ψ‖s,D , ∀ψ ∈ E,

(15)

(∫ T

0

r
B∗e−τL∗ψ

z2

0
dτ

) 1
2

≤Ms,adm ‖ψ‖s,D , ∀ψ ∈ E,

where the adjoint operators L∗ and B∗ are relative to the ambiant inner product on
E and U . Observe that (14) and (15) automatically holds since we consider finite
dimension spaces, and the only interesting point is the uniformity (or not) of the
constants with respect to the spaces and the operators involved. Depending on the
targeted application (distributed control, Dirichlet boundary control or Neumann
boundary control for instance) we will need to choose a convenient value of s and of
the operator D to ensure that those constants are actually uniform with respect to
the discretization parameter.

Proposition 2.1. For any v ∈ L2(0, T ;U) and any y0 ∈ E, there exists a unique
solution y to (11) and it satisfies

sup
t∈[0,T ]

‖y(t)‖−s,D ≤Ms,cont ‖y0‖−s,D +Ms,adm JvKL2(0,T ;U) .

Proof. We write the Duhamel formula

y(t) = e−tLy0 +

∫ t

0

e−(t−s)LBv(s) ds,

then we take the inner product with any ψ ∈ E

〈y(t), ψ〉0 =
〈
e−tLy0, ψ

〉
0

+

∫ t

0

〈
e−(t−τ)LBv(τ), ψ

〉
0
dτ.

It follows that

〈y(t), ψ〉0 =
〈
y0, e

−tL∗ψ
〉

0
+

∫ t

0

[
v(τ),B∗e−(t−τ)L∗ψ

]
0
dτ,

and then

|〈y(t), ψ〉0| ≤ ‖y0‖−s,D
∥∥∥e−tL∗ψ∥∥∥

s,D
+

∫ t

0

Jv(τ)K0

r
B∗e−(t−τ)L∗ψ

z

0
dτ.
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By (14) and (15) we deduce that

|〈y(t), ψ〉0| ≤
(
Ms,cont ‖y0‖−s,D +Ms,adm JvKL2(0,T ;U)

)
‖ψ‖s,D .

Since this is valid for any ψ ∈ E, we deduce the expected estimate by the duality
property (13).

Remark 2.1. During this work we will often use the following very standard du-
ality formula that was given in the proof above

(16) 〈y(T ), ψ〉0 −
〈
y0, e

−TL∗ψ
〉

0
=

∫ T

0

[
v(t),B∗e−(T−t)L∗ψ

]
0
dt, ∀ψ ∈ E.

2.3. Relaxed observability inequalities. It is well-known (see [10, 15] for
instance) that System (11) is null controllable at time T for any initial condition y0

if and only if there exists C > 0, such that the following observability inequality for
the adjoint problem is satisfied

(17)
∥∥∥e−TL∗qT

∥∥∥2

0
≤ C2

∫ T

0

r
B∗e−(T−t)L∗qT

z2

0
dt, ∀qT ∈ E.

The value of the constant C in this inequality is crucial since it appears in the measure
of the control cost.

It happens that, when (11) comes from a discretization of a parabolic equation
with the finite difference method then the null controllability of the semi-discrete
system may not hold (in particular in a multi dimensional setting, see the example
given by Kavian and reported in [16]). To tackle this problem, it was proposed (in
[11, 7, 8, 6] for instance) to relax the controllability requirements by considering
instead the ϕ(h)-null-controllability of (11). It consists in constructing uniformly
bounded controls such that the solution y(T ) does not identically vanish but is small
enough with respect to the discretization parameter h. This approach is based on the
penalized HUM construction, where the penalization parameter is a given function
h→ ϕ(h) of the discretization parameter, given its name to this notion. Note that, the
spaces E, U and the operators L and B all depend on h, in particular the dimensions
of E and U may increase when h tends to zero. This is one of the main difficulty that
we need to take care of in the analysis.

The ϕ(h)-null-controllability property is equivalent to a relaxed version of in-
equality (17) and the following Lemma 2.1, whose proof is given in appendix A, aims
at establishing such an equivalence. This lemma is somehow related to [14, Lemma
3.4] or [3, Proposition 1] and is stated in a quite general framework : the constant s
and the operator D can be chosen arbitrarily. Moreover using appropriate spaces F0

and FT (which are defined below), one can show that Lemma 2.1 encompasses some
already known situations (see Remark 2.3). Roughly speaking, this Lemma is about
controlling the components in the final state space FT of the solution of system (24)
which starts from an initial condition y0 in the initial state space F0. Even though
we only state it in a finite dimensional setting, it is clear that infinite dimensional
versions also hold, as in the references quoted above.

Let F0 and FT be two subspaces of E and PF0
(resp. PFT ) the orthogonal

projection onto F0 (resp. FT ) with respect to the inner product 〈•, •〉−s,D.
We will denote the adjoint operators of the projectors PF0

and PFT for the inner
product 〈•, •〉0,D by P∗F0

and P∗FT . Observe that P∗F0
and P∗FT are also the orthogonal
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projectors in (E, 〈•, •〉s,D) onto D−sF0 and D−sFT respectively. In particular, we
have ∥∥P∗F0

y
∥∥
s,D
≤ ‖y‖s,D , ∀y ∈ E,∥∥P∗FT y

∥∥
s,D
≤ ‖y‖s,D , ∀y ∈ E.

Remark 2.2. Observe that, if F0 (resp. FT ) is stable by D then PF0 (resp. PFT )
does not depend on s. In particular, those projections are orthogonal for the inner
product 〈•, •〉0.

Dealing with such subspaces will be crucial in the sequel when we will apply
the Lebeau-Robbiano strategy since it requires to be able to control some precise
components of the solution at each step (depending on eigenspaces of A2), see Section
3.3.

Lemma 2.1 (Relaxed observability inequalities and controllability). We use the above
notations and assume that s,D, F0 and FT are given. Let Mobs > 0 and Mrel ≥ 0 be
two given numbers.

The following two propositions are equivalent.
1. For any y0 ∈ F0 there exists a v ∈ L2(0, T ;U) satisfying

(18)
1

M2
obs

JvK2
L2(0,T ;U) +

1

M2
rel

‖PFT (y(T ))‖2−s,D ≤ ‖y0‖2−s,D ,

where y is the corresponding solution of (11).
2. For any qT ∈ D−sFT , the following relaxed observability inequality holds:

(19)
∥∥∥P∗F0

(e−TL∗qT )
∥∥∥2

s,D
≤M2

obs

∫ T

0

r
B∗e−(T−t)L∗qT

z2

0
dt+M2

rel ‖qT ‖
2
s,D .

Of course, for Mrel = 0, the inequality (18) should be understood as
1

M2
obs

JvK2
L2(0,T ;U) ≤ ‖y0‖2−s,D ,

‖PFT (y(T ))‖−s,D = 0.

Remark 2.3. Throughout this paper F0 will always be equal to the whole space
E. However it is worth noticing that by specifying spaces F0 and FT , one can recover
usual inequalities related to different notions of controllability.

• When F0 = FT = E, inequality (19) is the usual relaxed inequality. If (19)
holds with Mrel = 0 then system (11) is null controllable.
As explained above, we cannot always expect Mrel to be equal to zero when
system (11) is discretized by finite differences method with a space domain
of dimension greater than one. However, if this inequality holds with M2

rel =
ϕ(h) and with Mobs independent of h, we recover the ϕ(h)-null-controllability
notion briefly described above.

• When dim(F0) = 1 and FT = E, then proving (19) amounts to drive only
one given initial condition to zero. This question is tackled for instance in
[6].

• The partial null-controllability consists in driving to zero only some compo-
nents of the solution of a system of parabolic PDEs. It amounts to prove
inequality (19) for Mrel = 0 and to choose an appropriate subspace FT . This
kind of controllability is studied for instance in [3] where related ϕ(h)-partial-
null-controllability is also investigated.



10 D. ALLONSIUS, F. BOYER

3. Controllability of tensorized systems.

3.1. Notations. Let (Ei, 〈•, •〉0,i), i = 1, 2 two finite dimensional Euclidean
spaces of dimensions N1 and N2. The associated norms are denoted by ‖•‖0,i. Let
Di be two positive definite self-adjoint operators in those spaces and for any s ∈ R,
we introduce the following scalar products

〈ui, vi〉s,Di = 〈Ds
iui, vi〉0,i , ∀ui, vi ∈ Ei,

and the associated norms ‖•‖s,Di .
In the case of a finite difference approximate system, the two spaces Ei have to

be understood as the space of discrete in space (scalar) functions defined on a grid of
Ωi. We will then consider the tensor product space E1⊗E2 as a natural discretization
space for functions defined on the tensor product grid of Ω. This space is equipped
with the natural Euclidean structure defined by

(20) 〈u1 ⊗ u2, v1 ⊗ v2〉0 = 〈u1, v1〉0,1 〈u2, v2〉0,2 .

On E1⊗E2 we consider the operator D = D1⊗ I + I⊗D2, where I stands for the
identity operator in E1 and E2. This is a positive definite self-adjoint operator, from
which we can define the following natural inner products and associated norms

〈u, v〉s,D = 〈Dsu, v〉0 , ∀u, v ∈ E1 ⊗ E2

Note, in particular that we have

(21) 〈u1 ⊗ u2, v1 ⊗ v2〉1,D = 〈u1, v1〉1,D1
〈u2, v2〉0,2 + 〈u1, v1〉0,1 〈u2, v2〉1,D2

,

∀u1, v1 ∈ E1,∀u2, v2 ∈ E2.

Since we will be interested in vector-valued discrete functions that aim at being
approximations of the solution (at any time t) of (6), we will naturally work with the
space

E = E1 ⊗ E2 ⊗ Rn,

which corresponds to the fact that all the n components of the system are approxi-
mated at each grid point.

We recall that if Li is a linear operator in Ei and L a linear operator in Rn, the
tensor product L1 ⊗ L2 ⊗ L is a linear operator on E defined by

(L1 ⊗ L2 ⊗ L)(u1 ⊗ u2 ⊗ z) = L1(u1)⊗ L2(u2)⊗ L(z), ∀ui ∈ Ei,∀z ∈ Rn.

Let (•, •) be the Euclidean inner product in Rn and |•| the associated norm. The
previous definitions are naturally extended to the space E as follows

〈u⊗ y, v ⊗ z〉s,D = 〈u, v〉s,D (y, z) , ∀u, v ∈ E1 ⊗ E2, ∀y, z ∈ Rn,

and we do similar extensions for spaces E1 ⊗ Rn and E2 ⊗ Rn.
Recall that E can be identified to E1 ⊗Rn ⊗E2 and E2 ⊗Rn ⊗E1. Therefore, if

u := ui ⊗ y ∈ Ei ⊗ Rn and vj ∈ Ej where i 6= j ∈ {1, 2}, one is allowed to consider
u⊗vj as an element of E, although one should instead deal with the element ui⊗vj⊗y.

We now introduce two other finite dimensional Euclidean spaces (Ui, [•, •]0,i),
i = 1, 2, with the associated norms J•K0,i that correspond to the control space for
each subproblem.
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We define U := U1 ⊗ U2 ⊗ Rm and its inner product [•, •]0, whose definition on
U1 ⊗ U2 is analogous to (20) :

(22) [u1 ⊗ u2, v1 ⊗ v2]0 = [u1, v1]0,1 [u2, v2]0,2 ,

and is extended to U as before.

3.2. Main Theorem. Let Ai be a symmetric definite positive operator in Ei.
One can think of Ai as an approximation of the continuous operator Ai but the
statement of our result is generic and does not explicitly make use of such an as-
sumption. The eigenvalues of Ai will be denoted by (λi,k)Nik=1 and the corresponding

eigenfunctions are (φi,k)Nik=1. Those form an orthonormal family for 〈•, •〉0,i.
In our estimates, the following discrete Poincaré inequality for A1, will be needed

(23) ‖u‖0 = ‖u‖0,A1
≤MP,1 ‖u‖1,A1

,∀u ∈ E1,

for some MP,1. Without loss of generality, we will assume that MP,1 ≥ 1. Note that

the best possible value for MP,1 is λ
−1/2
1,1 but it is not sure that this value is greater

than 1. Note also that the following generalised Poincaré estimate holds

‖u‖0 ≤M
s
P,1 ‖u‖s,A1

,∀u ∈ E1,∀s ≥ 0.

For each i = 1, 2, we consider a control operator Bi : Ui → Ei, a coupling matrix
C and a control matrix B.

Our goal is to analyse the controllability properties (uniform with respect to any
parameter on which the system may depend) of the following tensorized ODE

(24)

{
∂ty + Ly = B1 ⊗ B2 ⊗ Bv,

y(0) = y0 ∈ E,

where the control v belongs to L2(0, T ;U) and

L := A + I⊗ I⊗ C and A := A1 ⊗ I⊗ I + I⊗A2 ⊗ I .

Here, the symbol I stands for the identity operator on E1 or E2 and the symbol I is
the identity operator of Rn.

To this end, we will take benefit from the tensor product structure of the system
and make two main assumptions:

1. the first one concerns the vector-valued sub-control-system in E1 defined by

(25)

{
∂ty + A1 ⊗ I y + I⊗ Cy = B1 ⊗ Bv,

y(0) = y0 ∈ E1 ⊗ Rn,

with y ∈ C0([0, T ], E1 ⊗ Rn) and v ∈ L2(0, T ;U1 ⊗ Rm).

Assumption 3.1. For some Mobs,1 > 0, µE1
∈ (0,+∞], we have that for any

T > 0, for any y0 ∈ E1⊗Rn, there exists a control v ∈ L2(0, T ;U1⊗Rm) for
(25) such thatJvKL2(0,T ;U1⊗Rm) ≤ eMobs,1(1+ 1

T ) ‖y0‖−s,A1
,

‖y(T )‖−s,A1
≤ eMobs,1(1+ 1

T )e−µE1
T ‖y0‖−s,A1

.
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2. the second one concerning a spectral property related with the pair of opera-
tors (A2, B2) similar to the well-known Lebeau-Robbiano inequality, excepted
that it only holds for a certain portion of the spectrum of A2.

Assumption 3.2. For some MLR,2 > 0, µE2
∈ (0,+∞], we have the following

partial Lebeau-Robbiano spectral inequality

(26) ‖ψ‖0 ≤ e
MLR,2(1+

√
µ) JB∗2ψK0,2 , ∀ψ ∈ span(φ2,j , λ2,j ≤ µ),

for any 0 < µ < µE2
.

The main theorem of this paper is the following.

Theorem 3.1. Let µ∗ = min(µE1
, µE2

). There exist a Mobs > 0 depending only
on Mobs,1, MLR,2, Ms,cont, Ms,adm and ‖C‖ such that for any y0 ∈ E and any T > 0
there exists a control v ∈ L2(0, T ;U) satisfying{

JvKL2(0,T ;U) ≤ e
Mobs(1+ 1

T +T ) ‖y0‖−s,A ,

‖y(T )‖−s,A ≤ e
Mobs(1+ 1

T +T )e−µ
∗T/4 ‖y0‖−s,A .

Note that in this theorem the constant Mobs,1 is built upon the Sobolev norms
associated with D1 = A1 and the constants Ms,cont, Ms,adm with the Sobolev norms
associated with D = A. Those norms are thus problem dependent.

In the case where Ai are discrete version of diffusion operators, it can be tempting
to use instead usual discrete Sobolev norms, that are defined by using for D1 and D
the discrete Laplace operators. However, the equivalence between those norms, for
large values of s, is uniform with respect to the discretization parameter if and only
if the diffusion coefficients γi are smooth enough. In the case of non smooth diffusion
coefficients, using the norms given in the theorem is mandatory.

3.3. Proof of the main result. In this section, we will prove Theorem 3.1.

3.3.1. Preliminary estimates. We start with some preliminary results.

Lemma 3.1 (Norms comparison). For any s ≥ 0, and any

q =

N2∑
j=1

qj ⊗ φ2,j , qj ∈ E1 ⊗ Rn,

we have
N2∑
j=1

‖qj‖2s,A1
≤ ‖q‖2s,A ≤ 2sM2s

P,1

N2∑
j=1

(1 + λs2,j) ‖qj‖
2
s,A1

.

Proof. We write each qj under the form

qj =

N1∑
k=1

φ1,k ⊗ qk,j ,

with qk,j ∈ Rn in such a way that

Asq =
∑

1≤k≤N1
1≤j≤N2

(λ1,k + λ2,j)
sφ1,k ⊗ φ2,j ⊗ qk,j .
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It follows that

‖q‖2s,A =
∑

1≤k≤N1
1≤j≤N2

(λ1,k + λ2,j)
s|qk,j |2,

and we immediately obtain

‖q‖2s,A ≥
N2∑
j=1

(
N1∑
k=1

λs1,k|qk,j |2
)

=

N2∑
j=1

‖qj‖2s,A1
.

Moreover, we have

‖q‖2s,A ≤2s
∑

1≤k≤N1
1≤j≤N2

(λs1,k + λs2,j)|qk,j |2,

=2s
N2∑
j=1

‖qj‖2s,A1
+ 2s

N2∑
j=1

λs2,j ‖qj‖
2
0,A1

≤2sM2s
P,1

N2∑
j=1

(
1 + λs2,j

)
‖qj‖2s,A1

,

and the claim follows.

We define, for any µ ≥ 0, the following subspaces of E2

Eµ,2 := span{φ2,j : λ2,j ≤ µ}, and E⊥µ,2 := span{φ2,j : λ2,j > µ}

and the corresponding subspaces of E

Eµ := E1 ⊗ Eµ,2 ⊗ Rn, and E⊥µ := E1 ⊗ E⊥µ,2 ⊗ Rn.

Let Pµ (resp. P⊥µ ) be the orthogonal projection in E onto Eµ (resp. E⊥µ ) for the inner

product 〈•, •〉−s,A. By construction we have Pµ + P⊥µ = I.

Let us now state some properties of the uncontrolled system

(27)

{
∂ty + Ly = 0,

y(0) = y0 ∈ E.

Proposition 3.1 (Dissipation estimates). 1. For any µ ≥ 0, if y0 ∈ E⊥µ ,

then the unique solution to (27) satisfies y(t) ∈ E⊥µ for any t and moreover,
for any s ∈ R, we have

‖y(t)‖−s,A ≤ e
‖C‖te−tµ ‖y0‖−s,A , ∀t ≥ 0.

2. For any µ ≥ 0, and any y0 ∈ E, the unique solution to (27) satisfies, for any
s ∈ R,

‖Pµy(t)‖−s,A ≤ e
‖C‖t ‖Pµy0‖−s,A ,∥∥P⊥µ y(t)

∥∥
−s,A ≤ e

‖C‖t−µt ∥∥P⊥µ y0

∥∥
−s,A ≤ e

‖C‖t−µt ‖y0‖−s,A .
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Proof. 1. The first point is just a consequence of the fact that Eµ and E⊥µ
are stable by L = A + I ⊗ I ⊗ C. A straightforward computation, using that
A commutes with I⊗ I⊗ C shows that

1

2
∂t
〈
A−sy, y

〉
0

+
〈
AA−

s
2 y,A−

s
2 y
〉

0
= −

〈
A−s(I⊗ I⊗ C)y, y

〉
0

Then we observe that, A−
s
2 y(t) ∈ E⊥µ for any t, and that by definition of E⊥µ

we have
〈Az, z〉0 ≥ µ 〈z, z〉0 , ∀z ∈ E

⊥
µ .

It follows that

1

2
∂t
〈
A−sy, y

〉
0
≤ (‖C‖ − µ)

〈
A−sy, y

〉
0
,

and the claim follows by the differential form of Gronwall’s Lemma.
2. We simply observe that Pµy and P⊥µ y solve the same equation as y with initial

conditions Pµy0 ∈ E⊥0 , P⊥µ y0 ∈ E⊥µ . It is then enough to use the inequality
of the first point to conclude.

3.3.2. Partial controllability results. The following proposition is a partial
version of Theorem 3.1. More precisely, we establish the existence of a control v that
reduces the norm of the projection on Eµ of the final state y(T ) as much as possible.
However, the bound on the control is not uniform with respect to µ yet.

Proposition 3.2. There exists a positive number Mpart which depends only on s,
MP,1, Mobs,1, MLR,2, Ms,cont, Ms,adm such that for any µ ∈ (0, µE2

) and any y0 ∈ E,
there exists a control v ∈ L2(0, T ;U) that satisfies

(28)

 JvKL2(0,T ;U) ≤ e
Mpart(1+ 1

T +
√
µ) ‖y0‖−s,A

‖Pµ(y(T ))‖−s,A ≤ e
Mpart(1+ 1

T )e−µE1
T ‖y0‖−s,A ,

and

(29) ‖y(T )‖−s,A ≤ e
Mpart(1+ 1

T +
√
µ) ‖y0‖−s,A .

Proof. Let qT ∈ Eµ and q be the solution of the backward equation{
−∂tq + L∗q = 0

q(T ) = qT .

We recall that A1 (resp. A2) is self-adjoint in E1 (resp. E2) so that

L∗ = A1 ⊗ I⊗ I + I⊗A2 ⊗ I + I⊗ I⊗ C∗.

Since Eµ is stable by L∗, we can decompose q in the following way

q(t) =
∑

λ2,j≤µ

qj(t)⊗ φ2,j , with qj(t) ∈ E1 ⊗ Rn

where qj satisfies{
−∂tqj + (A1 ⊗ I )qj + λ2,jqj + (I⊗ C∗)qj = 0

qj(T ) = qT,j ∈ E1 ⊗ Rn.
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The new variable zj(t) := qj(t)e
λ2,j(T−t) satisfies the following system{

−∂tzj + (A1 ⊗ I )zj + (I⊗ C∗)zj(t) = 0

zj(T ) = qT,j .

Thanks to Assumption 3.1, we can apply Lemma 2.1 in the space E1 ⊗ Rn, with

F0 = FT = E1⊗Rn, L = A1⊗ I +I⊗C, B = B1⊗B, D = A1⊗ I , Mobs = eMobs,1(1+ 1
T )

and Mrel = eMobs,1(1+ 1
T )e−µE1

T . Inequality (19) with qT = qT,j gives

‖zj(0)‖2s,A1
≤ e2Mobs,1(1+ 1

T )
∫ T

0

JB∗1 ⊗ B∗zj(t)K
2
0,1 dt+e

2Mobs,1(1+ 1
T )e−µE1

2T ‖qT,j‖2s,A1
,

and therefore, coming back to the variable qj , we get

‖qj(0)‖2s,A1
e2λ2,jT ≤ e2Mobs,1(1+ 1

T )
∫ T

0

JB∗1 ⊗ B∗qj(t)K
2
0,1 e

2λ2,j(T−t)dt

+ e2Mobs,1(1+ 1
T )e−µE1

2T ‖qT,j‖2s,A1
,

and thus,

‖qj(0)‖2s,A1
≤ e2Mobs,1(1+ 1

T )
∫ T

0

JB∗1 ⊗ B∗qj(t)K
2
0,1 dt

+ e2Mobs,1(1+ 1
T )e−µE1

2T e−2λ2,jT ‖qT,j‖2s,A1
.

Using the second inequality in Lemma 3.1, we get

‖q(0)‖2s,A ≤ 2sM2s
P,1e

2Mobs,1(1+ 1
T )

∑
λ2,j≤µ

(
(1 + λs2,j)

∫ T

0

JB∗1 ⊗ B∗qj(t)K
2
0,1 dt

+(1 + λs2,j)e
−2λ2,jT e−µE1

2T ‖qT,j‖2s,A1

)
.

Applying now the first inequality in Lemma 3.1 and the following inequality λse−2λT ≤
ss

(2T )s , we get

‖q(0)‖2s,A ≤ 2sM2s
P,1(1 + µs)e2Mobs,1(1+ 1

T )
∑

λ2,j≤µ

∫ T

0

JB∗1 ⊗ B∗qj(t)K
2
0,1 dt

+ 2sM2s
P,1e

2Mobs,1(1+ 1
T )
(

1 +
ss

(2T )s

)
e−µE1

2T ‖qT ‖2s,A .

We shall now apply Assumption 3.2. To this end we choose any orthonormal ba-
sis (Ψk)k=1,...,K of U1 ⊗ Rn and we decompose each B∗1 ⊗ B∗qj(t) in this basis, the
coefficients being denoted by ak,j(t). It follows

∑
λ2,j≤µ

JB∗1 ⊗ B∗qj(t)K
2
0,1 =

∑
λ2,j≤µ

t
K∑
k=1

ak,j(t)Ψk

|2

0,1

=

K∑
k=1

∑
λ2,j≤µ

(ak,j(t))
2.

For any k ∈ {1, ...,K}, given that 0 < µ < µE2
, we can apply the discrete Lebeau-

Robbiano inequality given by Assumption 3.2 to the vector ψ =
∑

λ2,j≤µ

ak,j(t)φ2,j , to
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obtain

∑
λ2,j≤µ

JB∗1 ⊗ B∗qj(t)K
2
0,1 ≤

K∑
k=1

e2MLR,2(1+
√
µ)

u

v
∑

λ2,j≤µ

ak,j(t)B
∗
2φ2,j

}

~

2

0,2

≤ e2MLR,2(1+
√
µ)

K∑
k=1

∑
λ2,j≤µ

∑
λ2,j′≤µ

[ak,j(t)B
∗
2φ2,j , ak,j′(t)B

∗
2φ2,j′ ]0,2 .

Apply now (22) and the fact that for any k, JΨkK0,1 = 1:∑
λ2,j≤µ

JB∗1 ⊗ B∗qj(t)K
2
0,1

≤ e2MLR,2(1+
√
µ)

K∑
k=1

∑
λ2,j≤µ

∑
λ2,j′≤µ

[ak,j(t)Ψk ⊗ B∗2φ2,j , ak,j′(t)Ψk ⊗ B∗2φ2,j′ ]0

≤ e2MLR,2(1+
√
µ)
∑

λ2,j≤µ

∑
λ2,j′≤µ

[B∗1 ⊗ B∗ ⊗ B∗2(qj(t)⊗ φ2,j),B
∗
1 ⊗ B∗ ⊗ B∗2(qj′(t)⊗ φ2,j′)]0

≤ e2MLR,2(1+
√
µ) JB∗1 ⊗ B∗2 ⊗ B∗q(t)K2

0 .

Hence,
(30)

‖q(0)‖2s,A ≤ 2sM2s
P,1(1 + µs)e2MLR,2(1+

√
µ)+2Mobs,1(1+ 1

T )
∫ T

0

JB∗1 ⊗ B∗2 ⊗ B∗q(t)K2
0 dt

+ 2sM2s
P,1e

2Mobs,1(1+ 1
T )
(

1 +
ss

T s

)
e−µE1

2T ‖qT ‖2s,A .

Note that, by construction, Eµ is stable by A so that (30) is valid for any qT ∈ FT =
D−sEµ. Thus, we can apply Lemma 2.1 in the space E with D = A, F0 = E and
FT = Eµ. It follows that there exists a control v ∈ L2(0, T ;U) such that

JvKL2(0,T ;U) ≤ 2
s
2Ms

P,1

√
1 + µseMLR,2(1+

√
µ)+Mobs,1(1+ 1

T ) ‖y0‖−s,A ,

‖Pµ(y(T ))‖−s,A ≤ 2
s
2Ms

P,1e
Mobs,1(1+ 1

T )
√

1 +
ss

T s
e−µE1

T ‖y0‖−s,A .

Finally, inequality (29) comes from Proposition 2.1 and the estimate on the control
cost just proved which give

‖y(T )‖−s,A
≤
(
Ms,cont +Ms,adm2

s
2Ms

P,1

√
1 + µseMLR,2(1+

√
µ)+Mobs,1(1+ 1

T )
)
‖y0‖−s,A .

Those estimates can easily be put into the expected form for a suitable choice of
Mpart.

The following corollary contains the main idea of Lebeau and Robbiano’s strat-
egy: during the first half of a given time interval, we control the lowest frequencies
then, during the second half of the time interval, we turn the control to zero to take
advantage of the natural dissipation of the problem.



17

Corollary 3.1. There exists a positive number MLR which depends only on
Mobs,1, MLR,2, Ms,cont, Ms,adm and ‖C‖ such that for any τ ∈ (0, T ), µ ∈ (0, µE2

)
and any y0 ∈ E, there exists a control v ∈ L2(0, τ ;U) that satisfiesJvKL2(0,τ ;U) ≤ eMLR(1+ 1

τ +
√
µ) ‖y0‖−s,A

‖y(τ)‖−s,A ≤ e
MLR(1+ 1

τ +τ)
(
e−µE1

τ/2 + e−µτ/2+MLR
√
µ
)
‖y0‖−s,A .

Proof. We apply Proposition 3.2 on the time interval (0, τ/2). We get a control
v and a solution y which satisfy (28) (with T replaced by τ/2). Then, on the interval
(τ/2, τ), we set the control to zero. Thus, we have constructed the following control

v̄(t) :=

{
v(t) for t ∈ (0, τ/2)

0 for t ∈ (τ/2, τ),

and the associated solution of the system is still denoted by y. Clearly, the L2 norm
of v̄ on (0, τ) is equal to that of v on (0, τ/2).

1. Since the control is 0 on (τ/2, τ), the dissipation properties given in Proposi-
tion 3.1 give

‖Pµ(y(τ))‖−s,A ≤ e
‖C‖ τ2 ‖Pµ(y(τ/2))‖−s,A .

Then, we use (28) to get

(31) ‖Pµ(y(τ))‖−s,A ≤ e
2Mpart(1+ 1

τ )e‖C‖
τ
2 e−µE1

τ
2 ‖y0‖−s,A .

2. By the dissipation properties given in Proposition 3.1 we get∥∥P⊥µ (y(τ))
∥∥
−s,A ≤ e

(‖C‖−µ) τ2 ‖y(τ/2)‖−s,A .

Then inequality (29) of Proposition 3.2 (with still T replaced by τ/2) leads
to

(32)
∥∥P⊥µ (y(τ))

∥∥
−s,A ≤ e

2Mpart(1+ 1
τ +
√
µ)e(‖C‖−µ) τ2 ‖y0‖−s,A .

We combine (31) and (32) to get the result for a suitable value of MLR depending on
Mpart.

Observe that Corollary 3.1 is slightly different from the similar result in the classical
Lebeau and Robbiano’s strategy. Indeed, the modes corresponding to frequencies less
than µ of the final state y(τ) are not cancelled; they still exist but are controlled by
the small term e−µE1

τ
2 . When applying the complete strategy on interval (0, T ), one

has to make sure that the term e−µE1
τ/2 is smaller than e−µτ/2. This constraint is

fulfilled in Theorem 3.1 by dealing with frequencies µ smaller than µE1
.

3.3.3. Conclusion of the proof of the main theorem. We can now apply
Lebeau-Robbiano’s strategy, with a well chosen finite number of steps, and prove
Theorem 3.1.

Proof. Without loss of generality we suppose that MLR ≥ ln(2). Let α > 0 such
that

(33)
α

8MLR

− 3

√
α

2
− 5 > 0.
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Note that α only depends on MLR. Let µj = α
T 2 (2j)2, τj = T

2
1
2j and Tj =

∑j
k=1 τk.

Suppose that µ∗ ≤ µ1. In this case we apply Corollary 3.1 with µ = µ∗ on the
whole time interval (0, T ). There exists a control v ∈ L2(0, T, U) that satisfiesJvKL2(0,T ;U) ≤ eMLR(1+ 1

T +
√
µ∗) ‖y0‖−s,A ,

‖y(T )‖−s,A ≤ e
MLR(1+ 1

T +T)
(
e−µE1

T/2 + e−µ
∗T/2+MLR

√
µ∗
)
‖y0‖−s,A .

Since e−µE1
T/2 ≤ e−µ∗T/2 we have

‖y(T )‖−s,A ≤ e
MLR(1+ 1

T +T)e−µ
∗T/2

(
1 + eMLR

√
µ∗
)
‖y0‖−s,A ,

and moreover eMLR
√
µ∗ ≤ eMLR

√
µ1 ≤ e 2

TMLR
√
α. Therefore,

‖y(T )‖−s,A ≤ e
MLR(1+2

√
α)(1+ 1

T +T)e−µ
∗T/2 ‖y0‖−s,A .

Thus, if µ∗ ≤ µ1, the proof of Theorem 3.1 is complete since α depends only on MLR,
which itself depends only on Mobs,1, MLR,2, Ms,cont, Ms,adm and ‖C‖.

Suppose now that µ1 < µ∗ and define j∗ ∈ N∗ such that µj∗ < µ∗ ≤ µj∗+1.
• During the time interval (0, T1) = (0, τ1), we apply a control v1 as given by

Corollary 3.1 with µ = µ1 (which applies here since µ1 < µ∗ ≤ µE2
) and we

getJv1KL2(0,T1;U) ≤ eMLR(1+ 1
τ1

+
√
µ1) ‖y0‖−s,A ,

‖y(T1)‖−s,A ≤ e
MLR

(
1+ 1

τ1
+τ1

) (
e−µE1

τ1/2 + e−µ1τ1/2+MLR
√
µ1

)
‖y0‖−s,A .

• For any index j ≤ j∗, we continue this procedure by applying Corollary 3.1
on time interval (Tj−1, Tj) = (Tj−1, Tj−1 + τj) with µ = µj . We get a control
vj that satisfies

(34)


JvjKL2(Tj−1,Tj ;U) ≤ e

MLR(1+ 1
τj

+
√
µj) ‖y(Tj−1)‖−s,A ,

‖y(Tj)‖−s,A ≤ e
MLR

(
1+ 1

τj
+τj

)
×(

e−µE1
τj/2 + e−µjτj/2+MLR

√
µj
)
‖y(Tj−1)‖−s,A .

Let us focus on the estimation of the term y(Tj). First, we use that e−µE1
τj/2 ≤

e−µjτj/2 and the relations

(35)


µjτj =

α

2T
2j =

α

4

1

τj
,

√
µj =

√
α

2τj
.

It follows

e−µjτj/2+MLR
√
µj ≤ e

1
τj

(
−α8 +MLR

√
α

2

)
.

Hence

(36) ‖y(Tj)‖−s,A ≤ 2eMLRe
MLR( 1

τj
+τj)+

1
τj

(−α8 +MLR

√
α

2 ) ‖y(Tj−1)‖−s,A ,
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since ln(2) ≤MLR, and 1 ≤ 1
τj

+ τj leads to

2eMLRe
MLR( 1

τj
+τj) ≤ e2MLRe

MLR( 1
τj

+τj) ≤ e3MLR( 1
τj

+τj)
,

which, associated with (36), finally yields

‖y(Tj)‖−s,A ≤ e
3MLR( 1

τj
+τj)+

1
τj

(−α8 +MLR

√
α

2 ) ‖y(Tj−1)‖−s,A .

Now we set β := α
8MLR

−
√
α

2 − 3, in such a way that the previous estimate reads

‖y(Tj)‖−s,A ≤ e
3MLRτje

−MLR
β
τj ‖y(Tj−1)‖−s,A .

According to (33), we have β > 0 since α
8MLR

− (
√
α

2 + 3) > α
8MLR

− ( 3
√
α

2 + 5) > 0.
Thus, we can estimate y(Tj) by using the previous upper-bound recursively,

‖y(Tj)‖−s,A ≤
(
e3MLR

∑j
k=1 τk

)(
e
−βMLR

∑j
k=1

1
τk

)
‖y0‖−s,A

≤ e3MLRTje−
2
T βMLR

∑j
k=1 2k ‖y0‖−s,A

≤ e3MLRTje−
2βMLR2j

T ‖y0‖−s,A .

Therefore,

(37) ‖y(Tj)‖−s,A ≤ e
3MLRTje

− βMLR
τj ‖y0‖−s,A ,

and with (35),

‖y(Tj)‖−s,A ≤ e
3MLRTje

−2
βMLR√

α

√
µj ‖y0‖−s,A .

When j = j∗, we end up with (recall that µ∗ < µj∗+1 = 4µj∗)

(38) ‖y(Tj∗)‖−s,A ≤ e
3MLRTj∗ e

− βMLR√
α

√
µ∗ ‖y0‖−s,A .

Let us now estimate the control v. Taking back (34) for j ≥ 2, combined with (37)
and (35),

JvjKL2(Tj−1,Tj ;U) ≤ e
MLR

[
1+ 1

τj

(
1+
√
α

2 −
β
2

)
+3Tj−1

]
‖y0‖−s,A .

Note that, (33) gives that β̄ := β/2−1−
√
α

2 = 1
2 (β−2−

√
α) = 1

2 ( α
8MLR

−3
√
α

2 −5) > 0.
This implies that

JvK2
L2(T1,Tj∗ ;U) =

j∗∑
j=2

JvjK2
L2(Tj−1,Tj ;U)

≤ e2MLR(1+3T )
∑
j≥0

e−
MLRβ̄

T 2j+2

‖y0‖2−s,A

≤
(

1 +
T

MLRβ̄

)
e2MLR(1+3T ) ‖y0‖2−s,A ,
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and the last inequality came from 1
1−e−x ≤ 1 + 1

x , for x > 0.
Using that

Jv1K2
L2(0,T1;U) ≤ e

2MLR(1+ 1
τ1

+τ1+
√
µ1) ‖y0‖2−s,A ,

we have built a control v on (0, Tj∗) that satisfies

(39) JvKL2(0,Tj∗ ;U) ≤ eMobs(1+ 1
T +T ) ‖y0‖−s,A ,

with Mobs depending on MLR but not on T .

Notice that Tj∗ =
∑j∗

j=1 τj = T
2

∑j∗

j=1
1
2j ≤

T
2 . The last step of the proof consists

in applying Corollary 3.1 on the interval (Tj∗ , T ) to recover the estimates of Theorem
3.1.

Corollary 3.1 with µ = µ∗ gives now a control v ∈ L2(Tj∗ , T ) such that

(40)


JvKL2(Tj∗ ,T ;U) ≤ e

MLR(1+ 1
T−Tj∗

+T−Tj∗+
√
µ∗) ‖y(Tj∗)‖−s,A

‖y(T )‖−s,A ≤ e
MLR

(
1+ 1

T−Tj∗
+T−Tj∗

)
×(

e−µE1
(T−Tj∗ )/2 + e−µ

∗(T−Tj∗ )/2+MLR
√
µ∗
)
‖y(Tj∗)‖−s,A .

First, with (38), we have

JvKL2(Tj∗ ,T ;U) ≤ eMLR(1+ 2
T +T−Tj∗+

√
µ∗)e3MLRTj∗ e

− βMLR√
α

√
µ∗ ‖y0‖−s,A ,

and by (33), we can check that

(41) β >
√
α.

Hence

JvKL2(Tj∗ ,T ;U) ≤ e2MLR(1+ 1
T +T ) ‖y0‖−s,A .

Finally this estimation and (39) give the first inequality of Theorem 3.1.
According to (40) and (38),

‖y(T )‖−s,A ≤e
MLR

(
1+ 1

T−Tj∗
+T−Tj∗

) (
e−µE1

(T−Tj∗ )/2 + e−µ
∗(T−Tj∗ )/2+MLR

√
µ∗
)
×

e3MLRTj∗ e
− βMLR√

α

√
µ∗ ‖y0‖−s,A

≤e2MLR(1+ 1
T +T)

(
e−µE1

T/4 + e−µ
∗T/4+MLR

√
µ∗
)
e
− βMLR√

α

√
µ∗ ‖y0‖−s,A

≤2e2MLR(1+ 1
T +T)e−µ

∗T/4eMLR
√
µ∗e
− βMLR√

α

√
µ∗ ‖y0‖−s,A .

Using (41), this reduces to

‖y(T )‖−s,A ≤ 2e2MLR(1+ 1
T +T)e−µ

∗T/4 ‖y0‖−s,A ,

and this concludes the proof.

4. Applications.
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4.1. Dirichlet boundary null control of a semi-discrete cascade system
on a rectangle. In this section, we will apply the general framework introduced
above to prove the φ(h) null controllability properties for semi-discrete versions of the
boundary control problem of the coupled system (6) in the case of a cascade form
(that is for particular B and C given below). The penalization term φ(h) will be
exponentially small in h, just like in similar results obtained in the literature and
quoted in the introduction section 1.1.

The results are valid for the finite difference discretization in space of the system in
any dimension. However, for the simplicity of the presentation we will only state and
prove our theorem in dimension d = 2. Observe that other usual techniques (based
on Carleman estimates, or on moments methods as in [1, 9, 8, 7]) do not directly
apply in this setting since we are considering boundary controls for multi-dimensional
coupled systems with less controls than components in the system.

4.1.1. Presentation of the semi-discrete system. Let us rewrite the as-
sumptions in the precise setting we consider here. Let a1, a2 ∈ R∗+, Ω1 = (0, a1),
Ω2 = (0, a2) and Ω := Ω1 × Ω2. Let ω2 be a non empty open subset of Ω2. Without
loss of generality, we assume that

(42) ω2 ⊂ Ω2.

Let γ1 ∈ C1(Ω1) and γ2 ∈ C1(Ω2) be two functions which satisfy:

γ1,min := inf
Ω1

γ1 > 0 and γ2,min := inf
Ω2

γ2 > 0.

Let A1 = −∂x1(γ1(x1)∂x1•) (resp. A2 = −∂x2(γ2(x2)∂x2•)) be the self-adjoint un-
bounded operator in L2(Ω1) (resp. L2(Ω2)) whose domain is D(A1) = H1

0 (Ω1) ∩
H2(Ω1) (resp. D(A2) = H1

0 (Ω2) ∩H2(Ω2)). Let n ≥ 1, we define a self-adjoint un-
bounded operator in L2(Ω1)⊗L2(Ω2)⊗Rn on the domainD(A) = D(A1)⊗D(A2)⊗Rn
as follows

A := A1 ⊗ I ⊗ I + I ⊗A2 ⊗ I .

Note that A can be seen as a self-adjoint operator in (L2(Ω))n with domain (H1
0 (Ω)∩

H2(Ω))n. The control matrix B ∈ Mn,1(R) and the coupling matrix C ∈ Mn(R) are
chosen in the so-called cascade form, given as follows

B =


1
0

0

 , C =


0 0

0 0

1

1

0

0

 .

Let us now define the finite difference approximation that we consider for this
system. For simplicity we present the results on uniform grids even though the same
result will hold for regular enough families of meshes (see for instance the discussion
in [1, 8]). Let N1 and N2 be two integers greater or equal to 2. For i ∈ {1, 2}, we
set hi := ai

Ni+1 and consider (x1,j)
N1+1
j=0 and (x2,j)

N2+1
j=0 a discretization of Ω1 and Ω2

respectively : x1,j := jh1 for j ∈ {0, . . . , N1 + 1}, x2,j := jh2 for j ∈ {0, . . . , N2 + 1}.
We define also, for j ∈ {0, . . . , N1}, x1,j+1/2 = x1,j + h1

2 and for j ∈ {0, . . . , N2},
x2,j+1/2 = x2,j + h2

2 .
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The geometry of the grid and of the control domain is summarized in Figure
2: the interior grid points are shown in black circles , the homogeneous Dirichlet
boundary points are shown in white circles and the boundary points in the control
region are shown in gray squares .

ω2

h1

h2

Figure 2: Grid geometry

Associated with those grids, we can introduce the discrete functional spaces E1 =
RN1 (resp. E2 = RN2) equipped with the Euclidean inner product inherited from the
L2 inner product in Ω1 (resp. in Ω2) and defined by

〈y, z〉0,i :=

Ni∑
j=1

hiyjzj , ∀y, z ∈ Ei,∀i ∈ {1, 2}.

For any function f : Ωi → R, we will use the same letter f to denote the sampling
of f on the grid (f(xi,j))j ∈ Ei or the multiplication by f operator in Ei which means
that, for any y ∈ Ei, the vector fy ∈ Ei is defined by

(43) (fy)j = f(xi,j)yj , ∀j ∈ {1, . . . , Ni}.

Let Ai be the self-adjoint operator in Ei (that can be seen as a Ni ×Ni matrix)
corresponding to the discretization of the scalar 1D operator Ai by the finite difference
method, which is defined for any y ∈ Ei by

(44) (Aiy)j := − 1

hi

(
γi,j+1/2

yj+1 − yj
hi

− γi,j−1/2
yj − yj−1

hi

)
, ∀j ∈ J1, NiK,

with the usual convention that y0 = yNi+1 = 0. Here, we have used the notation
γi,j+1/2 := γi(xi,j+1/2), for i = 1, 2 and j ∈ {0, ..., Ni − 1}, for the sampling of the
diffusion coefficient γi on the dual grid of the mesh of Ωi. At some point we will also
need to consider the discrete Laplace operators ∆i defined by

(−∆iy)j := −yj+1 − 2yj + yj−1

h2
i

, ∀j ∈ J1, NiK, ∀y ∈ Ei.

The discretization of the vector-valued 2D operator A we will be interested in is
thus given by

A = A1 ⊗ I⊗ I + I⊗A2 ⊗ I ,
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and, if we take into account the coupling terms, the complete discretization of the
operator appearing in (6) is given by

L := A + I⊗ I⊗ C.

We introduce now the discrete control spaces and operators associated with our
boundary control problem. We set U2 = E2, and to avoid confusions, we will use the
notation [•, •]0,2 instead of 〈•, •〉0,2 when dealing with objects in U2.

Using the convention (43), we define the discrete control operator in Ω2 by

B2 = 1ω2 .

This means that for any y ∈ E2,

(B2y)j =

{
yj , if x2,j ∈ ω2,

0, if x2,j 6∈ ω2.

Observe that this operator is self-adjoint in E2, that is B∗2 = B2. Since the domain
Ω1 is a 1D interval, the corresponding boundary control v is in fact a scalar control
that lives in the space U1 = R. However, the discretization A1 of the operator A1 is
built upon the assumption that we are dealing with homogeneous Dirichlet boundary
condition. Therefore, in order to include non-homogeneous Dirichlet boundary con-
dition on the left end-point of Ω1 in the discretization, we need to add a source term
in the discretization which is given by

B1v :=


−γ1,1/2

h2
1
v

0

0

 ∈ E1.

For the analysis, it will be sightly more convenient to work with this operator in the
following form

(45) B1v = γ1,1/2(∆1r)v, ∀v ∈ R,

where r is (the sampling of) the affine map defined by x ∈ Ω1 7→ 1−x/a1. This is the
discrete counterpart of the boundary control operator as analysed in [15, Chapter 2].

A simple computation shows that the adjoint of B1 is given by

B∗1q = γ1,1/2∂lq,

where ∂lq is the discrete normal derivative of q ∈ E1 on the left boundary of the
domain defined by

∂lq =
0− q1

h1
= − q1

h1
.

Note that this formula takes into account implicitely the homogeneous Dirichlet
boundary condition for q.

We can now precisely write the semi-discrete control problem that we consider

(46)

{
y′(t) + Ly(t) = B1 ⊗ B2 ⊗ Bv(t)

y(0) = y0 ∈ E,



24 D. ALLONSIUS, F. BOYER

where y(t) ∈ E = E1 ⊗ E2 ⊗ Rn and v(t) ∈ U = R ⊗ U2 ⊗ R. Note that, in this
particular case, the control space U can be in fact identified with E2.

The main theorem of this section is the following. The crucial point is that all
the constants appearing in the estimates (47) do not depend on the discretization
parameter h. In short, we prove that we can drive the semi-discrete system (46) to a
target which is exponentially small with respect to h with controls that are uniformly
bounded. Up to a subsequence, this results imply the weak convergence of the semi-
discrete controls towards a control of the continuous problem which leads the solution
to zero, as soon as the discrete initial data converges towards the suitable initial data.

Theorem 4.1. There exist C > 0, C̃ > 0 and h0 > 0, depending only on γ1, γ2

and ω2 such that, for any T > 0, any mesh such that h < h0, and any y0 ∈ E there
exists a control v ∈ L2(0, T ;U) satisfying

(47)

JvKL2(0,T ;U) ≤ eC̃(1+ 1
T +T ) ‖y0‖−1,A ,

‖y(T )‖−1,A ≤ e
C̃(1+ 1

T +T )e−C/h
2

‖y0‖−1,A ,

where y is the corresponding solution to the semi-discrete problem (46) with control v
and h = max(h1, h2) is the space discretization parameter.

Once such a theorem is proved, even with a non explicit/constructive proof, one
can produce an optimization algorithm, based on the penalized HUM approach, that
is able to compute a control v satisfying (47). We can even relax the requirements

by replacing the exponential factor e−C/h
2

by any more convenient φ(h), such as
φ(h) = hp for some large enough integer p. Those questions are discussed in details
for instance in [6] where some numerical illustrations are given.

4.1.2. Additional notations and properties. In order to simplify the pre-
sentation of the following proofs we need to introduce a few more notations. For any
i ∈ {1, 2}, we define γ±i to be the translated sampling of the diffusion coefficient γi
defined by

(γ±i )j = γi,j±1/2, ∀j ∈ {1, ..., Ni}.

We also introduce the forward and backward difference operators ∇±i defined, for any
y ∈ Ei, by

(∇+
i y)j =

yj+1 − yj
hi

, ∀j ∈ {1, ..., Ni},

(∇−i y)j =
yj − yj−1

hi
, ∀j ∈ {1, ..., Ni}.

For any i ∈ {1, 2}, we define (ei,j)1≤j≤Ni to be the canonical basis of Ei (each element
corresponds to a point in the 1D grid of Ωi). At some point in the forthcoming
analysis, we shall need to work with compactly supported discrete functions in order
to justify some discrete integration by parts. To this end, we introduce the subspaces
E00
i ⊂ E0

i ⊂ Ei defined by

E0
i = span(ei,j , j = 2, . . . , Ni − 1),

E00
i = span(ei,j , j = 3, . . . , Ni − 2).

With those notations, we observe that the gradient operators defined above satisfy
the duality property

(48)
〈
∇+
i y, z

〉
0,i

= −
〈
y,∇−i z

〉
0,i
, ∀y, z ∈ E0

i ,
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that we obtain by a summation by parts.

Lemma 4.1. There exists a C > 0 depending only on inf γi, sup γi, ‖γ′i‖L∞ , ai
such that: for any i ∈ {1, 2}, and any y ∈ Ei, we have

(49) ‖y‖0,i ≤ C
∥∥∇±i y∥∥0,i

,

(50)
∥∥∇+

i y
∥∥2

0,i
+
∥∥∇−i y∥∥2

0,i
≤ C 〈Aiy, y〉0,i ,

(51) ‖∆iy‖0,i ≤ C ‖Aiy‖0,i .

Remark 4.1. By combining the above properties, we can obtain the following
estimate

(52) ‖y‖0,i ≤ C ‖Aiy‖0,i , ∀y ∈ Ei,

where C depends only on γi and ai. This implies in particular that the Poincaré
inequality (23) holds with a constant MP,1 uniform with respect to the discretization
parameters.

Proof. The first inequality is very classical. We recall the sketch of proof: for
i ∈ {1, 2}, we first write

yj = yj − y0 =

j∑
k=1

(yk − yk−1) =

j∑
k=1

hi(∇−i y)k,

and by the Cauchy-Schwarz inequality, we obtain

|yj |2 ≤ ai
∥∥∇−i y∥∥2

0,i
, ∀j ∈ {0, . . . , Ni}.

The claim follows by summing over j. The proof with the operator ∇+
i , is done in

the same way but starting from the equality

yj = yj − yNi+1 = −
Ni∑
k=j

(yk+1 − yk) =

Ni∑
k=j

hi(∇+
i y)k.

For the third estimate, a simple calculation shows that

〈Aiy, y〉0,i =

Ni∑
j=0

hiγi,j+1/2

∣∣∣∣yj+1 − yj
hi

∣∣∣∣2 , ∀y ∈ Ei,
and we deduce (50) with C depending only on minΩi(γi).

Finally, a straightforward algebraic computation gives

Ai =
γ+
i + γ−i

2
(−∆i)−

γ+
i − γ

−
i

hi

∇+
i +∇−i

2
,

which implies

‖−∆iy‖0,i ≤ C ‖Aiy‖0,i + C‖γ′i‖L∞(
∥∥∇+

i y
∥∥

0,i
+
∥∥∇−i y∥∥0,i

),

where C only depends on minΩi(γi). By using (50), the Cauchy-Schwarz inequality
and the Young inequality, we finally deduce that

‖−∆iy‖0,i ≤ C ‖Aiy‖0,i + C ‖y‖0,i , ∀y ∈ Ei,

where C only depends on the function γi and we conclude by using (49) and (50).
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4.1.3. Proof of the semi-discrete controllability result. The proof of The-
orem 4.1 consists essentially in applying the analysis above to a suitable setting. To
achieve the results, it is just needed to check that all the assumptions of Theorem 3.1
are satisfied with constants that do not depend on the discretization parameter.

• In a first step, we will check that the discrete diffusion operator L and the
discrete control operator B = B1 ⊗ B2 ⊗ B are compatible in the sense that
inequalities (14) and (15) are satisfied with s = 1, and D = A, uniformly with
respect to the mesh size.

• In a second step, using previous results in the literature, we shall prove that
the discrete Lebeau-Robbiano spectral inequality (Assumption 3.2) and the
semi-discrete controllability of the 1D system (Assumption 3.1) hold.

Let us start by proving the following result.

Lemma 4.2. There exist two constants Mcont and Madm independent of h1 and
h2 that satisfy:

(53) sup
t∈[0,T ]

∥∥∥e−tL∗ψ∥∥∥
1,A
≤Mcont ‖ψ‖1,A , ∀ψ ∈ E,

(54)

(∫ T

0

r
B∗e−τL∗ψ

z2

0
dτ

) 1
2

≤Madm ‖ψ‖1,A , ∀ψ ∈ E,

Proof. The proof of (53) is exactly the same as the one of the dissipation estimates
of Proposition 3.1, for µ = 0 and s = −1, except that we deal with the adjoint matrix
C∗.

The more intricate part is now to prove (54). This will be a combination of
discrete trace estimates and of discrete elliptic regularity properties for the operator
A. In that proof the fact that we consider s = 1 in the definition of the norms is
crucial, this is the discrete counter-part of the fact that, in the continuous setting, we
need to take H1

0 initial data to ensure that the normal derivative of the solution of
the backward heat equation belongs to L2.

1. First, we prove a 1D trace inequality. More precisely, we show that there
exists C > 0 independent of h1 such that:

(55) JB∗1 ⊗ B∗qK2
0,1 ≤ C ‖A1 ⊗ I q‖20,1 , ∀q ∈ E1 ⊗ Rn.

To this end, we first use (45) and the fact that ∆1 is self-adjoint to get

B∗1 ⊗ B∗ = γ1,1/2(r ⊗ B∗)(∆1 ⊗ I ).

It follows that, for any q ∈ E1 ⊗ Rn,

JB∗1 ⊗ B∗qK0,1 ≤ γ1,1/2 ‖r‖0,1 ‖B
∗‖ ‖∆1 ⊗ I q‖0,1 ≤ C ‖∆1 ⊗ I q‖0,1 ,

where C depends only on γ1 and Ω1.
From (51) (that we apply on each component of the vector-valued unknown
q), we deduce that

‖∆1 ⊗ I q‖0,1 ≤ C ‖A1 ⊗ I q‖0,1 ,

which proves (55).



27

2. In the second step, we prove that the inequality (55) can be extended to 2D
discrete unknowns. More precisely, we show that there exists a constant
C > 0 independent of h1 and h2 such that

(56) JB∗qK2
0 = JB∗1 ⊗ B∗2 ⊗ B∗qK2

0 ≤ C ‖A1 ⊗ I⊗ I q‖20 , ∀q ∈ E.

We define fj = e2,j/
√
h2, in such a way that (f2,j)1≤j≤N2

is an orthonormal
basis of E2. Note that the particular structure of B2 implies that B2f2,j =
αjf2,j with αj ∈ {0, 1} (αj = 1 if and only if the mesh point x2,j lies in ω2).
We can decompose any q ∈ E into the unique form

q =

N2∑
j=1

qj ⊗ f2,j ,

with qj ∈ E1 ⊗ Rn for any j. We have, by orthogonality of (f2,j)j ,

JB∗1 ⊗ B∗2 ⊗ B∗qK2
0 =

u

v
N2∑
j=1

αj

[
(B∗1 ⊗ B∗)qj

]
⊗ f2,j

}

~

2

0

=

N2∑
r=1

JB∗1 ⊗ B∗qjK
2
0,1 α

2
j .

Using (55) for each j, and the fact that α2
j ≤ 1, we get

JB∗1 ⊗ B∗2 ⊗ B∗qK2
0 ≤ C

N2∑
j=1

‖A1 ⊗ I qj‖20,1 = C

N2∑
j=1

∥∥∥∥[(A1 ⊗ I )⊗ I

]
qj ⊗ f2,j

∥∥∥∥2

0

,

and, still by orthogonality of (f2,j)j , we obtain the claimed inequality (56),
the constant C being the same as in (55).

3. In the estimate (56) we only have the operator A1⊗ I⊗ I that appears in the
right-hand side and not the complete discrete 2D elliptic operator A. The
third step consists in proving a discrete elliptic regularity property that
will allow us to get that there exists a constant C > 0 independent of h1 and
h2 such that

(57) JB∗qK2
0 ≤ C ‖Aq‖

2
0 , ∀q ∈ E.

The main idea is based on the following well-known computation: for any
smooth and compactly supported function f defined on R2, we can write∫∫

|∂x1 (γ1(x1)∂x1f) + ∂x2 (γ2(x2)∂x2f)|2

=

∫∫
|∂x1

(γ1(x1)∂x1
f)|2 + |∂x2

(γ2(x2)∂x2
f)|2

+ 2

∫∫
∂x1 (γ1(x1)∂x1f)× ∂x2 (γ2(x2)∂x2f) .

Moreover, by a double integration by parts, we find∫∫
∂x1

(γ1(x1)∂x1
f)× ∂x2

(γ2(x2)∂x2
f) =

∫∫
γ1(x1)γ2(x2)

∣∣∂x1
∂x2

f
∣∣2 ≥ 0,

so that∫∫
|∂x1

(γ1(x1)∂x1
f)|2 ≤

∫∫
|∂x1

(γ1(x1)∂x1
f) + ∂x2

(γ2(x2)∂x2
f)|2 .



28 D. ALLONSIUS, F. BOYER

We want to apply the same idea to prove roughly speaking that

‖A1 ⊗ I q‖20 ≤ ‖A1 ⊗ I q + I⊗A2 q‖20 ,

which, according to (56), would prove (57).
However, because of boundary terms, it is easier to prove this inequality
for compactly supported discrete functions, that is for q ∈ E00

1 ⊗ E00
2 . We

will thus proceed by extension and truncation of the discrete functions under
study.
Let ξ1 : (0, a1)→ R be a smooth function such that ξ1 = 1 on (0, a1

3 ), and ξ1 =

0 on ( 2a1

3 , a1), and ξ2 : (0, a2)→ R be a smooth compactly supported function
such that ξ2 = 1 on ω2. Such a function exists thanks to the assumption (42).
We introduce now the truncation operator on E1⊗E2, defined by T = ξ1⊗ξ2.
The choice of ξ1 and ξ2 implies that

JB∗1 ⊗ B∗2 ⊗ B∗qK2
0 = J(B∗1 ⊗ B∗2 ⊗ B∗)(T⊗ I )q)K2

0 ,

and thus by (56) we have

JB∗1 ⊗ B∗2 ⊗ B∗qK2
0 ≤ C ‖(A1 ⊗ I⊗ I )(T⊗ I )q‖20 .

The discrete function (T⊗ I )q vanish near all the boundaries of the domain,
except the one corresponding to {x1 = 0} because of the choice of ξ1. We
will now introduce a symmetrization procedure that will let us work with a
compactly supported discrete function.
We start by introducing the extended space in the first variable defined by

E1 := R{−N1,...,N1},

which stands for discrete functions defined on a uniform discretisation of
(−a1, a1) with a mesh size h1. If we denote by (ē1,j)−N1≤j≤N1

the canonical
basis of E1, we can define the odd symmetrization operator S : E1 → E1 by

Se1,j = ē1,j − ē1,−j , ∀j ∈ {1, ..., N1}.

With this notation, for q ∈ E1 ⊗ E2, (S⊗ I)q is the odd symmetrization of q
with respect to the x1 variable in the extended 2D domain.
We consider γ̄1 to be the even extension of γ1 to (−a1, a1) and let A1 be the
discrete diffusion operator associated with γ̄1 and defined on E1 in the same
way as in (44).
A simple computation shows that the symmetrization is compatible with the
diffusion operator definitions, that is

(58) A1Sq = SA1q, ∀q ∈ E1.

In particular, using the same notation for the norm in E1 as for the one in
E1, we have ∥∥A1Sq

∥∥2

0,1
= 2 ‖A1q‖20,1 , ∀q ∈ E1.

As a consequence, all the previous estimates lead to the following inequality

‖B∗1 ⊗ B∗2 ⊗ B∗q‖20,2 ≤ C
∥∥A1 ⊗ I⊗ I q̄

∥∥2

0
, ∀q ∈ E,
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where, we have set q̄ = (S⊗I⊗I )(T⊗I )q. Observe now that, by construction of
the symmetrization and truncation operators, the discrete function q̄ belongs

to E
00

1 ⊗ E00
2 ⊗ Rn.

Note that for such compactly supported discrete functions we have the alge-
braic identities

(A1 ⊗ I) q̄ =
(
(−∇−1 γ̄+

1 ∇
+

1 )⊗ I
)
q̄,

(I⊗A2) q̄ =
(
I⊗ (−∇−2 γ

+
2 ∇

+
2 )
)
q̄.

We can now make the following computation∥∥(A1 ⊗ I + I⊗A2) q̄
∥∥2

0
=
∥∥A1 ⊗ I q̄

∥∥2

0
+ ‖I⊗A2 q̄‖20

+ 2
〈
A1 ⊗ I q̄, I⊗A2 q̄

〉
0
,

and the double product term can be evaluated as follows, the discrete inte-
gration by parts being justified by (48) and the fact that ∇±i E00

i ⊂ E0
i ,〈

A1 ⊗ I q̄, I⊗A2 q̄
〉

0
=
〈

(∇−1 γ̄+
1 ∇

+

1 )⊗ I q̄, I⊗ (∇−2 γ
+
2 ∇

+
2 ) q̄

〉
0

=
〈

(γ̄+
1 ⊗ γ

+
2 )(∇+

1 ⊗∇+
2 )q̄, (∇+

1 ⊗∇+
2 )q̄
〉

0
≥ 0.

At the end, we obtain that∥∥A1 ⊗ I q̄
∥∥2

0
≤
∥∥(A1 ⊗ I + I⊗A2) q̄

∥∥2

0
.

To conclude the proof of the final claim, we just need to show that∥∥(A1 ⊗ I + I⊗A2) q̄
∥∥2

0
≤ C ‖Aq̄‖20 ,

for a C > 0 independent of the mesh.
Recall that q̄ = (S⊗ I)Tq and by (58) we have

(A1 ⊗ I + I⊗A2) q̄ = (S⊗ I)ATq,

and in particular we have∥∥(A1 ⊗ I + I⊗A2) q̄
∥∥2

0
= 2 ‖ATq‖20 .

It thus remains to evaluate the norm of ATq by the one of Aq. A simple
algebraic computation leads to

ATq =(A1 ⊗ I + I⊗A2)(ξ1 ⊗ ξ2)q

=(ξ1 ⊗ ξ2)(Aq) + ((A1ξ1)⊗ ξ2)q + (ξ1 ⊗ (A2ξ2))q

+ (γ+
1 (∇+

1 ξ1)⊗ I)(∇+
1 ⊗ I)q +

(
γ−1 (∇−1 ξ1)⊗ I

)
(∇−1 ⊗ I)q

+
(
I⊗ γ+

2 (∇+
2 ξ2)

)
(I⊗∇+

2 )q +
(
I⊗ γ−2 (∇−2 ξ2)

)
(I⊗∇−2 )q.

Since ξ1 and ξ2 are smooth and γ1 and γ2 are bounded, we conclude, with
the mean-value theorem that

‖ATq‖0 ≤ C ‖Aq‖0 + C ‖q‖0 + C
∥∥(∇+

1 ⊗ I)q
∥∥

0

+ C
∥∥(∇−1 ⊗ I)q

∥∥
0

+ C
∥∥(I⊗∇+

2 )q
∥∥

0
+ C

∥∥(I⊗∇−2 )q
∥∥

0
.

The conclusion follows by (49), (50), (52) and the Cauchy-Schwarz and Young
inequalities.
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4. The last step of the proof consists in showing (54) by using (57) a classical
energy estimate. Let ψ ∈ E and let q(t) = e−tL

∗
ψ. We set z(t) = I ⊗ I ⊗

etC
∗
q(t). One can check that z satisfies

(59)

{
∂tz + Az = 0,

z(0) = ψ.

We multiply (59) by Az and integrate on (0, T ),

〈z(T ),Az(T )〉0 − 〈ψ,Aψ〉0 + 2

∫ T

0

‖Az(t)‖20 dt = 0,

thus, since the operator A is positive,∫ T

0

‖Az(t)‖20 dt ≤ ‖ψ‖
2
1,A .

Since A commutes with I⊗ I⊗ etC∗ , we find that∫ T

0

∥∥∥I⊗ I⊗ etC
∗
Aq(t)

∥∥∥2

0
dt ≤ ‖ψ‖21,A ,

Moreover,
∥∥I⊗ I⊗ etC∗Aq(t)

∥∥2

0
≥ e−2T‖C‖ ‖Aq(t)‖20, for any t ∈ (0, T ) and so∫ T

0

‖Aq(t)‖20 dt ≤ e
2T‖C‖ ‖ψ‖21,A .

Applying (57) to q(t) for any t ∈ (0, T ) and integrating in time this inequality,
we finally get ∫ T

0

JB∗q(t)K2
0 dt ≤ Ce

CT ‖ψ‖21,A .

and this concludes the proof of (54).

Remark 4.2. Note that we just proved that Madm depends on T like eCT and this
is consistant with estimates of v and y(T ) given by Theorem 4.1.

Now we can prove Assumption 3.2.

Proof (of Assumption 3.2). In [7] the authors proved a discrete Lebeau-Robbiano
inequality on quite general meshes. We translate the statement of their Theorem 6.1
in our setting.

Theorem 4.2. There exists C > 0, ε > 0 and h0 > 0, depending on γ2, ω2 such
that if h2 ≤ h0, we have for all 0 < µ ≤ ε/h2

2,

∑
k:λ2,k≤µ

|αk|2 =

∫
Ω2

∣∣∣∣∣∣
∑

k:λ2,k≤µ

αkφ2,k

∣∣∣∣∣∣
2

≤ CeC
√
µ

∫
ω2

∣∣∣∣∣∣
∑

k:λ2,k≤µ

αkφ2,k

∣∣∣∣∣∣
2

,

∀(αk)1≤k≤N1 ⊂ C

This result exactly yields that Assumption 3.2 is fulfilled in this setting with

µE2
=

ε

h2
2

.
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Finally, we prove that Assumption 3.1 holds.

Proof (of Assumption 3.1). We base our proof on the strategy developped in [1],
where the semi-discretized (on a uniform mesh) boundary null-control problem in
space dimension 1 with operator A1 is tackled by applying the moments method.
However, the explicit dependance in T of the control cost by some bound in eC/T was
not given in that work. This is crucial in the present analysis.

We can actually obtain this precised bound by using the expression of the control
obtained with this method, in setting (S2) described in [1], and by using the refined
bounds on biorthogonal families of exponential functions given by Theorem 1.5 of [4].
We will just describe here the new estimate that we need to adapt the results of [1]
to our needs.

We first set ε = 1/2 for instance (any value between 0 and 1 would be acceptable),
and we follow [1], to define

kh1
max,ε := max

{
k ∈ J1, N1K;λ1,k <

4

h2
1

γ1,min(1− ε)
}

and :

(Λ̃h1
ε )k :=

{
λ1,k for k ∈ J1, kh1

max,εK,

λ
1,k

h1
max,ε

+ 4γ1,mink
2 for k ≥ kh1

max,ε + 1.

the sequence Λ̃h1
ε satisfies the following items required to apply Theorem 1.5 of [4]

1. (Λ̃h1
ε )k 6= (Λ̃h1

ε )n, for all k, n ∈ N with k 6= n;
2,3 (Λ̃h1

ε )k ∈ R∗+, for every k ≥ 1;

4. (Λ̃h1
ε )k is nondecreasing;

5. First, applying Theorem 3.2 of [1] there exists C > 0 such that

(Λ̃h1
ε )k+1 − (Λ̃h1

ε )k ≥ C
√

(Λ̃h1
ε )k, ∀k ≥ 1.

Second, note that according to Lemma 3.3 of [1], there exist c1 and c2 two
positive constants such that :

(60) c1k
2 ≤ λ1,k ≤ c2k2, ∀k ∈ J1, N1K.

Therefore,
(Λ̃h1

ε )k+1 − (Λ̃h1
ε )k ≥ Ck, ∀k ≥ 1.

Take k, n ∈ N∗, k > n, we have :

|(Λ̃h1
ε )k − (Λ̃h1

ε )n| ≥ C
k−1∑
i=n

i ≥ C(k2 − n2).

6. Finally, let N the counting function associated with the sequence (Λ̃h1
ε )k≥1,

defined by
N (r) = ]{k : (Λ̃h1

ε )k ≤ r}.

There exist α > 0, pmin > 0 and pmax > 0 such that for every r > 0,

−α+ pmin

√
r ≤ N (r) ≤ α+ pmax

√
r.
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Indeed, from item 4, it follows easily from the definition ofN that (Λ̃h1
ε )N (r) ≤

r and (Λ̃h1
ε )N (r)+1 ≥ r, and according to (60),

c1N (r)2 ≤ r ≤ c2(N (r) + 1)2,

thus, √
r

c2
− 1 ≤ N (r) ≤

√
r

c1
.

We can now apply Theorem 1.5 of [4] to conclude that there exists T0 > 0, such
that for every 0 < T < T0, there exists a family of functions in L2(0, T ) denoted by

(q
Λ̃h1
ε

j,k )k≥1,j∈J1,d−1K, satisfying for all k, l ≥ 1, and i, j ∈ J0, d− 1K,∫ T

0

q
Λ̃h1
ε

j,k (t)(t− T )i exp(−(Λ̃h1
ε )k(T − t)) dt = δk,lδi,j ,

and for all k ≥ 1 and j ∈ J0, d− 1K,

(61) ‖qΛ̃h1
ε

j,k ‖L2(0,T ) ≤ C exp

(
C

√
(Λ̃h1

ε )k +
C

T

)
,

where C does not depend on h2.

Remark 4.3. In [4], Theorem 1.5, hypothesis of 6 on the counting function is
slightly different from item 6 given above. Indeed, in this reference the authors require
the following condition : for some p, α > 0,

(62) |p
√
r −N (r)| ≤ α,∀r > 0.

Actually, looking carefully at the proof of Theorem 1.5, we realize that we can use
item 6 above instead of hypothesis (62). Indeed, we can just replace p by pmax in the
definition of the number d at page 2988 and in the proofs of Theorem 4.3 at page 2987,

Lemma A.3 at page 2994 (note that the property limt→+∞
N (t)
t = 0 is preserved), and

Lemma A.4 at page 2996 and change p into pmin at page 2993 in the proof of Lemma
A.1.

Now, in the proof of [1, Theorem 5.4], we can use the improved estimate (61) into the
bound of the control (with t0 = T

2 ), and find that

JvKL2(0,T ;U) ≤ Cε ‖y0‖−1,A1

kh1
max,ε∑
k=1

e−λ1,k
T
2 eC
√
λ1,k+C

T ,

and using (60),

JvKL2(0,T ;U) ≤ Cεe
C
T ‖y0‖−1,A1

+∞∑
k=1

e−c2k
2 T

2 +C
√
c1k,

thus there exists C1 > 0 depending only on ε (whose value has been arbitrarily set to
1/2) and γ1 such that

(63) JvKL2(0,T ;U) ≤ C1e
C1
T ‖y0‖−1,A1

.
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Indeed if k ≥ k0 := dC
√
c1+1

c2T/2
e, we have −c2k2 T

2 + C
√
c1k ≤ −k, so

+∞∑
k=1

e−c2k
2 T

2 +C
√
c1k ≤

k0∑
k=1

e−c2k
2 T

2 +C
√
c1k +

+∞∑
k=k0+1

e−k

≤ k0e
C
√
c1k0 +

1

1− e
,

which gives (63) since k0 ≤
Cγ1,ε

T .

Still using the estimations in the proof of Theorem 5.4 of [1], we get

‖y(T )‖−1,A1
≤ eC2(1+ 1

T )e−µE1
T ‖y0‖−1,A1

,

with

µE1
=
C1

h2
1

and C1 > 0 and C2 > 0 depending only on γ1.

Now we can apply Theorem 3.1 with µE1
and µE2

both of the same order C
h2 . The

proof of Theorem 4.1 is complete.

4.2. Dirichlet boundary null control of a continuous n-dimensional sys-
tem on a cylindrical domain of dimension d. Our aim is to show how the finite
dimensional framework developped in Section 3 actually applies to the study of null-
controllability problems of tensorized parabolic systems.

As an illustration of this statement, we shall give a short proof of the main result
of [4] by using Theorem 3.1 of the present article. This is of course not surprising
since our approach is directly inspired from the one developped in [4]. However, it
seems to us interesting to show how our general finite dimensional framework actually
encompasses already known results through a spectral projection technique. This
example should convince the reader that, by using the same strategy, one can easily
adapt the proof to other kinds of tensorized controlled systems like, for instance,
Neumann or Robin boundary controls, or even mixed (distributed and boundary)
controls, as soon as we have in hand a suitable controllability result on the associated
1D system.

Finally, since we have taken care of all the constants in the proofs, this strategy
can be used to derive controllability properties that are uniform with respect to some
parameters present in the problem. As an illustration, in the case of a 1D Robin
boundary control problem, we can prove estimates that are uniform in the Robin
parameter (see [5]). By the present technique, those result will automatically be
translated to the corresponding multi-D result, generalizing the one proved in [4].

Let us recall the statement of [4, Theorem 1.3] with the notation of the present
paper.

Theorem 4.3. Let Ω1 = (0, 1), and Ω2 be a smooth bounded connected domain
of Rd−1 and set Ω = Ω1 × Ω2.

We suppose given a coupling matrix C and a control matrix B. Assume that the
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following system of n equations
∂ty

1 +A1 ⊗ I y1 + I ⊗ Cy1 = 0, in (0, T )× Ω1,

y1 = 1{0} ⊗ (Bv1) in (0, T )× ∂Ω1,

y1(0) = y1
0 in Ω1,

is null controllable for any y1
0 ∈ H−1(Ω1)⊗Rn and any time T > 0 with, in addition,

the following bound:

Jv1KL2(0,T ;Rm) ≤ eMobs,1(1+ 1
T )‖y1

0‖H−1(Ω1)⊗Rn .

Then, for any nonempty open set ω2 ⊂ Ω2, the following system of n equations:

(64)


∂ty + Ly = 0, in (0, T )× Ω,

y = (1{0}×ω2
⊗ B)v in (0, T )× ∂Ω,

y(0) = y0 in Ω,

where L := A1 ⊗ I ⊗ I + I ⊗ A2 ⊗ I + I ⊗ I ⊗ C, is null controllable for any y0 ∈
H−1(Ω)⊗ Rn and any time T > 0 with, in addition, the following bound:

(65) JvKL2((0,T )×∂Ω)m ≤ eMobs,1(1+ 1
T )‖y0‖H−1(Ω)⊗Rn .

Proof. Let y0 ∈ H−1(Ω)⊗ Rn, recall that the solution y of (64) satisfies for any
ψ ∈ H1

0 (Ω)⊗ Rn, the equality

〈y(T ), ψ〉H−1(Ω),H1
0 (Ω) −

〈
y0, e

−TL∗ψ
〉
H−1(Ω),H1

0 (Ω)

= −

[(
∂

∂x1
∣∣x1=0

⊗ 1ω2
⊗ B∗

)
e−(T−·)L∗ψ, v

]
L2((0,T )×∂Ω)m

.

Therefore, v is a null-control for this system, if and only if, it satisfies

−
〈
y0, e

−TL∗ψ
〉
H−1(Ω),H1

0 (Ω)

= −

[(
∂

∂x1
∣∣x1=0

⊗ 1ω2
⊗ B∗

)
e−(T−·)L∗ψ, v

]
L2((0,T )×∂Ω)m

,

for any ψ ∈ H1
0 (Ω)⊗ Rn. Actually, since the problem is linear, it is enough to check

the previous equality for any ψ belonging to a total family of H1
0 (Ω)⊗ Rn.

Let us consider the total family of H1
0 (Ω) made of the eigenfunctions of A1 and

A2. For i = 1, 2, we denote by (φi,j , λi,j)j≥1 the eigenfunctions and eigenvalues of
the operator Ai with homogeneous Dirichlet boundary conditions. We choose them
to form an orthonormal basis of L2(Ωi). We will thus consider the total family of
H1

0 (Ω) defined by (φ1,i ⊗ φ2,j)i,j that will be tensorized with the canonical basis of
Rn, (ek)k∈{1,...,n} to finally produce a total family of H1

0 (Ω)⊗ Rn.
We are thus led to find a control satisfying, ∀i, j ≥ 1 and ∀k ∈ {1, . . . , n},

e−T (λ1,i+λ2,j)
〈
y0, φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)

〉
H−1(Ω),H1

0 (Ω)

=
[
e−(T−.)(λ1,i+λ2,j)(φ1,i)

′(0)⊗ (1ω2
φ2,j)⊗ (B∗e−(T−·)C∗ek), v

]
L2((0,T )×∂Ω)m

.
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In order to apply Theorem 3.1, we need to consider a projection of (64) on a finite
dimensional space. For i = 1, 2 and J ≥ 1, we define the spaces

Fi,J = span (φi,j , j ≤ J) ,

and the operator Ai : Fi,J → Fi,J as the restriction to Fi,J of Ai, that is the unique
isomorphism of Fi,J satisfying Aiφi,j = λi,jφi,j , for any j ≤ J .

Let Pi,J be the orthogonal projection from the space H−1(Ωi) equipped with the
inner product 〈•, •〉−1,Ai onto the space Fi,J .

We define also PJ := P1,J ⊗ P2,J ⊗ I which is an orthogonal projection from
H−1(Ω)⊗ Rn onto F1,J ⊗ F2,J ⊗ Rn, with respect to 〈•, •〉−1,A.

Remark 4.4. Since the eigenfunctions (φi,j)j≥1 are orthogonal with respect to the
L2(Ωi), H

−1(Ωi) and H1
0 (Ωi) inner products, we deduce that the projection PJ (resp.

Pi,J) is orthogonal with respect to 〈•, •〉s,A (resp. 〈•, •〉s,Ai), for any s ∈ {−1, 0, 1}.
Hypothesis (4.3) allows to apply Assumption 3.1 with E1 = F1,J , U1 = R, B1 =

∆1r, where we have used the affine function r(x) = 1− x (note that B∗1 = −1{0}∂x1
)

and µE1
= +∞. Moreover, thanks to the Lebeau-Robbiano’s spectral inequality in

the domain Ω2, (see [13, 12]), Assumption 3.2 is fulfilled with E2 = F2,J , U2 = F2,J ,
B2 : U2 → E2, B2 = P2,J1ω2 , and µE2

= +∞. Indeed, the usual spectral inequality
gives that there exists C > 0 such that for any µ > 0, J ∈ N∗

‖ψ‖2L2(Ω2) ≤ Ce
C
√
µ

∫
Ω2

(1ω2
ψ)2, ∀ψ ∈ Span(φ2,j , λ2,j ≤ µ) ∩ E2.

Moreover, ∫
Ω2

(1ω2
ψ)2 =

∫
Ω2

(1ω2
ψ)ψ,

and according to Remark 4.4 and given that ψ ∈ E2,∫
Ω2

(1ω2ψ)ψ =

∫
Ω2

(P2,J1ω2ψ)ψ =

∫
Ω2

(B2ψ)ψ =

∫
Ω2

(B∗2ψ)ψ,

since B2 is self-adjoint. It follows from the Cauchy-Schwarz inequality that

‖ψ‖L2(Ω2) ≤ CeC
√
µ‖B∗2ψ‖L2(Ω2), ∀ψ ∈ Span(φ2,j , λ2,j ≤ µ) ∩ E2.

Thus, for any fixed J , Theorem 3.1 applies with µ∗ as large as we want. Thus, letting
µ∗ going to infinity, we finally build a null control for the projected finite dimensional
problem denoted by vJ ∈ L2(0, T ;U2)⊗ Rm that drives solution y of (24) from PJy0

to zero and which satisfies the following bound, uniformly with respect to J :

(66) JvJKL2((0,T )×∂Ω)m ≤ eMobs(1+ 1
T +T ) ‖PJy0‖−1,A ≤ e

Mobs(1+ 1
T +T ) ‖y0‖−1,A .

where ‖•‖2−1,A = 〈•, •〉−1,A =
〈
•,A−1•

〉
H−1(Ω),H1

0 (Ω)
.

From (66) we can infer that there exists a subsequence of (vJ)J denoted by (vJ′)J′

which weakly converges in L2((0, T )× ∂Ω)m to a limit denoted by v, satisfying also

JvKL2((0,T )×∂Ω)m ≤ eMobs(1+ 1
T +T ) ‖y0‖−1,A .

We claim that this limit drives the solution y of (64) from y0 to zero. Indeed, let
k ∈ {1, . . . , N}, i, j ≥ 1, and J ≥ max(i, j).
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First, we have by definition of a solution of (24)

−
〈
PJy0, e

−T (λ1,i+λ2,j)φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)
〉
H−1(Ω),H1

0 (Ω)

=
[
e−(T−.)(λ1,i+λ2,j)(B∗1φ1,i)⊗ (B∗2φ2,j)⊗ (B∗e−(T−.)C∗ek), vJ

]
L2((0,T )×∂Ω)m

Second, since J ≥ i and J ≥ j, and by definition of PJ , we have

−
〈
PJy0, e

−T (λ1,i+λ2,j)φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)
〉
H−1(Ω),H1

0 (Ω)

= −
〈
PJy0, (λ1,i + λ2,j)e

−T (λ1,i+λ2,j)φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)
〉
−1,A

= −
〈
y0, (λ1,i + λ2,j)e

−T (λ1,i+λ2,j)φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)
〉
−1,A

.

Hence, we get

−
〈
PJy0, e

−T (λ1,i+λ2,j)φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)
〉
H−1(Ω),H1

0 (Ω)

= −
〈
y0, e

−T (λ1,i+λ2,j)φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)
〉
H−1(Ω),H1

0 (Ω)
.

Third, since F2,J is stable by A2, P2,J is an orthogonal projection with respect to
the L2(Ω2) norm, see Remark 2.2. So, since vJ ∈ L2(0, T ;U2) ⊗ Rm and U2 = F2,J ,
according to remark 4.4, we have for any t

[B∗2φ2,j , vj(t)]L2(Ω2)m = [P2,J1ω2
φ2,j , vj(t)]L2(Ω2)m = [1ω2

φ2,j , vj(t)]L2(Ω2)m .

Hence,[
(B∗1φ1,i)⊗ (B∗2φ2,j)⊗ (B∗e−(T−.)C∗ek), vJ

]
L2((0,T )×∂Ω)m

=
[
−(φ1,i)

′(0)⊗ 1ω2φ2,j ⊗ (B∗e−(T−.)C∗ek), vJ

]
L2((0,T )×∂Ω)m

.

Gathering (11), (11) and (11), we get

−
〈
y0, e

−T (λ1,i+λ2,j)φ1,i ⊗ φ2,j ⊗ (e−TC∗ek)
〉
H−1(Ω),H1

0 (Ω)

=
[
−φ′1,i(0)⊗ 1ω2φ2,j ⊗ (B∗e−(T−.)C∗ek), vJ

]
L2((0,T )×∂Ω)m

.

Considering the subsequence vJ′ in (11) and letting J ′ go to infinity, we get (11) and
this concludes the proof.

Appendix A. Proof of Lemma 2.1.
1.⇒ 2. For any qT ∈ D−sFT , we set q(t) = e−(T−t)L∗qT and we consider the initial

data y0 := PF0DsP∗F0
q(0); by assumption there exists a control v and an

associated solution y satisfying (18).
By (16) we find

〈
PF0

DsP∗F0
q(0), q(0)

〉
0

= 〈y(T ), qT 〉0 −
∫ T

0

[v(t),B∗q(t)]0 dt∥∥P∗F0
(q(0))

∥∥2

s,D
= 〈y(T ),DsqT 〉−s,D −

∫ T

0

[v(t),B∗q(t)]0 dt.
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Since DsqT ∈ FT and PFT is orthogonal with respect to 〈•, •〉−s,D, we deduce∥∥P∗F0
(q(0))

∥∥2

s,D
≤ 〈PFT y(T ),DsqT 〉−s,D

+ JvKL2(0,T ;U)

(∫ T

0

JB∗q(t)K2
0 dt

)1/2

.

The Cauchy-Schwarz inequality gives

∥∥P∗F0
(q(0))

∥∥2

s,D
≤
(

1

M2
rel

‖PFT y(T )‖2−s,D +
1

M2
obs

JvK2
L2(0,T ;U)

) 1
2

×

(
M2

rel ‖DsqT ‖2−s,D +M2
obs

∫ T

0

JB∗q(t)K2
0 dt

) 1
2

.

Using the estimate (18) given in the assumptions we get

∥∥P∗F0
(q(0))

∥∥2

s,D
≤‖y0‖−s,D

(
M2

rel ‖DsqT ‖2−s,D +M2
obs

∫ T

0

JB∗q(t)K2
0 dt

) 1
2

.

Recall that we have chosen y0 = PF0DsP∗F0
q(0), and that PF0 is the orthogo-

nal projection onto F0 with respect to the inner product 〈·, ·〉−s,D. Therefore,

‖y0‖−s,D ≤
∥∥DsP∗F0

q(0)
∥∥
−s,D =

∥∥P∗F0
q(0)

∥∥
s,D

and thus

∥∥P∗F0
(q(0))

∥∥
s,D
≤

(
M2

rel ‖qT ‖
2
s,D +M2

obs

∫ T

0

JB∗q(t)K2
0 dt

) 1
2

,

which gives the claim.
2.⇒ 1. Let y0 be an element of F0. We apply the quite usual penalised HUM approach

(as described for instance in [6]) to find such a control v. To this end, we
introduce the functional defined on D−sFT by

J(qT ) :=
1

2

∫ T

0

JB∗q(t)K2
0 dt+

M2
rel

2M2
obs

‖qT ‖2s,D + 〈y0, q(0)〉0 .

It is clear that J is continuous, strictly convex and coercive; we denote by
qopt
T ∈ D−sFT its minimizer and by qopt(t) = e−(T−t)L∗qopt

T the solution to

the backward equation with final condition qopt
T . We set v(t) := B∗qopt(t)

and introduce the associated solution y to (11). Let us show the relation

(67) PFT (y(T )) = −M
2
rel

M2
obs

Dsqopt
T .

Take any qT ∈ D−sFT and let q(t) = e−(T−t)L∗qT be the solution of the ad-
joint equation with final condition qT . The associated Euler-Lagrange equa-
tion for J at the optimal point qopt

T writes

(68)

∫ T

0

[
B∗qopt(t),B∗q(t)

]
0
dt+

M2
rel

M2
obs

〈
qopt
T , qT

〉
s,D

+ 〈y0, q(0)〉0 = 0.
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Combining (68) with (16) gives that for any qT ∈ D−sFT ,

〈y(T ), qT 〉0 = −M
2
rel

M2
obs

〈
qopt
T , qT

〉
s,D

,

and thus,

〈y(T ),DsqT 〉−s,D = −M
2
rel

M2
obs

〈
Dsqopt

T ,DsqT
〉
−s,D

and using that Dsqopt
T ∈ FT , and that DsqT is an arbitrary element in FT ,we

finally find the equality (67).
Now we apply (68) with qT = qopt

T to get

JvK2
L2(0,T ;U) +

M2
rel

M2
obs

∥∥qopt
T

∥∥2

s,D
=
〈
y0, q

opt(0)
〉

0

=
〈
y0,P

∗
F0
qopt(0)

〉
0

≤ ‖y0‖−s,D
∥∥P∗F0

qopt(0)
∥∥
s,D

,

where the second equality comes from the fact that y0 ∈ F0. Using now the
hypothesis (19), we obtain

JvK2
L2(0,T ;U)+

M2
rel

M2
obs

∥∥qopt
T

∥∥2

s,D
≤ ‖y0‖−s,D

(
M2

obs JvK2
L2(0,T ;U) +M2

rel

∥∥qopt
T

∥∥2

s,D

)1/2

and thus

(69) M2
obs JvK2

L2(0,T ;U) +M2
rel

∥∥qopt
T

∥∥2

s,D
≤M4

obs ‖y0‖2−s,D .

Note that taking the norm ‖·‖s,D in (67) gives

∥∥qopt
T

∥∥2

s,D
=
M4

obs

M4
rel

‖PFT y(T )‖2−s,D

so that with (69) we end up with

M2
obs JvK2

L2(0,T ;U) +
M4

obs

M2
rel

‖PFT y(T )‖2−s,D ≤M
4
obs ‖y0‖2−s,D

and the claim is proved.
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