
HAL Id: hal-01826986
https://hal.science/hal-01826986v1

Submitted on 30 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hodge decomposition for symmetric matrix fields and
the elasticity complex in Lipschitz domains

Giuseppe Geymonat, Françoise Krasucki

To cite this version:
Giuseppe Geymonat, Françoise Krasucki. Hodge decomposition for symmetric matrix fields and the
elasticity complex in Lipschitz domains. Communications on Pure and Applied Analysis, 2009, 8 (1),
pp.295 - 309. �10.3934/cpaa.2009.8.295�. �hal-01826986�

https://hal.science/hal-01826986v1
https://hal.archives-ouvertes.fr


HODGE DECOMPOSITION FOR SYMMETRIC
MATRIX FIELDS AND THE ELASTICITY COMPLEX

IN LIPSCHITZ DOMAINS

GIUSEPPE GEYMONAT† AND FRANÇOISE KRASUCKI‡

Abstract. In 1999 M. Eastwood has used the general construc-
tion known as the Bernstein-Gelfand-Gelfand (BGG) resolution
to prove, at least in smooth situation, the equivalence of the lin-
ear elasticity complex and of the de Rham complex in R3. The
main objective of this paper is to study the linear elasticity com-
plex for general Lipschitz domains in R3 and deduce a complete
Hodge orthogonal decomposition for symmetric matrix fields in
L2, counterpart of the Hodge decomposition for vector fields. As
a byproduct one obtains that the finite dimensional terms of this
Hodge decomposition can be interpreted in homological terms as
the corresponding terms for the de Rham complex if one takes the
homology with value in rig ∼= R6 as in the (BGG) resolution.
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1. Introduction

Let Ω be an open, connected and bounded domain in R3 with a
smooth boundary ∂Ω. Relative to an orthonormal cartesian basis
{ei}, (i=1,2,3), the coordinates of a generic point will be denoted by
{x1, x2, x3}, the components of a vector field v by vi and the compo-
nents of a square matrix field S of order three by Sij. M

3 (resp. M3
sym)

denotes the vector space of second-order (resp. symmetric second-
order) matrices. Latin indices range in the set {1, 2, 3}. The summa-
tion convention with respect to the repeated indices is used. The scalar
product of the matrices E and S is denoted by E:S := EijSij.

Let v a smooth vector field defined on Ω; then the correspond-
ing strain field ∇s(v) = 1

2
(∇vT + ∇v) is a symmetric matrix field.

The characterization of the smooth symmetric matrix fields E that are
strain fields, i.e. that can be written as E = ∇s(v) for some v, goes

1



back to the second half of the Nineteenth Century. Indeed, it was
discovered by A. J.C. B. de Saint Venant (1864) the following result:

Theorem 1.1 (Saint Venant’s necessary compatibility theorem). The
strain field E corresponding to a class C∞ (Ω;R3) displacement vector
field v satisfies the compatibility equations.

(1.1) CURLCURLE = 0.

The components of the matrix CURLE are: (CURLE)ij = εipkEjk,p

where the commas stand for partial differentiations with respect to x
and εipk denotes the alternator:

εipk =





+1, (i,p,k) is an even permutation of (1,2,3);
−1, (i,p,k) is an odd permutation of (1,2,3);
0, (i,p,k) is not a permutation of (1,2,3).

The first 1 rigorous proof of sufficiency was given by E. Beltrami
(1886) in the following form.

Theorem 1.2 (Beltrami’s sufficiency compatibility theorem). If Ω
is a simply-connected domain and if a symmetric matrix field E ∈
C∞ (

Ω;M3
sym

)
satisfies the compatibility equations (1.1), then there ex-

ists a vector field v ∈ C∞ (Ω;R3) satisfying the strain-displacement
relations :

(1.2) E =
1

2
(∇vT +∇v)

A smooth symmetric matrix field S is said a stress field when:

(1.3) Div S = 0

where (DivS)i = Sij,j. In 1890, L. Donati has proved the following
theorem :

Theorem 1.3 (Donati’s theorem). Let E be a matrix field of class
C2

(
Ω;M3

sym

)
, such that

(1.4)

∫

Ω

E:S dΩ = 0

for every stress field S in C∞ (
Ω;M3

sym

)
that vanishes near the bound-

ary ∂Ω. Then E satisfies the equation of compatibility (1.1).

When Ω is simply connected, thanks to the theorem 1.2, the Donati’s
theorem gives an orthogonal (in the L2-sense) decomposition for sym-
metric matrix fields analogous to the Helmoltz decomposition of vector
fields. The Donati’s theorem has been extended in various directions:
see e.g.[11], [3] and their bibliography and theorems 2.1 and 2.4.

1For more details and historical notes see Gurtin [16], Sect.14.
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Beltrami (1892) has remarked that for a smooth symmetric matrix
field E one has Div CURLCURLE = 0 and, moreover, that with the
representation (called Beltrami’s solution):

(1.5) S = CURLCURLE

it is possible to recover, with a suitable choice of E, the Airy’s, the
Maxwell’s and the Morera’s solution, see Gurtin [16], Sect.17. There
exists stress fields that do not admit a Beltrami representation. The
characterization of the smooth stress fields S admitting the representa-
tion (1.5) for some symmetric matrix field E is given by the following
theorem of Gurtin [15]:

Theorem 1.4 (Completeness of the Beltrami solution). A necessary
and sufficient condition for the existence of a smooth solution of (1.3)
such that S = CURLCURLE for some smooth symmetric matrix field
E is that on each closed smooth surface Σ in Ω the resultant force and
the moment vanish, i.e.

(1.6)

∫

Σ

Sn d s =

∫

Σ

Sn ∧ x d s = 0

Let us remark that (1.3) implies that this condition is automatically
satisfied when the boundary of Ω consists in a single closed surface.

The previous results can also be presented in the framework of dif-
ferential forms and exterior calculus as a complex of linear operators
(called the linear elasticity complex, see [8]):

0 → rig → C∞ (
Ω;R3

) ∇s−→ C∞ (
Ω;M3

sym

)
CURLCURL−→ C∞ (

Ω;M3
sym

) Div−→ C∞ (
Ω;R3

)→0(1.7)

where the kernel of each linear operator contains the image of the
previous one and:

(1.8) rig = {v;∇s(v) = 0} = {v;v = a+ b ∧ idΩ} ∼= R6

For later use we denote by ei and p i = −εijkxke
j, i = 1, 2, 3, a basis of

rig. The Beltrami’s sufficiency compatibility theorem and the Gurtin’s
theorem give sufficient conditions in order that the sequence is exact,
i.e. that each operator provides the integrability conditions for the one
which precedes it.

Volterra (1906) has given a characterization of ker(CURLCURL)
for a general non simply connected domain Ω, inspired by the results of
Poincaré on the complex (also called the De Rham-Poincaré complex):

0 → R→ C∞ (Ω)
grad−→ C∞ (

Ω;R3
)

curl−→ C∞ (
Ω;R3

) div−→ C∞ (Ω)−→0(1.9)

where: R = {φ; grad φ = 0}, (curl v)i = εijkvk,j and div v = vi,i.
3



The analogy between the two complexes can be further developed.
Indeed M. Eastwood [8] has proved that, with a general construction
known as the Bernstein-Gelfand-Gelfand (BGG) resolution, the two
sequences are equivalent for smooth functions. He has also conjectured
that ”anything which is true of the de Rham complex should have a
counterpart for linear elasticity”. For example, a smooth matrix field
S has a generalized Beltrami representation of the form (see [9]):

(1.10) S = CURLCURLA+
1

2
(∇vT +∇v)

where A can be chosen such that DivA = 0; this representation is the
counterpart to the Helmholtz decomposition of vector fields, 1

2
(∇vT +

∇v) being the analogous of the irrotational term and CURLCURLA
the analogous of the solenoidal term 2 .

The aim of this paper is to prove ”a further possible instance of this”:
a general Hodge decomposition for symmetric matrix fields analogous
to the classical Hodge decomposition for vector fields (see e.g. [4]);
for this we study the linear elasticity complex for general Lipschitz
domains in various Sobolev spaces settings. Let us define

(1.11) H(Div; Ω) = {S ∈ L2
(
Ω;M3

sym

)
;Div S ∈ L2

(
Ω;R3

)}
and

H(CURLCURL; Ω) =(1.12)

{E ∈ L2
(
Ω;M3

sym

)
;CURLCURLE ∈ L2

(
Ω;M3

sym

)}
where the operators Div and CURLCURL are to be taken in the
distribution sense. We will consider the following situations:

i: Beltrami completeness condition in L2 setting:

(1.13) H2
(
Ω;M3

sym

) CURLCURL−→ H(Div; Ω)
Div−→ L2

(
Ω;R3

)−→0

ii: Saint Venant compatibility condition in L2 setting:
(1.14)

rig ↪→ H1
(
Ω;R3

) ∇s−→ L2
(
Ω;M3

sym

) CURLCURL−→ H−2
(
Ω;M3

sym

)

Some of the results presented concerning the Beltrami completeness
condition has been given with different proofs in [12] and some on
the Saint Venant compatibility condition in L2 setting have been an-
nounced in [6].

2Also in [3] it has been shown, that in a proper perspective, the operators ∇s

and CURL CURL are the ”matrix analogs” of the operators grad and curl and
it has been remarked that the extension there given of Saint Venant’s theorem is
the matrix analog of a weak form of Poincare’s lemma.
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2. Beltrami completeness condition in L2 setting

Let Ω be a general bounded Lipschitz connected but eventually mul-
tiply connected domain in R3 with boundary ∂Ω. Let be γ0 the exte-
rior boundary of Ω, i. e. the boundary of the unbounded connected
component of R3\Ω, and γq, q = 1, . . . , Q the others connected compo-
nents of ∂Ω. Let denote with B an open ball such that Ω is contained
in B and, for q = 1, . . . , Q, let Ωq be the connected component of
B\Ω with boundary γq. At last let Ω0 be the connected component
of B\Ω with boundary γ0

⋃
∂B. For future use let remark that like

every multiply-connected domain, Ω can be reduced to be a simply-
connected one, Ω∗, with a finite number N of planar, non-intersecting
cuts, Cα, α = 1, . . . , N , linking the γq, q = 0, . . . , Q, i.e. such that the
boundary of Cα is contained in ∂Ω. Moreover the cuts are such that the

simply-connected domain Ω∗ = Ω\
N⋃

α=1

Cα verifies the cone condition.

Hence the usual Sobolev properties are satisfied, [1], [7].

Following the well-known approach of Lions-Magenes [17], it has
been proved in [13] that D

(
Ω;M3

sym

)
is dense in H(Div; Ω) and that

the map

S 7→ Γn (S) = (S.n) |∂Ω ,

well-defined for S ∈ D
(
Ω;M3

sym

)
, can be extended to a linear and

continuous map, still denoted Γn, from H(Div; Ω) to H−1/2 (∂Ω;R3).
Moreover for every S ∈ H(Div; Ω) and every v ∈ H1 (Ω;R3) the fol-
lowing Green’s formula holds:

(2.1)

∫

Ω

∇s(v):S dΩ +

∫

Ω

Div S.v dΩ = 〈Γn(S) ,v〉∂Ω

where 〈. , .〉∂Ω denotes the duality pairing between H−1/2 (∂Ω;R3) and
H1/2 (∂Ω;R3). We also denote by 〈. , .〉γq the duality pairing between

H−1/2 (γq;R
3) andH1/2 (γq;R

3) and we denote by Γq
n(S) the restriction

of Γn(S) to γq. Hence:

〈Γn(S) ,v〉∂Ω =

Q∑
q=0

〈Γq
n(S) ,v〉γq

Let at first recall two extensions of the Donati’s theorem. For this
let us set Ker(Div;L2) :=

{
S ∈ L2

(
Ω;M3

sym

)
; divS = 0 in Ω

}
. The

first result is essentially a reformulation of Theorem 4.2 of [3].

Theorem 2.1. The following decomposition of L2
(
Ω;M3

sym

)
in mutu-

ally orthogonal closed subspaces holds true:

(2.2) L2
(
Ω;M3

sym

)
= ∇s(H

1
0

(
Ω;R3

)
)

⊥⊕ Ker(Div;L2)
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In [3] it has been proved that also∇s(H
1 (Ω;R3)) is a closed subspace

of L2
(
Ω;M3

sym

)
.

Proposition 2.2. One has the following orthogonal decomposition:

(2.3) ∇s(H
1
(
Ω;R3

)
) = ∇s(H

1
0

(
Ω;R3

)
)

⊥⊕ DFG
where:

DFG =
{
S ∈ L2

(
Ω;M3

sym

)
; div S = 0 and(2.4)

S = ∇su̇ with u̇ ∈ H1 (Ω;R3) /H1
0 (Ω;R

3) }
and ∇su̇ := ∇sw for any w ∈ u̇.

Proof. The orthogonality of the decomposition follows from the Green’s
formula (2.1). Let be given u ∈ H1 (Ω;R3) and set f := div (∇su) ∈
H−1 (Ω;R3) and g := u|∂Ω ∈ H1/2 (∂Ω;R3). Then u = v + w where
w ∈ H1 (Ω;R3) verifies

(2.5)

{
div (∇sw) = 0 , inΩ;
w|∂Ω = g , on ∂Ω.

and v ∈ H1
0 (Ω;R

3) verifies

(2.6)

{
div (∇sv) = f , inΩ;
v|∂Ω = 0 , on ∂Ω.

It is worth note that when u|∂Ω = û|∂Ω then S = ∇sw = ∇sŵ. ¤
Let introduce the spaces:

(2.7) W :=
{
S ∈ H1

0

(
Ω;M3

sym

)
; divS = 0 in Ω

}

(2.8)
Σad (Ω) :=

{
S ∈ L2

(
Ω;M3

sym

)
; divS = 0 in Ω and Γn(S) = 0 on ∂Ω

}

The next theorem provides an answer to a remark of [3]; a slightly
different result has been given in a general Lp setting in [11].

Theorem 2.3. The space W is dense in Σad (Ω).

Proof. Let L(S) be a linear and continuous functional on Σad (Ω); then

there exist Ŝ ∈ Σad (Ω) such that :

L(S) =

∫

Ω

S : Ŝ dΩ

Let us suppose that L(T) =
∫
Ω
T : Ŝ dΩ = 0 for all T ∈ W . From

Theorem 4.3 of [3] there exists v ∈ H1 (Ω;R3) such that ∇s(v) = Ŝ.

Since Ŝ ∈ Σad (Ω) it follows that v ∈ rig and so Ŝ = 0; hence L(S) = 0
for all S ∈ Σad (Ω). ¤

The second extension of the Donati’s theorem (for a proof in a general
Lp setting see [11]) provides a complement to the Theorem 4.3 of [3].

6



Theorem 2.4. The orthogonal of ∇s(H
1 (Ω;R3)) in L2

(
Ω;M3

sym

)
is

Σad (Ω)

Proof. Since obviously ∇s(H
1 (Ω;R3)) ⊂ (Σad (Ω))

⊥ it is enough to
prove that (∇s(H

1 (Ω;R3)))⊥ ⊂ Σad (Ω). Hence let S be such that for
all v ∈ H1 (Ω;R3): ∫

Ω

S : ∇s(v) dΩ = 0

Taking v ∈ D (Ω;R3) one finds that divS = 0 in Ω; then the Green’s
formula (2.1) implies that 〈Γn(S) ,v〉∂Ω = 0 for all v. Therefore S ∈
Σad (Ω). ¤

It also follows from this theorem, theorem 2.1 and (2.3) that:

(2.9) Ker(Div;L2) = Σad (Ω)
⊥⊕ DFG

The image of the operator CURLCURL, linear and continuous from
H2

(
Ω;M3

sym

)
into L2 (Ω;R3), is contained in Ker(Div;L2); indeed if

E ∈ H2
(
Ω;M3

sym

)
, then S = CURLCURLE satisfies Div S = 0. A

natural extension of the Gurtin’s theorem 1.4 is the characterization of
CURLCURL (H2

(
Ω;M3

sym

)
). For this let define the Gurtin space of

totally self-equilibrated stress fields :

G := {S ∈ L2
(
Ω;M3

sym

)
; (a) Div S = 0 and for q = 0, . . . , Q,

i = 1, 2, 3 (b)
〈
Γq
n(S) , e

i
〉
γq

= 0 and (c)
〈
Γq
n(S) ,p

i
〉
γq

= 0}
In the definition of G the conditions (a), (b) and (c) are not linearly
independent since taking in (2.1) v = ei and v = p i one obtains for
i = 1, 2, 3:

(2.10)

∫

Ω

Div S.ei dΩ =
〈
Γn(S) , e

i
〉
∂Ω

and

(2.11)

∫

Ω

Div S.p i dΩ =
〈
Γn(S) ,p

i
〉
∂Ω

Since Σad (Ω) is a closed subspace of G, from theorem 2.4 one deduces
the orthogonal decomposition:

(2.12) G = Σad (Ω)
⊥⊕ H

where:

(2.13) H = G ∩∇s(H
1
(
Ω;R3

)
)

The extension of the Gurtin’s theorem 1.4 is the object of the fol-
lowing:

7



Theorem 2.5. (i) For any A ∈ H2(Ω;M3
sym) the matrix field S =

CURLCURLA belongs to G.
(ii) There exists a linear and continuous map B : G→ H2(Ω;M3

sym)
such that A = B(S) satisfies:

(2.14) CURLCURLA = S and DivA = Div CURLA = 0

The proof given here is inspired by a proof of a similar result for
solenoidal vector fields given in Girault-Raviart ( [14], Chapter I, The-
orem 3.4, see also [2]). A different proof largely inspired to the proof
of Gurtin [16], Sect. 17 and that also uses the results of [14] has been
given in [12] (However, let us explicitly remark that the statement (ii)
of Theorem 2.2 there is not correct). The case of the Airy’s stress
function in Lipschitz domain has been considered in [10].

Proof. (i) Let be A ∈ H2(Ω;M3
sym) then S = CURLCURLA ∈

L2
(
Ω;M3

sym

)
. Since Div S = 0 in order to prove that S ∈ G one has

only to verify the conditions (b) and (c) or else that for q = 0, . . . , Q
and for every v ∈ rig one has 〈Γq

n(S) ,v〉γq = 0. For this let χq ∈ D
(
Ω
)

with χq = 1 in a neighborhood of γq and χq = 0 in a neighborhood of
every γr with r 6= q. Then one has:

0 =

∫

Ω

Div (CURLCURL (χqA)).v dΩ

= 〈Γn(CURLCURL (χqA)) ,v〉∂Ω = 〈Γq
n(S) ,v〉γq

(ii) Let S ∈ G and for every q = 0, . . . , Q let vq ∈ H1 (Ωq;R
3) the

solution (unique up to a rigid displacement) of the problem:




−Div∇s(v0) = 0 on Ω0

∇s(v0).n = Γ0
n(S) on γ0

∇s(v0).n = 0 on ∂B

{ −Div∇s(vq) = 0 on Ωq

∇s(vq).n = Γq
n(S) on γq

These solutions exist thanks to the conditions (b) and (c) of the defi-
nition of G. Let us define

S̃ =





S on Ω
∇s(vq) on Ωq, q = 0, . . . , Q
0 on R3\B

Then S̃ ∈ L2
comp

(
R3;M3

sym

)
and satisfies Div S̃ = 0. Its Fourier trans-

form, denoted Ŝ = (Ŝij), belongs to L2
(
R3;M3

sym

)
, Ŝij is holomorphic

in R3 and satisfies

(2.15) D̂iv S̃ = D̂iv
̂̃
S = ξŜ = (ξjŜij) = 0

8



where ξ = (ξj) is the dual variable of x. Let now define Â = (Âij)
with:

(2.16) Âij =
εjnlεikmξlξmŜnk

|ξ|4
From the symmetry of Ŝ it follows that also Â is symmetric; from
(2.15) it follows that

(ĈurlÂ)js = εjkmξkÂsm =
εskmξmŜjk

|ξ|2
and hence

(2.17) D̂iv (ĈURLÂ) = (ξs(ĈURLÂ)js) = 0

and, using once more (2.15),

(2.18) (ĈURL (ĈURLÂ))ij = Ŝji = Ŝij.

At last one also has:

(2.19) D̂iv Â = (ξjÂij) = 0.

If one defines A = B(S) as the restriction to Ω of the inverse Fourier
transform of (2.16) it is immediately seen from (2.17), (2.18) and (2.19)
that the conditions of (2.14) are all satisfied. In order to conclude it
is enough to prove that A ∈ H2(Ω;M3

sym). One can at first remark

that from (2.16) it follows that ξrξsÂij ∈ L2(R3) and hence the second
order derivatives of Aij are in L2(Ω). It is enough to prove that also
Aij ∈ L2(Ω). For this let ω(ξ) ∈ D(R3) with ω(ξ) = 1 for |ξ| ≤ 1. Since

ω(ξ)Âij has compact support its inverse Fourier transform is analytic

and hence its restriction to Ω is in L2(Ω). Since (1−ω(ξ))Âij ∈ L2(R3)
it follows that Aij ∈ L2(Ω) and the proof is complete. ¤
Proposition 2.6. Let be: Y := {T ∈ Ker(Div;L2);T = ∇s(u), u ∈
H1(Ω;R3), u|γ0 = 0 and u|γq ∈ rig, q = 1, . . . , Q}. Y has dimension
6Q and:

(2.20) Ker(Div;L2) = G
⊥⊕ Y = CURL CURL (H2

(
Ω;M3

sym

)
)

⊥⊕ Y
with orthogonality in L2

(
Ω;M3

sym

)
.

Proof. Since the orthogonality of the decomposition follows from the
Green’s formula, one has only to prove that the sum in (2.20) is direct.
For this let be S ∈ Ker(Div;L2) and let us remark that there exists
a unique u ∈ Y := {v ∈ H1(Ω;R3), v|γ0 = 0 and v|γq ∈ rig, q =
1, . . . , Q} such that for all v ∈ Y:

∫

Ω

∇s(u)∇s(v)dΩ =

Q∑
q=1

〈Γq
n(S) ,v〉γq

Then T = ∇s(u) ∈ Y and S−T ∈ G. ¤
9



Remark 2.7. One can easily give a variational characterization of a
basis of Y.

From this proposition and from theorem 2.1 one deduces the follow-
ing decompositions of L2

(
Ω;M3

sym

)
in mutually orthogonal subspaces:

(2.21)

L2
(
Ω;M3

sym

)
= ∇s(H

1
0

(
Ω;R3

)
)

⊥⊕ CURL CURL (H2
(
Ω;M3

sym

)
)

⊥⊕ Y
and from (2.12)

(2.22) L2
(
Ω;M3

sym

)
= ∇s(H

1
0

(
Ω;R3

)
)

⊥⊕ Σad (Ω)
⊥⊕ H ⊥⊕ Y

From (2.3) and theorem 2.4 one also has:

(2.23) DFG = H
⊥⊕ Y

Let us explicitly remark that these decompositions of L2
(
Ω;M3

sym

)
in

mutually orthogonal subspaces are the counterpart of the decomposi-
tions of Helmoltz type for vector fields in L2 (Ω;R3). In order to obtain
a complete decomposition of Hodge type we need the results of the next
section.

3. Saint Venant compatibility condition in L2 setting

CURL CURL is a linear and continuous operator fromH2
0

(
Ω; M3

sym

)
into L2(Ω; M3

sym) and for any E ∈ L2
(
Ω; M3

sym

)
and S ∈ D

(
Ω;M3

sym

)
one has :∫

Ω

E :CURL CURLSdΩ = D
′(Ω;M3

sym) 〈CURL CURLE,S〉D(Ω;M3
sym)

where D
′(Ω;M3

sym) 〈•, •〉D(Ω;M3
sym) denotes the duality pairing between

D
′ (
Ω;M3

sym

)
and D

(
Ω;M3

sym

)
. Hence its adjoint, linear and continu-

ous from L2(Ω;M3
sym) intoH

−2
(
Ω;M3

sym

)
, is the operator CURL CURL

defined in the distribution sense. Let be ker(CURL CURL ;L2) its
kernel satisfying:

ker(CURL CURL ;L2) = (CURL CURL (H2
0

(
Ω;M3

sym

)
)⊥

Since for every v ∈ H1 (Ω;R3) one has CURL CURL(∇s(v)) = 0
from the Green’s formula (2.1) with S ∈ CURLCURL (H2

0

(
Ω;M3

sym

)
)

it follows that CURLCURL (H2
0

(
Ω;M3

sym

)
) ⊂ Σad (Ω). Moreover one

has :

(3.1) ∇s(H
1
(
Ω;R3

)
) ⊂ ker(CURL CURL ;L2)

In order to completely characterize ker(CURL CURL ;L2) it suf-
fices, thanks to theorem 2.4, to study its intersection with Σad (Ω).
From a direct inspection it appears that this space is:

K =
{
S ∈ L2(Ω;M3

sym); CURL CURLS = 0(3.2)

andDiv S = 0 inΩ, Γn(S) = 0 on ∂Ω} .
10



Proposition 3.1. When Ω is simply connected then K = 0.

In [5] the proof that∇s(H
1 (Ω;R3)) = ker(CURL CURL ;L2) when

Ω is simply connected is reduced to a weak version of the classical
Theorem of Poincaré. We give here a different proof.

Proof. One remarks at first that the following identities hold true:

CURL CURLS = −∆S−∇∇(tr S) +

2∇sDiv S+ [4(tr S)− div Div S]I

tr[∆S+∇∇(tr S)− 2∇Div S] = 2[4(tr S)− div Div S]

Hence when S ∈ K one has :

(3.3) ∆S = −∇∇(tr S) + [4(tr S)]I

and taking the trace of this equation one finds :

(3.4) 4(tr S) = 0

From (3.4) and the hypoellipticity of the Laplacian it follows that tr S ∈
C∞(Ω) and then from (3.3) also that S ∈ C∞(Ω;M3

sym). Thanks to the
Beltrami’s sufficiency compatibility theorem 1.2 there exists a vector
field v ∈ C∞ (Ω;R3) satisfying the strain-displacement relations : S =
1
2
(∇vT + ∇v). The matrix version of the J.L. Lion’s lemma (see [3])

implies that v ∈ H1 (Ω;R3) and the conditions Div S = 0 in Ω and
Γn(S) = 0 on ∂Ω imply that v ∈ rig and hence S = 0. ¤

One can now prove the following result correcting the statement (ii)
of Theorem 2.2 of [12].

Proposition 3.2. CURL CURL (H2
0

(
Ω;M3

sym

)
) is dense in Σad (Ω)

when Ω is simply connected.

Proof. Let L(S) be a linear and continuous functional on Σad (Ω); then

there exist Ŝ ∈ Σad (Ω) such that :

(3.5) L(S) =

∫

Ω

S : Ŝ dΩ

Let us suppose that L(CURL CURL T) = 0 for all T ∈ H2
0

(
Ω;M3

sym

)
.

In order to prove the density we have to prove that then L(S) = 0 for
all S ∈ Σad (Ω). The assumption L(CURL CURL T) = 0 for all
T ∈ H2

0

(
Ω;M3

sym

)
means that:

0 =

∫

Ω

CURL CURLT : Ŝ dΩ

and hence CURL CURL Ŝ = 0 in the distribution sense. From propo-

sition 3.1 it then follows Ŝ = 0 and so L(S) = 0 for all S ∈ Σad (Ω). ¤
11



As it has been remarked for the first time by V. Volterra in 1906 [18],
K 6= 0 for a general non simply-connected domain. In order to study
this general situation, let us define the following space of Volterra’s
dislocations :

VD =
{
v ∈ H1(Ω∗; R3); [[v]]Cα ∈ rig, for α = 1, . . . , N

}
,

where [[v]]Cα is the jump of v across the cut Cα and Ω∗ = Ω\
N⋃

α=1

Cα. Let
explicitly remark that when all these jumps vanish then v ∈ H1(Ω;R3).
Hence H1(Ω;R3) ⊂ VD.

Let us write the jump of v across the cut Cα in the form aα(v) +
bα(v)∧ idΩ where aα(v) = aαi (v)e

i and bα(v)∧ idΩ = bαi (v)p
i. Let us

also define on VD the functionals:

I1
i,α(v) =

1

2

∫

Ω∗
∇sv:∇sv dΩ− aαi (v)(3.6)

I2
i,α(v) =

1

2

∫

Ω∗
∇sv:∇sv dΩ− bαi (v)(3.7)

Proposition 3.3. For every α = 1, . . . , N and i = 1, 2, 3 there exist
uα
i ∈ VD and rαi ∈ VD such that:

I1
i,α(u

α
i ) ≤ I1

i,α(v), ∀v ∈ VD ;(3.8)

I2
i,α(r

α
i ) ≤ I2

i,α(v), ∀v ∈ VD.(3.9)

Moreover, each vector field uα
i and rαi is uniquely determined modulo a

global infinitesimal rigid displacement on Ω.

The proof is obvious. For later use we write the corresponding Euler
equations: ∫

Ω∗
∇su

α
i :∇sv dΩ− aαi (v) = 0, ∀v ∈ VD ;(3.10)

∫

Ω∗
∇sr

α
i :∇sv dΩ− bαi (v) = 0, ∀v ∈ VD.(3.11)

Since meas (Ω) = meas (Ω∗), there is a canonical isomorphism of
L2(Ω∗;M3

sym) with L2(Ω;M3
sym). Hence for a given v ∈ VD, one

can associate with ∇sv ∈ L2(Ω∗;M3
sym) the corresponding element in

L2(Ω;M3
sym) denoted with ∇̃sv.

Theorem 3.4. For every α = 1, . . . , N ,and i = 1, 2, 3 the symmetric

matrix fields (∇̃suα
i ) and (∇̃srαi ) belong to the space K.

Proof. Let be α and i fixed. Since D(Ω;M3
sym) ⊂ VD from (3.10) it

follows :∫

Ω

∇̃suα
i :∇sv dΩ =

∫

Ω∗
∇su

α
i :∇sv dΩ = 0, ∀v ∈ D(Ω;M3

sym)

12



Hence, in the distribution sense,

(3.12) Div
(
∇̃suα

i

)
= 0 in Ω.

Taking v ∈ H1(Ω;R3) in (3.10) one then finds from (2.1):

(3.13) Γn

(
∇̃suα

i

)
=

(
∇̃suα

i

)
.n|∂Ω = 0 in H−1/2(∂Ω;R3).

Hence we conclude that ∇̃suα
i belongs to Σad(Ω). The same arguments

can be repeated to obtain that ∇̃srαi belongs to Σad(Ω). With suitable
choices of v ∈ VD ( for instance v with [[v]]Cβ = 0 for all β 6= α, with

[[v]]Cα = ej for j 6= i, with [[v]]Cα = pj for j = 1, 2, 3, etc.) one further
finds that:

[[uα
i ]]Cβ = 0 [[uα

i ]]Cα = ei(3.14)

[[rαi ]]Cβ = 0 [[rαi ]]Cα = pi(3.15)

It remains to prove that CURL CURL (∇̃suα
i ) = 0 in the distribution

sense. This result is a consequence of the relation:

D
′(Ω;M3

sym)

〈
CURL CURL (∇̃suα

i ),S
〉
D(Ω;M3

sym)
=

∫
Ω
∇̃suα

i : CURLCURLS dΩ =
∫
Ω∗ ∇su

α
i : CURLCURLS dΩ =∫

∂Ω∗ u
α
i · (CURLCURLS)n dΓ =∑

β

∫
Cβ [[u

α
i ]] · (CURLCURLS)n dC =

∫
Cα e

i · (CURLCURL S)n dC
Since the cuts Cα are planar and each uα

i is unique modulo a global
rigid displacement of Ω, one can take for simplicity Cα contained in the
plane spanned by e1 and e2 and so n = e3 and dC = dx1dx2. A simple
computation then gives:

(3.16) (CURLCURL S)n = (εisrε3pqSrq,ps)

Since Sij|Cα ∈ D(Cα) it follows that
∫

Cα
ei · (CURLCURL S)n dC =

∫

Cα
εisrε3pqSrq,psdx1dx2 = 0

and hence (∇̃suα
i ) ∈ K.

The proof that (∇̃srαi ) ∈ K is analogous. One obtains :

D
′(Ω;M3

sym)

〈
CURL CURL (∇̃srαi ),S

〉
D(Ω;M3

sym)
=

∫
Ω
∇̃srαi : CURLCURLS dΩ =∫

Cα p
i · (CURLCURL S)n dC

13



From (3.16) one has

pi · (CURLCURL S)n = −εijkxkεjsrε3pqSrq,ps

with k 6= 3. Recalling that −εijkεjsr = δisδkr − δirδks it follows that

pi · (CURLCURL S)n = xkε3pq(Skq,pi − Siq,pk)

Integrating by parts every term, one finds since k 6= 3 and Sij|Cα ∈
D(Cα) :∫

Cα
pi · (CURLCURL S)n dx1dx2 =

∫

Cα
(x1S12,1i − x2S21,2i) dx1dx2

Hence still integrating by parts one obtains, thanks to the symmetry
of S: ∫

Cα
pi · (CURLCURL S)n dx1dx2 = 0

This concludes the proof for ∇̃srαi . ¤
From (3.14),(3.15), (3.10) and (3.11) it follows:

Corollary 3.5. The 6N matrix fields ∇̃suα
i and ∇̃srαi are linearly in-

dependent in L2(Ω;M3
sym).

For later use one needs another form of the Green’s formula. For
this let remark at first that when W ∈ Σad(Ω), then the map W 7→
{( Wn)|Cα}α=N

α=1 well defined for W ∈ W , can be extended to a linear

and continuous map from Σad(Ω) into
∏α=N

α=1 H−1/2 (Cα;R3). Indeed,
for any fixed α and any g ∈ H1/2 (Cα;R3) one can find u ∈ H1(Ω∗;R3)
such that [[u]]Cα = g and [[u]]Cβ = 0 when β 6= α and such that the

map g 7→ u is linear and continuous. The Green’s formula for W ∈ W
and u ∈ H1(Ω∗;R3) reads:∫

Ω∗
W:∇s(u) dΩ =

∫

Cα
( Wn).g dCα

and hence

|
∫

Cα
( Wn).g dCα| ≤ c‖W‖L2(Ω;M3

sym)‖g‖H1/2(Cα;R3).

The density of W in Σad(Ω) (Theorem 2.3) allows to extend the map
W 7→ ( Wn)|Cα to a linear and continuous map from Σad(Ω) into
H−1/2 (Cα;R3). Moreover the following extended Green’s formula holds
true for W ∈ Σad(Ω) and u ∈ H1(Ω∗;R3):

(3.17)

∫

Ω∗
W:∇s(u) dΩ =

N∑
α=1

〈
( Wn)|Cα , [[u]]Cα

〉
Cα

where 〈., .〉Cα denotes the duality pairing between H−1/2 (Cα;R3) and

H1/2 (Cα;R3). We can now give the announced characterization.
14



Theorem 3.6. The space K is spanned by ∇̃suα
i and ∇̃srαi , α =

1, . . . , N , i = 1, 2, 3.

Proof. Given W ∈ K, let V ∈ K be defined by:
(3.18)

V = W−
N∑

α=1

{〈
Wn|Cα , ei

〉
Cα ∇̃suα

i

}
−

N∑
α=1

{〈
Wn|Cα ,pi

〉
Cα ∇̃srαi

}
,

Let be V∗ , W∗ ∈ L2(Ω∗;M3
sym) the restriction of V and W to Ω∗.

From an inspection of (3.18) it appears that CURLCURL ( V∗) = 0.
Because Ω∗ is simply-connected, there exists (see proposition 3.1) û ∈
H1(Ω∗;R3) such that

∇sû = V∗ =(3.19)

W∗ −
N∑

α=1

{〈
Wn|Cα , ei

〉
Cα ∇su

α
i

}
−

N∑
α=1

{〈
Wn|Cα ,pi

〉
Cα ∇sr

α
i

}
.

Let now be z an arbitrary element of VD. Using the Green’s formula
in Ω∗ (3.17) and (3.10), (3.11) one finds:∫

Ω∗
∇sû:∇sz dΩ =

∫

Ω∗
W∗:∇sz dΩ

−
N∑

α=1

{〈
Wn|Cα , ei

〉
Cα

∫

Ω∗
∇su

α
i :∇sz dΩ

}

−
N∑

α=1

{〈
Wn|Cα ,pi

〉
Cα

∫

Ω∗
∇sr

α
i :∇sz dΩ

}
= 〈 W∗n|∂Ω∗ , z〉∂Ω∗

−
N∑

α=1

{〈
Wn|Cα , ei

〉
Cα a

α
i (z)

}
−

N∑
α=1

{〈
Wn|Cα ,pi

〉
Cα b

α
i (z)

}

=
N∑

α=1

{〈
Wn|Cα , [[z]]Cα

〉
Cα

}
−

N∑
α=1

{〈
Wn|Cα , ei

〉
Cα a

α
i (z)

}

−
N∑

α=1

{〈
Wn|Cα ,pi

〉
Cα b

α
i (z)

}
= 0

It follows that ∇sû = V∗ = 0 and so V = 0. ¤
Since the matrix fields (∇̃suα

i ) and (∇̃srαi ) are linearly independent
in L2(Ω;M3

sym), we also have

Corollary 3.7. The space K is of dimension 6N .

Corollary 3.8. Σad(Ω) = K
⊥⊕ X with

X =
{
S ∈ Σad(Ω) ; 〈 Sn|Cα , ei〉Cα = 0, 〈 Sn|Cα ,pi〉Cα = 0,

α = 1, . . . , N, i = 1, 2, 3} .
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One may wonder how the results depend on the choice of the cuts.
The following result gives the answer.

Proposition 3.9. The definition of the space X is independent of the
way the cuts are chosen.

Proof. In order to prove this, let change the first cut C1 into another

one Ĉ1 equivalent in the sense that (i) its boundary is contained in

∂Ω, (ii) the set of planar non -intersecting cuts {Ĉ1, C2, . . . , CN} is such

that Ω̂∗ = Ω\{Ĉ1
⋃N

α=2 Cα} is simply connected and satisfies the cone

condition. Let O the subset of Ω whose boundary is C1, Ĉ1 and the part

of ∂Ω connecting the boundaries of C1, Ĉ1. Then the Green’s formula
in O implies that for all v ∈ rig and all S ∈ Σad(Ω) one has:

0 =

∫

O

Div S.v dΩ = 〈 Sn|C1 ,v〉Cα +
〈
Sn|Ĉ1 ,v

〉
Ĉ1

and hence 〈 Sn|C1 ,v〉Cα = 0 if and only if
〈
Sn|Ĉ1 ,v

〉
Ĉ1 = 0. ¤

Remark 3.10. From the previous proof it appears that the assumption
that the cuts are planar is not necessary; it is enough that the non-
intersecting cuts be Lipschitz.

Theorem 3.11. X is the closure of CURLCURL
(
H2

0 (Ω;M
3
sym)

)

Proof. It is enough to remark that ker(CURL CURL ;L2) = K
⊥⊕

∇s(H
1 (Ω;R3)). ¤

4. The complete Hodge decomposition

Collecting the different results we get the following general Hodge
orthogonal decompositions of L2(Ω;M3

sym):

(4.1) L2
(
Ω;M3

sym

)
= X

⊥⊕ K ⊥⊕ H ⊥⊕ Y ⊥⊕ ∇s(H
1
0

(
Ω;R3

)
)

where:

X =
{
S ∈ Σad(Ω) ; 〈 Sn|Cα , ei〉Cα = 0, 〈 Sn|Cα ,pi〉Cα = 0,

α = 1, . . . , N, i = 1, 2, 3} ,
K =

{
S ∈ L2(Ω;M3

sym); CURL CURLS = 0

andDiv S = 0 inΩ, Γn(S) = 0 on ∂Ω} ,
H = CURL CURL (H2

(
Ω;M3

sym

)
) ∩∇s(H

1
(
Ω;R3

)
),

Y = {T ∈ Ker(Div;L2);T = ∇s(u), u ∈ H1(Ω;R3), u|γ0 = 0

and u|γq ∈ rig, q = 1, . . . , Q
}
.

Let us stress that this orthogonal decomposition is the analogous of
the following Hodge decomposition of L2 (Ω;R3) (see e.g. [2], [4]):

(4.2) L2
(
Ω;R3

)
= FK

⊥⊕ HK
⊥⊕ CG

⊥⊕ HG
⊥⊕ grad(H1

0 (Ω))
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where with clear notations:

FK = {v ∈ L2 (Ω;R3) ; divv = 0 in Ω, vn|∂Ω = 0

and 〈 vn|Cα , ei〉Cα = 0, α = 1, . . . , N, i = 1, 2, 3
}
,

HK =
{
v ∈ L2(Ω;R3); curlv = 0and div v = 0 inΩ, vn|∂Ω = 0

}
,

CG = {v ∈ L2(Ω;R3); div v = 0 inΩ, v = grad φ, φ ∈ H1(Ω),

〈vn , ei〉γq = 0 for q = 1, . . . , Q
}

HG = {v ∈ L2(Ω;R3); div v = 0 inΩ, v = grad φ, φ ∈ H1(Ω),

φ|γ0 = 0 and φ|γq ∈ R, q = 1, . . . , Q
}

In [4] the spaces HK and HG are also characterized in homological
terms :

HK ∼= H1(Ω;R) ∼= H2(Ω, ∂Ω;R) ∼= RN

HG ∼= H2(Ω;R) ∼= H1(Ω, ∂Ω;R) ∼= RQ

In our situation it follows from proposition 2.6 that K ∼= R6N and from
corollary 3.7 that Y ∼= R6Q. This corresponds to homology with value
in rig ∼= R6 and so it is coherent with the Bernstein-Gelfand-Gelfand
resolution as suggested by Eastwood [8].
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