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Abstract: In this paper we propose an observer for an example of systems for which the
boundary of its domain is unobservable, and all trajectories converge to this boundary. The
proposed case study, a bioreactor in batch operating conditions with one simple microbial
growth reaction and gas production is standard and largely encountered in practical situations.
Comparison of the proposed observer with a classical Luenberger observer has been performed:
it shows that this later does not guarantee a convergence with no estimation error.
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1. INTRODUCTION

The state observation of nonlinear systems is a wide and
active research area resulting in a large scientific publica-
tions on the subject. Let us point out a few (e.g. Gauthier
& Kupka [1998] Kazantzis & Kravaris [1998], Krener &
Isidori [1983]) as well as the interesting and nicely survey
paper by Krener (Krener [2004]). In the present paper, we
would like to address a state observation issue that, as far
as we know, has yet been addressed, i.e. the problem of the
on-line reconstruction of the variables of nonlinear systems
for which there is a loss of observability on the boundary
of its domain. we shall indeed concentrate on a biological
system example with one biomass z, one substrate s and
gaseous outflow rate y measured on-line when the initial
condition (zg, sg) is unknown. Incidentally the design of
the state estimate takes advantage of the fundamental
reaction invariant property of reaction systems (Gavalas
[1968]).

The paper is organized as follows. Section 2 introduces
the dynamical model of the biological system. Section
3 provides an analysis of the observability properties
of the system under study. An asymptotic observer is
derived in Section 4 while Section 5 gives a Luenberger
observer for the purpose of comparison. Section 6 provides
numerical simulation results to illustrate the performance
of the proposed observer as well as its comparison with
the Luenberger observer designed in Section 5. Section 7
studies the behavior of our proposed observer for specific
growth rate models (Hill, Haldane) that do not satisfy
Hypothesis 2.

2. DYNAMICAL MODEL

Let us consider the dynamical model of a simple microbial
growth reaction in a batch reactor (see e.g. Bastin &
Dochain [1990]):

{éc = p(s)r (1)

$ = —p(s)x

where = and s stand for the concentrations in biomass
and substrate, respectively. Without loss of generality, we
assume that the yield coefficient of the transformation
of the substrate into biomass is equal to 1. The specific
growth rate function u(-) satisfies the usual assumption:

Hypothesis 1. The function p(-) is Lipschitz continuous on
R, positive on (0, 4+00) with p(0) = 0.

For convenience, we denote the number
(= max (s
pu = max u(s)

This number could be finite or not. In the present work,
we consider that a gaseous by-product flow rate, such as
biogas (e.g. Bernard et al. [2001]), is measured on-line as
a quantity proportional to the output variable

y = p(s).

It often happens in batch biorocesses that the initial
quantities of reactants (zg, sg) are not well kwnon while
the biogas production is the only available measurement
during the operation of the process. As the solutions of
(1) clearly satisfy lims_, 40 $(t) = 0, the initial quantity
of substrate can be recovered as

t

So = t_ljgloo ; y(r)dr

However the main interest is usually to estimate the total
production of biomass, that is lim;_, 1 x(t). The purpose
of the present work is the present a simple and reliable
methodology to estimate the x concentration.

3. OBSERVABILITY ANALYSIS
Equivalenty to the set of differential equations (1), one

can consider the dynamics in the (z,s) coordinates with
zZ=x+s

i[ﬂ:ﬂzvs):[—u(sﬁz—sﬂ @)
y=h(z,5) = u(s)(z — s) (3)



on the positive cone
C:={(z,8) €R?| 2> 5>0}

Here we require a stronger assumption on the function p.

Hypothesis 2. The function p is C?, concave and increas-
ing on Ry, with p(0) = 0.

Such an assumption is fulfilled for the well-known Monod
function (see Figure 1)

_ MmaxS
the most largely specific growth rate model used in
biotechnology and biological systems.
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Fig. 1. The Monod model

Lemma 3. Under Hypothesis 2, the system (2)(3) is dif-
ferentially observable on C, but not on its boundary.

Proof. On the open cone C, one has u(s) > 0 and can
write

Lyh(z, ) = —[1'(s)(z — ) — p(s)]p(s)(z = s)
=— (H (S)h(z7 s) — ,u(s)) h(z,s). (4)

()
For a given non-negative number y, we define the function
1 (s)
py(s) = p(s) —
! u(s)

whose derivative is
1" (s) M’(8)2>

= (55 - 4

Under Hypothesis 2, ) (s) is positive for any s, and
therefore the inverse ¢, Lis well defined from o(Ry) to
R4. As h(z,s) > 0 on C, one can write

_ Lsh(z,s)

_ 1 f )

. %ﬂ( h(z.s) )
h(z,s

1(s)
and conclude that the map

HEIP =Y

is injective on C, that is the system is differentially observ-
able on C.

On the boundary of C, one has Lyih = 0 for any integer
¢ and therefore the system is not differentially observable

on OC.

One can note that the boundary z = s (that is = 0) of
the cone C is invariant but repulsive for the dynamics,
while the boundary s = 0 is attractive. Therefore for
any initial condition with zg > so (that is ¢ > 0), the
solution converges to the boundary s = 0 where the system
is no longer observable. This feature prevents classical
constructions of nonlinear observers, such as the high-gain
observer, that requires the (differential) observability on a
compact invariant set (which here has to contain s = 0...).

4. AN ASYMPTOTIC OBSERVER

In this section, we first show that the system is detectable
from any positive initial condition, without requiring Hy-
pothesis 2.

Proposition 4. Assume that one as y(0) > 0, then one has
tgrfoo s(t) =0, tilinoo z(t) =z

where

+oo
+ / y(dr ()

for any t > 0.

Proof. When y(0) > 0, one has 2o > 0 and sy > 0.
Clearly, the solution of (1) fulfills (z(t), s(t)) — (z,0) when
t tends to +o00, where z = x¢+ sg. Therefore, one can write

+oo
sty = [ otr)dr
t
at any time ¢t > 0, and then one also
y(t
z(t) = —+Oo( ) .
u (7 y(r)ar)
y(t)

Finally, one obtains
+oo
——— t / y(r)dr
o voi)

One can then consider the following asymptotic observer.

z=ux(t)+s(t) =

Proposition 5. For any initial condition (zg, sg) with z¢ >
0 and sg > 0, the following observer

o(t) = y(t), v(0)=0
i) = 1O L),

p(v(t))

lim Z(t) —x(t) =0

t——+o0
Moreover, the error & — x is decreasing with time.

(t>0) (6)

fulfills

Proof. Note that for ¢ > 0, the solution of (6) is given by
the expression

y(0)

= W —l—/o y(r)dr

The convergence of the observer is then a simple conse-
quence of Proposition 4. The time derivtive of the x-error
is determined straightforwardly as

a(t



. i (Jy y(r)dr)
—(& —x)(t) = —y(to) 5
i T (o)

which shows the monotonic behavior of the error.

Remark 6. The internal variable v(-) of the observer (6)
is well defined for any ¢ > 0, while the estimation ()
as “output” of this system is defined only for ¢ > 0,
which is quite unusual in the observer constructions. More
precisely, one has lim;_,o- #(t) = +oo, but in practice
the estimation Z(-) drops down very quickly from large
values at small times ¢ > 0, as it can be seen on numerical
simulations in Section 6. This is not related to a “peaking
phenomenon” in the dynamics (there is no “high-gain”),
but is simply due to the fact that & is not defined at ¢ = 0.

Remark 7. The fact that the error £ —x is decreasing with
time guarantees that Z(t) is an upper estimation of z(t) at
any time ¢ and that the estimator does not oscillate as it
could happen with high-gain observers.

y(t) <0

5. A LUENBERGER OBSERVER

In this section, we consider functions u(-) that satisfy
Hypothesis 2, so that the differential observability is ful-
filled during the transient. We study the behavior of an
Luenberger observer when time tends towards infinity. As
we aim at reconstructing the biomass x, and the output y
is not a state variable of the original dynamics, we write
the system (1) in (z,y) coordinates as follows
r=1Yy

{z'/ = o(z,y)y Q

with
¢(z,y) = —p'op™! (g) z+
x x

Note that g~ is well defined on [0, ji] under the Hypothesis
2. However, the map ¢ has a singularity at x = 0, but
solutions of (1) satisfy z(¢) > x¢ at any ¢ > 0 and therefore
avoid this singularity for any initial condition with zg > 0.
For the derivation of an observer, one has to extend this
dynamics for values of x that are non positive or such
that y/x is larger than fi. Let € be a positive number, and
consider the map

¢(z,y) = ¢p(max(z, €, y/M), y)
which coincides with ¢ along any solution of (7) with

xo > €. Moreover ¢ is Lipschitz continuous on R x R,.
We can then consider a Luenberger observer in the (z,y)

coordinates for the dynamics with ¢ replaced by ¢:
{ii =y+Gu(§—y) (8)
g = o(@,y(t)y(t) + Ga2(§ — y(t))
Let us write the error equation as follows:

ls]- L &[]

A(t)
where
SE(1), y(t) — (=), y(t)) .. .
5(t) = ) — o) if Z(t) # x(t)

Oup(x(t), y(t)) if &(t) = x(t)
Under Hypothesis 2, the derivative 1/ is bounded on R,
and then the map = — ¢(x,y) has linear growth for any

y € Ry. As y(-) is bounded, 4(-) is thus bounded whatever
the solution &(-) is.

Therefore, as one has lim;_, o y(t) = 0, we obtain

0 Gy
0 G

which is not a Hurwitz matrix. Therefore, the asymptotic
convergence of the error towards 0 is not guaranteed and
the choice the gains Gy, G5 does not allow to assign the
speed of convergence.

lim A(t)=A= {

t——+oo

6. NUMERICAL SIMULATIONS

For the Monod function
s
ws) = 7 s

with the initial condition (sg,bp) = (1.1,1.5) we have
compared the asymptotic observer with the Luenberger
one initialized with (#,¢) = (1, y(0)) and various gains G,
G2. We found systematically a biased asymptotic error of
the Luenberger observer, as depicted on Fig. 2 (for G; =
Gy = —20 that gave the best result). These simulations
show that the innovation ¢ — y of the Luenberger observer
reaches zero while the x error has not yet converged to
zero, which explains its non null asymptotic error. We have
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Fig. 2. Comparison of our proposed observer with the
Luenberger observer in absence of noise

also performed simulations with measurements randomly
disturbed by a white noise proportionate up to 10% of
the signal (see Fig. 3). It shows the good behavior of the
asymptotic observer with respect to measurement noise.
Indeed, the dynamics of Z in equations (6) use integrals of
the output, and not directly the output (apart the value of
y at time 0) as classical observers, which filters the noise.
The asymptotic observer is mainly affected by the error on
the initial measurement. We have also tested the observer
with a louder noise (up to 25% of the signal). Then, a large
error on the initial measurement leads, as expected, to an
asymptotic bias, as for the Luenberger observer (see Fig.
4).
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Fig. 3. Comparison of our proposed observer with the
Luenberger observer with noise
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Fig. 4. Simulations with a strong noise

7. IN ABSENCE OF HYPOTHESIS 2

In this Section we consider two different growth functions
1(+) that do not satisfy Hypothesis 2. This does not prevent
the convergence of the asymptotic observer of Proposition
5, which requires Hypothesis 1 only to be fulfilled. The
system remains detectable in the sense of Proposition 4,
but the observability analysis of Section 3 can no longer be
conducted. As a matter of comparison, we have simulated
the Luenberger observer anyway.

7.1 Hill function

The Hill function for the specific growth rate writes as
follows (see Figure 5):
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Fig. 5. The Hill model

This function is increasing but not concave (see Fig. 5).
Simulations of Fig. 6 have been ran for pi,,q, = 1, Ks = 0.5
and o = 2.
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Fig. 6. Comparison of our proposed observer with the
Luenberger observer with Hill function

7.2 Haldane function

The Haldane model for the specific growth rate (see Figure
7) is given by the following expression:

u(s):L
Ki+s+ 3

This function is non monotonic (see Fig. 7). Therefore the
inverse of p is not uniquely defined for the construction of
the Luenbeger observer in (z,y) coordinates. However, for
each positive value m of the function p, one has p=1(m) =
{s—(m),s4(m)} with 0 < s_(m) < VEK;K; < sy(m),
and as solutions of system (1) converge to s = 0, we have
considered p~1(m) = s_(m) in the Luenberger observer
(8) (which gives the right inverse a soon as t satisfies
s(t) < VK K;). Simulations of Fig. 8 have been ran for
po =1, Ky =1 and K; = 0.2.

These simulations show that the proposed observer works
satisfactorily in simulation for a large variety of growth



Fig. 7. The Haldane model
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Fig. 8. Comparison of our proposed observer with the
Luenberger observer with Haldane function

functions. One can note that for the Haldane function, the
property of having an upper estimation of the biomass is
no longer satisfied, in accordance with Proposition 5.

8. CONCLUSIONS

We have proposed a new observer for systems that are
not observable on a subset that attracts the dynamics.
This observer guarantees an asymptotic convergence, while
a classical Luenberger observer produces an asymptotic
bias. Usually, one requires from a smooth observer to
have tuning parameters for assigning an exponential speed
of convergence. Here, as the trajectories of the system
converge to a subset of non observability, one cannot
expect to obtain simultaneously an exact convergence and
an assignable speed of convergence of an observer. The
observer we propose does not have a adjustable speed
of convergence but it guarantees an exact convergence,
and numerical simulations show its good robustness with
respect to measurement noise. However, the asymptotic
error of the proposed observer relies mainly on the initial
measurement of the output. Robust extensions of this
observer will be the matter of a future work.
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